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Prologue

Of course this limits me to being there in my being only in so

far as I think that I am in my thought; just how far I actually

think this concerns only myself and if I say it, interests no

one.

Jacques Lacan1

The scientific endeavour has grown enormously in recent decades, with many

new scientific journals being set up to accomodate the continuing flood of re-

search papers. It is a sobering fact that many of these articles are never read at all, or

more precisely, are never being cited in a research context (Meho, 2007). Some of the

reasons for this development are probably the rising popularity of quantitative eval-

uations of the research output of scientists, measured in the number of publications

produced, by university administrations and research agencies.

In my experience, the majority of journal articles belong to three distinct cate-

gories. Depending on whether to locate the subject of the research on either the

methodological or the experimental side, many scientific publications describe mi-

nor modifications of existing methods or, on the other hand, report empirical find-

ings obtained under minor modifications of experimental protocol. These modifica-

tions are necessary to guarantee the status of a truly innovative work or, put differ-

ently, to avoid the vice of double publication, but apart from a limited set of experts

working on the same subject the value of these findings is often questionable to a

broader scientific public. More frightening is the thought that most of these find-

ings might actually be false: Methodological improvements do not always merit the

effort to realize them in practice, and empirical findings might be purely coinciden-

tal (Ioannidis, 2005). Even in mathematics, where rigorous proofs can be had, and

which consequently does not belong under the general heading of science, technical

improvements do sometimes not lead to further our understanding of the subject

matter (e.g., as in the computer-assisted proof of the four-colour theorem by Appel

and Haken). The third major category of publications are of a secondary nature and

1 On “’cogito ergo sum’ ubi cogito, ibi sum” [Where I think ’I think, therefore I am’, there I am].
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Prologue

consist of editorials, commentaries, letters and review articles. These do not present

new findings, and although of occasional interest to readers most of these, disregard-

ing the latter, never find themselves being cited. Review articles are often highly

valued, however, since they not only lend themselves as introductions to a specific

research trend, but offer advice and insight that goes beyond mere exposition, and

in the best case combine relevant publications that would otherwise go unnoticed in

a focussed way.

Regarding the above, it is my opinion that there is much value in reviewing and

combining seemingly unrelated fields of research and their tools, which might be

one way to define the ubiquitious term interdisciplinary research. Indeed, I think that

many important methods and ideas do already exist in the large scientific literature,

but experience seems to confirm that these are often less well known in other areas

of science where they might be favourably used. This transfer of knowledge across

boundaries of scientific disciplines is usually not easy. The scientific conservation-

ism exposed by Thomas Kuhn in 1962 seems not to have diminished over time, and

it is still difficult to convince scientists from other disciplines about the value of tech-

niques they are not already familiar with. To overcome such scepticism it is neces-

sary to concentrate on essential and proven methods, and to exhibit their advantages

(and disadvantages) in as clear a way as possible.

In this thesis I have therefore tried to use well known tools from a variety of

distinct (sub-) disciplines in statistics, physics and the theory of dynamical systems

to derive new and nontrivial insights in various fields of application, by combining

long established and robust ideas in a general framework. To be convincing appli-

cations, this involved a lot of time implementing these methods as actually useable

computer code, closing quite a few gaps in existing software and collecting the nec-

essary tools in one central place. The text of this thesis follows the same idea of mak-

ing essentially all of the necessary methods understandable and accessible, even to

non-experts. As the reader might imagine, a lot of ideas and results that did not fit

into this presentation have been left out (but many of these are discussed cursorily

in notes), and, to a mathematician, quite a frightening amount of redundancy might

have crept into the text.

I hope the reader will appreciate this effort.

Michael Muskulus

Leiden, January 2010
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Chapter 1

General Introduction

Scientific discovery consists in the interpretation for our own

convenience of a system of existence which has been made

with no eye to our convenience at all. One of the chief duties

of a mathematician in acting as an advisor to scientists is to

discourage them from expecting too much of mathematicians.

Norbert Wiener

1.1 Distance-based analysis

This section gives a concise overview of the methodology of distance-based analysis

and the underlying ideas without undue details.

Systems and measurement devices

The setting is the following: We are given a number of systems (S1, S2, . . . ) that we

want to study. Conceptually, we are not concerned with the actual nature of the

systems; but we need to specify a way in which to obtain objective (quantitative)

information about them. This is achieved by specifying one or more measuring de-

vices (D1, D2, . . . ) that map each system (possibly at a specific point in time or with

various other influential factors fixed), arising from a class S of measurable systems,

into a set of numerical measurements: Di : S → M . In the simplest case these

measurements will be univariate (a single number) or multivariate (a “vector” of

numbers). Let us illustrate this with an example. Consider a time series, i.e., a set of

numbers (x1, x2, . . . , xn) sampled at n discrete points in time. This can be considered

to be a single measurement of a certain system, e.g., it might represent temperature

measurements at noon on consecutive days at a certain point in space, and would

be naturally represented by the vector x = (x1, x2, . . . , xn)t ∈ R
n = M , where the

superscript t denotes the transpose. Other measurements might include some kind

of processing and could be more involved. For example, the mean x̄ = 1/n
∑n

i=1 xi

of the time series can be considered a single measurement.
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Generalized measurements

This framework is very general and allows for much flexibility. With a small general-

ization we can even accommodate “ideal” (not physically realizable) measurements.

For example, we might consider the probability distribution of temperature values,

i.e., the function F (x) that tells us how likely it is to find a temperature T ≤ x on

an otherwise unspecified, and therefore random, day. This distribution could only

be obtained by an infinitely long time series (and there might still be problems with

its definition without some further stationarity assumptions), but we can always ap-

proximate it by an estimate obtained from a finite time series. Whether and when

at all such an estimate would be sensible is not the point here, but rather that the

class of measurement devices should be allowed to also contain potentially infinite

objects, namely, probability measures. This is a natural enough extension, since each

deterministic measurement x ∈M can be identified with a probability measure over

M where outcomes other than x have zero probability. Let us denote the class of

probability measures defined over a common space M by P (M). We think of these

as generalized measurements of our systems.

The space of measurements

To compare quantitatively two probability measures from P (M), we will require

that the space M already comes with a notion of distance, i.e., is a metric space. For

example, measurements that result in numerical quantities, such that M ⊆ R
n for

some finite n ∈ N, are usually metric. Only if M is a proper subset of some R
n there

might be problems, but we are usually allowed to assume that, at least potentially,

the range M covers the totality of R
n. Note that the interpretation and usefulness

of this metric depends on the measurement apparatus. This expresses the important

fact that we only have access to a system through a measurement device D. Prop-

erties that are not measured by D can obviously not be restituted later from such

measurements. This seems a serious limitation at first, and in a certain way it is:

Since it is only possible to analyze measurements, we need to assume that the mea-

surement device captures all the information necessary for the analysis task at hand.

It is a fact, however, that this limitation is a principal problem that is inherent to all

experiments and data analysis and cannot be overcome by any method. We are there-

fore justified, indeed almost compelled, to identify the measurements in M with the

systems themselves. In practice this is rarely problematic, especially if a lot of data

is available (e.g., a long time series recording) that can be assumed to characterize

all interesting aspects of a system sufficiently. The main challenge lies in the way we

deal with this data and extract meaningful insights from it.
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Distances between measurements

In distance-based analysis we calculate an abstract distance d : P (M)×P (M) → [0,∞)

between each pair of (generalized measurements of) systems. To ensure sensible

behaviour in a multivariate setting, we require the function d to be a proper dis-

tance: It should be a nonnegative number that is zero between two identical sys-

tems, d(P, P ) = 0 (reflexivity). Ideally it should only be zero for two identicals

systems, such that d(P1, P2) > 0 if P1 6= P2, which together with the previous

property is called positive definiteness. This stronger property is not truly needed

for most of our applications, but conceptually important. Another property that we

require of d is symmetry, d(P1, P2) = d(P2, P1). Finally, the measure d should be

minimal in a certain sense. There should be no “short-cuts” possible between two

or more systems that result in a shorter distance than the one measured directly be-

tween two systems. This property is guaranteed when d fulfills the triangle inequality,

d(P1, P2) ≤ d(P1, P3) + d(P3, P2) for all systems.

Although there are many candidates for such a distance measure, we prefer the

class of optimal transportation distances, also called Wasserstein distances in the math-

ematical literature (Villani, 2003). These quantify the amount of “work” that is nee-

ded to transform one probability measure P1 into a second measure P2. Detailed

definitions will be given later; let us note here that the Wasserstein distances are,

remarkably, true distances that fulfill all metric properties.

The first two steps in the distance-based analysis are therefore:

1. To measure some properties of systems in the form of a probability measure

over some numerical space (usually some Euclidean space R
n).

2. To quantify distances between all pairs of systems under consideration by cal-

culating a Wasserstein distance. This results in a matrix of mutual distances,

which will then be analyzed further.

Reconstruction of distances as point configurations

Although there exist quite a few statistical methods to deal with distance matrices,

mostly originating from problems in ecology (Legendre and Legendre, 1998), it is

very advantageous to represent the distances as actual points in some space with

which we are familiar. We will use standard Euclidean space R
k for this purpose, and

furthermore require that k ≪ m. The latter implies a reduction to a low-dimensional

subspace that preserves the most interesting properties of the systems under study.

The coordinates of each system in this space R
k will therefore be derived by the

methods of multidimensional scaling (Borg and Groenen, 2005). This is similar to

principal component analysis and results in a representation where the first coor-

dinate describes (“explains”) the largest variation in the distances, the second coor-

dinate describes the largest remaining variation in the distances, orthogonal to the

first, and so on.
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Reconstruction in a Euclidean space

Here the reader might wonder about an important issue. It is not obvious that the

distances measured can be represented at all in a Euclidean space. For example,

geodetic distances (where the shortest line between two points is not necessarily a

straight line) are not obvious to realize in a Euclidean space. Phase distributions are

the canonical example here: A phase is a number between 0 and 2π where we iden-

tify 2π with 0. Topologically, the space of all phases is a circle, and there are always

two paths between each pair of distinct phases. The geodetic distance between two

phases ϕ1 and ϕ2 is the shorter value of these, either |ϕ1 − ϕ2| (not crossing 0) or

2π − |ϕ1 − ϕ2| (crossing 0). To represent a set of phases as points in a Euclidean

space, where distances are measured by straight lines, usually introduces errors, i.e.,

misrepresentations of the distances. On the other hand, if the dimensionality k of

the ambient space is chosen high enough (e.g., k = N − 1 for distances between N

points) distances can always be represented perfectly by points in an R
k. Using a

smaller dimension k′ < k will usually introduce errors, but it is hoped that these

stay reasonably small for a much smaller value k′ ≪ k.

The reasons we advocate the use of Euclidean space, even though it might not be

optimal for certain kinds of distances, are threefold. A technical reason is that the

reconstruction of Euclidean coordinates from distances is straightforward, whereas

representations in other kinds of spaces are much more involved — and bring their

own problems in terms of computational efficiency, convergence of algorithms, and

so on. Another advantage of Euclidean space is the great familiarity we have with

this kind of representation, which is therefore very useful in data exploration and

the search for patterns. On top of this, we argue that it is not necessary to obtain

a perfect representation anyway. As in the case of mapping the earth, it is often

not necessary to consult a globe (an almost distortion-free model of the spatial rela-

tionship between points on the earth’s surface), but various two-dimensional projec-

tions (Mercator, Albers projection, equirectangular projection) suffer for most appli-

cations, even though these each of these introduce specific misrepresentations and

errors.

In practice, we will therefore use multidimensional scaling to obtain a low-di-

mensional Euclidean representation of a given distance matrix. Various diagnostic

measures allow us to assess the misrepresentation error introduced, and to obtain

a viable compromise with regard to the dimensionality used. This representation of

the original systems in an abstract Euclidean space is called the functional or behaviour

representation, since it illustrates the relationships between the systems measured

and is obtained from their function or behaviour (as defined by the measurement

device).
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Classification in functional space

This functional space supplies us with coordinates that are then amenable to statis-

tical analysis by the usual tools of multivariate analysis (Härdle and Simar, 2003;

Webb, 2002). We will primarily be interested in the classification of different sub-

types of systems, and the main tool we will employ is linear discriminant analysis

(LDA). Although there exist many more involved methods, LDA is easy to imple-

ment, well understood both theoretically and in practice, and relatively robust: even

if its assumptions (normal distribution for the subgroups in functional space, with

equal variance) are not met, it is usually the method of choice for small sample sizes

(number of systems studied), since further degrees of freedom (e.g., in quadratic dis-

criminant analysis which discards with the equal variance assumption) need large

datasets to improve upon LDA. The same Caveat also applies to truly nonparametric

methods such as kernel density or nearest-neighbour classification, and these meth-

ods will not be used in our applications (where sample sizes are on the order of 10

to 100 typically).

As will be seen later, this rather simple sounding setup (distances between prob-

ability measures, reconstruction of coordinates in a functional space, classification of

systems by normal models) allows for a surprisingly effective classification of com-

plex systems, improving on currently established methods in many cases. Moreover,

this approach is completely modular. Each of these steps can be individually refined,

and we will indeed describe some of these possibilities in more detail later.

1.2 Reader’s guide

Interdisciplinary research is faced with two dilemmas, both of which are mirrored

in this thesis. The first is concerned with the relevance of findings. Ideally, problems

from one discipline, when transferred into another domain, are more easily solved,

and result in nontrivial insights in the original setting. Moreover, questions in the

former should also lead to interesting problems and insights in the second domain.

In practice, this balance is seldomly achieved and usually one domain benefits the

most. Here we will be mostly concerned with two domains: the application domain

(medicine, neuroscience), and the mathematical domain (analysis, statistics). We

have tried to balance the text such that readers from both domains will find the

thesis interesting. However, as the actual application of distance-based methods can

be quite involved, the text is biased toward the applications, and the mathematical

side of the story is not fully developed.

The second dilemma is concerned with the necessary level of exposition. Since this

thesis should be both readable by mathematicians and non-mathematicians alike,

compromises had to be made on both sides. On the one hand, we will not state

mathematical results in their most elegant or general form, but discuss a setting that
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is natural for most applications and refer to further results in notes at the end of the

thesis (starting at page 229). On the other hand, we will also discuss some subtle

mathematical problems and actually prove a few theorems.

Most of these technical details have been delegated to two appendices that can be

consulted later or in parallel with the rest of the thesis, and there are therefore three

entry points to this thesis:

• The reader can start reading with Chapter 2, which gives a detailed overview

of distance-based analysis (without too many distracting technicalities),

• he/she can directly skip to the applications (starting with Chapter 3),

• or he/she can first read appendices A and B for a more mathematical exposi-

tion, and then continue with Chapter 2.

In the rest of this section we will briefly describe the contents of the remainder of

this thesis.

Chapter 2: Dynamical systems and time series

Dynamical systems as a general framework for time-varying phenomena are dis-

cussed in Chapter 2. Optimal transportation distances for dynamical systems are

defined, and their usefulness is discussed by way of examples. The main theoretical

problem is the dependence of the distances on the measurement apparatus (projec-

tion from the space of systems to the metric space of measurements). In dynamical

systems theory this is avoided by focussing on properties that are invariant under

diffeomorphisms, i.e., smooth changes of coordinates. This solution is not available

when metric properties are important. On the other hand, in practice one often faces

the situation where a number of systems are measured by one and the same mea-

surement apparatus, avoiding this difficulty. Other ways to aleviate this problem

are discussed in Section 2.7.

This chapter is based on:

Muskulus M, Verduyn-Lunel S: 2009 — Wasserstein distances in the analysis of dynamical sys-

tems and time series. Technical Report MI-2009-12, Mathematical Institute, Leiden University.

Extended journal version submitted.

Chapter 3: Lung diseases

In Chapter 3 we will analyze experimental data that consists of time series contain-

ing information on mechanical properties of the lungs. We will see that optimal

transportation distances allow to successfully distinguish different lung diseases and

might potentially allow to track airway status over the course of time. For complete-

ness, the complementary approach of fluctuation analysis is also discussed.
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This chapter is based on:

Muskulus M, Slats AM, Sterk PJ, Verduyn-Lunel S — Fluctuations and determinism of respi-

ratory impedance in asthma and chronic obstructive pulmonary disease. Submitted.

Chapter 4: Structural brain diseases

Chapter 4 considers an application to brain imaging. Instead of tracking dynami-

cal processes in time, the tissue properties of the brain are evaluated at one or more

points in time by magnetic resonance (MR) imaging, and the goal is the quantifica-

tion and detection of brain diseases from the distribution of MR parameters (relax-

ometry). The classical quantitative approach to quantitative MR imaging is outlined,

including a discussion and critique of commonly used histogram analysis methods

(Tofts, 2004). Wasserstein distances are then tested in the detection of subtle tissue

changes in patients suffering from systemic lupus erythematosus (with respect to

healthy controls), and in the detection of Alzheimer’s disease.

This chapter is based on:

Luyendijk J, Muskulus M, van der Grond J, Huizinga TWJ, van Buchem MA, Verduyn-Lunel

S — Diagnostic application of a new method of magnetization transfer ratio analysis in

systemic lupus erythematosus: initial results. In preparation.

and also

Muskulus M, Scheenstra AEH, Braakman N, Dijkstra J, Verduyn-Lunel S, Alia A, de Groot

HJM, Reiber JHC: 2009 — Prospects for early detection of Alzheimer’s disease from serial MR

images in transgenic mouse models. Current Alzheimer Research 6, 503–518.

Chapter 5: Deformation morphometry

For completeness, Chapter 5 is included which discusses the related problem of de-

formation morphology, i.e., how to find regions in the brain that are deformed with

respect to an average brain image.

This chapter is based on:

Muskulus M, Scheenstra AEH, Verduyn-Lunel S: 2009 — A generalization of the Moore-

Rayleigh test for testing symmetry of vector data and two-sample problems. Technical Report

MI-2009-05, Mathematical Institute, Leiden University. Extended journal version submitted.

Chapter 6: Electrophysiology of the brain

In contrast to the application to imaging data is the electrophysiological approach of

Chapter 6, where time series with high temporal resolution are obtained. Even on

the sensor niveau, i.e., on the brain surface, optimal transportation distances reveal

interesting phenomena (Section 6.5). Ideally, this application would need to validate
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the distances by a forward model, or to solve the inverse problem of source local-

ization (e.g., by beamforming) and then compare source-related time series of acti-

vation. Unfortunately, many details of these exciting ideas still need to be worked

out, and we therefore restrict ourselves to a proof of principles. A different use is

discussed in Section 6.4, where Wasserstein distances are used to qualitatively com-

pare distributions of instantaneous phases obtained from magnetoencephalographic

recordings by the Hilbert transform. These offer interesting insights into the func-

tional organization of neuronal networks.

This chapter is based on:

Muskulus M. Houweling S, Verduyn-Lunel S, Daffertshofer A: 2009 — Functional similarities

and distance properties. Journal of Neuroscience Methods 183, 31–41.

and also

Muskulus M, Verduyn-Lunel S: 2008 — Reconstruction of functional brain networks by Wass-

erstein distances in a listening task. In: Kakigi R, Yokosawa K, Kurik S (eds): Biomagnetism:

Interdisciplinary Research and Exploration. Hokkaido University Press. Sapporo, Japan, pp.

59-61.

Epilogue, Boxes & Notes

In the epilogue, we look back on the experiences obtained with the optimal trans-

portation distances and end with an outlook to the future. This is followed by a

number of appendices that have been included for completeness (see below) and

then a Notes section where additional topics are discussed, references to additional

or complementary works are given, and other details are discussed that would dis-

rupt the flow of the main text. To increase readability, scattered throughout the text

are also boxes that highlight and summarize important points, see Box 1 for an exam-

ple.

Appendix A: Distances

Appendix A recalls the basic facts and properties of distances. After introducing

metric spaces as the abstract mathematical object in which a notion of distance is de-

fined, the question of embeddability in Euclidean spaces is discussed, culminatig in

the classical solution of Theorem 4. This is followed by an exposition of multidimen-

sional scaling, which is the main tool that allows for the reconstruction of a metric

space from its distances, when these are influenced by (small) errors and numeri-

cal inaccuracies. As discussed in Section 1.1, this reconstruction will be the vantage

point for statistical analysis. Multivariate methods can be successfully applied in

the reconstructed space, and we provide the interested reader with details about di-

agnostic measures, linear classification methods, cross-validation, and permutation

tests for distance matrices.
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Box 1. Additional typographic elements

• Summaries of main points and results can be found in boxes such as these,
scattered throughout the text.

• Pointers to further topics and additional references can be found in the Notes
at the end of the thesis.

Appendix B: Optimal transportation distances

Appendix B recalls facts about the optimal transportation distances that are used

throughout the rest of the thesis. These distances are motivated by considering a

few other possible distances and their shortcomings, and introduced in a general

setting that shows the elegant theoretical foundation. For the application in practice

this will be considerably restricted, and the theory will attain a discrete and more

combinatorial flavour.

Additional appendices in the electronic version

In the electronic version, additional appendices complete the presentation, in which

the two software packages are documented that were developed for the computa-

tions in this thesis.

1.3 Major results & discoveries

Due to the many topics touched upon in this thesis, it seems worthwile to stress the

main innovations and results in a central place. Let us begin with the major general

achievements:

• This thesis provides the main tools for the multivariate analysis of complex

systems by distances. Although these are all more or less well-known tech-

niques in their relative disciplines, this is the first time that they are combined

in such a way.

• Extensive software has been written that allows for a streamlined application of

the methods introduced and discussed here.

• All of the necessary background information is available in one place in this

thesis, with extensive references also covering further, advanced topics.

Minor innovations that are introduced, but not actually worked out in detail, include

the following:
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• Wasserstein distances be used in the numerical analysis of dynamical systems

to visualize their response to changes in parameters. This numerical bifurcation

analysis is quantitative.

• The Wasserstein distances can be defined relative to transformations of the data,

e.g., a translation or rotation. This offers an alternative way to solve the Pro-

crustes problem, and quantifies differences in the shape of distributions that

are invariant with respect to location or orientation.

• Wasserstein distances can always be interpolated along geodesics between two

distributions. An iterative stochastic algorithm then allows to find approxima-

tions to centroids by these bivariate interpolations only. Thereby, it becomes

possible to determine characteristic representations even for very complex kinds

of data.

With regard to actual applications, the following are main results discussed in the

text:

• Lung diseases are assessed routinely by the forced oscillation technique, but

mostly only time averages are used. It is shown that there is potentially much

more information contained in the dynamics of these signals, and that this

information allows to discriminate between healthy and diseased lungs with

very high accuracy.

• There is indeed evidence for power-law-like scaling behaviour of the fluctua-

tions of respiratory impedance. This has been conjectured previously, but due

to methodological problems the evidence in previous work has to be judged

unreliable and inconclusive. Our findings provide evidence by state-of-the-art

maximum-likelihood estimation that supports the power-law hypothesis..

• Systemic lupus erythematosus is a neurodegenerative disease that affects the

brain. It has previously been shown that it significantly alters the distribution

of magnetization transfer ratios in the brain, which is evaluated in so-called

“histogram analysis” by quantifying changes in the location and height of its

mode. The distance-based analysis improves on this and allows for better clas-

sification of individual patients.

• The distance-based analysis of distributions of relative phases, obtained from

magnetoencephalographic signals in a bimanual coordination task, revealed

and quantified interactions (crosstalk) between motor areas in a robust way.

From the functional representation of these distances it now becomes possible

to formulate hypotheses regarding the underlying neural networks and to set-

up mathematical models.



Chapter 2

Dynamical systems and time series

Abstract

A new approach based on Wasserstein distances, which are numerical costs of an optimal

transportation problem, allows to analyze nonlinear phenomena in a robust manner. The

long-term behavior is reconstructed from time series, resulting in a probability distribu-

tion over phase space. Each pair of probability distributions is then assigned a numerical

distance that quantifies the differences in their dynamical properties. From the totality

of all these distances a low-dimensional representation in a Euclidean space is derived,

in wich the time series can be classified and statistically analyzed. This representation

shows the functional relationships between the dynamical systems under study. It allows

to assess synchronization properties and also offers a new way of numerical bifurcation

analysis.

The statistical techniques for this distance-based analysis of dynamical systems are pre-

sented, filling a gap in the literature, and their application is discussed in a few examples

of datasets arising in physiology and neuroscience, and in the well-known Hénon system.

2.1 Introduction

Linear time series analysis is a well-developed technique with elegant theoretical

underpinnings (Brockwell and Davis, 1998), but most real-world systems are decid-

edly nonlinear, which manifests itself in a much larger spectrum of possible dynam-

ical behaviors. Possibilities include intermittency, bursting activity and a sensitive

dependence on initial conditions, the latter being one of the hallmarks of so-called

chaotic behavior. Prediction tasks are therefore much more difficult in nonlinear sys-

tems. For example, consider a time series

x = (x1, x2, . . . , xN ) (2.1)

of length N , generated by a dynamical system. In linear systems prediction is rela-

tively straightforward by minimizing the total error made over some time interval

of length n < N . Assume

x∗ = (x∗1, x
∗
2, . . . , x

∗
N ) (2.2)
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is a synthetic time series generated by a parametric model for the system under

study. Optimizing the model parameters such that the error functional

dn(x, x∗)
!
=

n
∑

i=1

||xi − x∗i || (2.3)

is minimized usually results in an adequate fit that allows prediction on short to

medium timescales. The parametric model then captures essential features of the

(linear) dynamical system under study. In contrast to this, in a nonlinear system

(and also in systems influenced by a stochastic process), such a model is usually

useless. Already after a few time steps, the values x∗i (for i > n) often show large

deviations from the corresponding values xi, and the parametric model does usually

not capture the dynamics properly.

The focus in nonlinear time series analysis lies therefore not on predicting single

trajectories, but on estimating the totality of possible states a system can attain and

their statistical properties, i.e., how often the system can be expected to be in a partic-

ular state. Of particular importance hereby is the long-term behavior of the system,

the so-called attractor, which can roughly be defined as the set of all recurrent states of

the system (for a discussion of different notions of recurrence, see (Alongi and Nel-

son, 2007); formal definitions of attractors are given in (Milnor, 1985; Ruelle, 1981)).

More precisely, the notion of an invariant measure captures the statistical properties

of a dynamical system. This is a probability distribution over phase space that is in-

variant under the dynamics. In other words, if an ensemble of systems is taken with

initial states randomly distributed according to the invariant measure, after evolv-

ing the systems for some common time, although the individual systems will be in

quite different states than before, the distribution of systems in phase space does not

change (in the limit of an infinite number of such systems). By necessity, invariant

measures are concentrated on attractors, as recurrent behavior is a prerequisite for

invariance.

Changes in long-term dynamical behavior can then be detected by comparing

properties of the long-term behavior (or its invariant measure) (Hively et al., 1999;

Diks et al., 1996). Unfortunately, many of these methods are based on the assumption

that the dynamics is given by a deterministic (and possibly chaotic) process, and this

usually unverifiable assumption can lead to doubts about the validity of the analysis

(Rapp et al., 1993). Moreover, commonly used measures such as Hausdorff dimen-

sion and Lyapunov exponents are notoriously difficult to estimate. For this reason,

Murray and Moeckel introduced the so-called transportation distance between attrac-

tors, which is a single number that expresses how closely the long-term behavior of

two dynamical systems resembles each other (Moeckel and Murray, 1997). In con-

trast to general divergences (Frigyik et al., 2008; Ali and Silvey, 1966), for example

the Kullback-Leibler divergence, mutual information or the Kolmogorov-Smirnov
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statistic, this has the added avantage that it is a true distance on the space of (re-

constructed) dynamical systems: It is reflexive, symmetric, and fulfills the triangle

inequality, and is therefore a very natural concept to measure similarity of dynamical

systems and their time series. In particular, this allows to compare more than two

dynamical systems with each other in a sensible way.

The transportation distance is based on a convex optimalization problem that

optimally matches two invariant measures, minimizing a cost functional. Mathe-

matically, it is an example of a Wasserstein distance between probability measures

(Villani, 2003). Although computationally involved, Wasserstein distances are much

more robust than, for example, Hausdorff distance. Furthermore, these distances

have interesting theoretical features, for example interpolation properties that allow

to reconstruct dynamical behaviors in between two invariant measures.

Unfortunately, since their introduction in (Moeckel and Murray, 1997), the con-

cept of transportation distance has received little attention. The reasons are probably

that (i) its computation is involved, and (ii) to many researchers it did not seem clear

how to further analyze the distances after they had been calculated. In this article we

address the second point: After introducing general Wasserstein distances between

dynamical systems (Section 2.2), and discussing implementation issues (Section 2.3),

we show how such distances can be analyzed statistically (Section 2.4), which allows

interesting insights into the global structure of dynamical systems. In particular,

dynamical systems can be classified by properties of the shape of their invariant mea-

sures, that are quantified by these distances. Also, changes in behaviour when one

or more parameters of the system are changed (i.e., bifurcations) can be studied from

this new perspective.

Methods based on matrix eigendecompositions allow to represent and visualize

these distances in a low-dimensional space that represents all possible dynamical be-

haviors of the systems under study (Section 2.4.2). In this behavior space, the totality

of dynamical systems can be studied by the methods of multivariate statistical anal-

ysis. In particular, the statistical significance of separation of classes of systems in

this space can be assessed by permutation methods (Section 2.4.5), and discriminant

analysis allows to classify the time series by their dynamical features (Section 2.4.3).

We demonstrate the feasibility of our approach by two examples. First, we study

the behavior of the Wasserstein distances with respect to sample size, parameter

changes and the influence of noise in the well-known Hénon map (Section 2.5). In-

teractions between two systems are also discussed, where the distances allow to esti-

mate coupling strength, i.e., our method also allows to assess (generalized) synchro-

nization between dynamical systems (Section 2.5.4).

Secondly, we discuss an application to a dataset of tidal breathing records (Sec-

tion 2.6), a subset of data previously published in (Slats et al., 2007), where we dis-

criminate between patients suffering from asthma and those suffering from chronic

obstructive pulmonary disease (COPD). Moreover, by the same methodology it is
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Attractor Reconstruction

Delay embeddingProjection

Time series

Diffeomorphism

Figure 2.1: The methodology of attractor reconstruction via delay embeddings. The
true attractor is projected into a time series by some measurement function, from
which an image of the attractor can be formed by delay reconstruction, up to some
diffeomorphism.

possible to trace changes in the dynamical state of the disease in one subject over the

course of time.

These two distinct examples show the wide applicability of the concept of Wass-

erstein distances in nonlinear time series analysis. For completeness, we also include

Section 2.7 where we discuss a further generalization of the Wasserstein distances

that addresses a particularly interesting issue in nonlinear time series analysis, and

that contains new ideas for future theoretical work.

2.2 Wasserstein distances

A dynamical system is implicitly given by the information contained in repeated

measurements, and delay vector reconstruction allows to represent its trajectories in

a Euclidean space (Packard et al., 1980; Takens, 1981; Stark, 2000). Given a time series

x = (x1, . . . , xN ) (2.4)

of N measurements of a single observable X , a dynamical system is reconstructed

by mapping each consecutive block

x[i] = (xi, xi+q, . . . , xi+(k−1)q) (2.5)

of k values, sampled at discrete time intervals q, into a single point x[i] in a Euclidean

reconstruction space Ω = R
k. The intuitive idea is that the information contained in
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the block x[i] fully describes the state of the (deterministic) system at time i, albeit in

an implicit fashion. From a statistical point of view, the reconstructed points capture

higher-order (i.e., not only between pairs of values as in linear time series analysis)

correlations in the time series. If the embedding dimension k is large enough, and

some simple genericity assumptions are fulfilled (Takens, 1981), the resulting distri-

bution of points is indeed an embedding of the true attractor (in the limit of infinite

time series), i.e., its topological and differential structure is identical to the attractor’s,

up to a smooth change of coordinates. The result that shows this is the following:

Theorem 1 (Takens (1981)). Let M be a compact manifold of dimension m. For pairs

(X, y),X a smooth (i.e., C2) vector field and y a smooth function onM , it is a generic

property that ΦX,y : M → R
2m+1, defined by

ΦX,y(z) = (y(z), y(ϕ1(z)), . . . , y(ϕ2m(z)))

is an embedding, where ϕt is the flow of X .

In our notation, k = 2m + 1 is the reconstruction dimension, and we allow for a

general delay q > 0 instead of q = 1 as in Taken’s original theorem. The two gener-

icity assumption needed are the following: (i) If X(x) = 0 then all eigenvalues of

(dϕ1)X : TX(M) → TX(M) are different and different from 1 (simple hyperbolicity),

and (ii) that no periodic solution of X has integer period less or equal than k (re-

solvability). In practice, not only does one usually make these assumptions, they are

almost always justified. In the sequel, we therefore assume that the reconstruction

from Eq. 2.5 results in (the finite approximation of) an embedding.

This methodology of attractor reconstruction by delay embedding is illustrated

in Figure 2.1. Even in the case of systems influenced by noise this reconstruction

is possible (Stark et al., 1997). Likewise, attractors can also be reconstructed from

multivariate time series, where more than one scalar variable is measured (Cao et al.,

1998), but for simplicity of exposition we mainly consider the scalar case here.

The optimal value of the lag q can be estimated from the data (Fraser and Swin-

ney, 1986) and similar tests exist for the embedding dimension k (Abarbanel et al.,

1993; Kantz and Schreiber, 2004). The result of the embedding process is a discrete

trajectory in phase space Ω = R
k and this trajectory is interpreted as a probability

measure µ on (the Borel σ-algebra of) Ω, where

µ[A] =
1

N ′

N ′

∑

i=1

δx[i]
[A], A ⊆ Ω, (2.6)

is the time average of the characteristic function of the points in phase space visited;

here δx[i]
is the Dirac measure of the block x[i] and N ′ = N − (k − 1)q is the length

of the reconstructed series. In the limit N ′ → ∞ the measure µ is invariant under

the dynamics. Assuming that the system is subject to small random perturbations
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leads to the uniqueness of the invariant measure under mild assumptions (Lasota

and Mackey, 1997), which is then called the natural invariant measure. Its support

contains an attractor in the sense of Ruelle (Ruelle, 1981). If a dynamical model is

available, subdivision methods allow to approximate the attractor and its natural

measure with arbitrary precision (Dellnitz and Junge, 1999); in the case of finite time

series this measure is approximated by the available data.

In the following we assume that the reconstruction process has been performed,

so let x = (x1, . . . , xk) and y = (y1, . . . , yk) now denote vectors in Ω. To compare the

long-term behavior of dynamical systems quantitatively, we employ the Wasserstein

distances of their natural invariant measures. Given two probability measures µ and

ν on Ω, the Wasserstein distance W (µ, ν) is defined as the solution of an optimal

transportation problem in the sense of Kantorovich (Kantorovich, 1942b,a; Villani,

2003). The cost per unit mass is given by a distance function on phase space Ω. Only

the case of Euclidean distance, also called L2 distance,

d2(x, y) = ||x− y||2 =

(

k
∑

i=1

|xi − yi|2
)1/2

(2.7)

is considered here, since it is the natural choice, being rotationally invariant. Other

distances are possible, though, and Moeckel and Murray (1997) use L1 (“Manhat-

tan”) distance throughout. Although all distances are topologically equivalent in Eu-

clidean space, distinct distances emphasize different aspects of the statistical prop-

erties (i.e., of the shape) of the invariant measures. In a sequel to this paper, we will

discuss various properties and merits of the different distances.

The functional to be optimized is the total cost

C[π] =

∫

Ω×Ω

||x− y||2 dπ[x, y], (2.8)

over the set Π(µ, ν) of all probability measures on the product Ω×Ω with prescribed

marginals µ and ν, such that

∫

Ω

dπ[U, y] = µ[U ],

∫

Ω

dπ[x, V ] = ν[V ] (2.9)

for all measurable U, V ⊂ Ω and all π ∈ Π(µ, ν). Each measure π ∈ Π(µ, ν) is inter-

preted as a transportation plan that specifies how much probability mass π[x, y] is

transferred from each location x ∈ Ω to each location y ∈ Ω, incurring a contribution

d2(x, y) · dπ[x, y] to the total cost. The cost of an optimal transportation plan is called

the Wasserstein distance between the measures µ and ν and is denoted by

W (µ, ν) = inf
π∈Π(µ,ν)

∫

Ω×Ω

||x− y||2 dπ[x, y]. (2.10)
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Figure 2.2: Example optimal transportation problem in the discrete case. Open circles
correspond to the first measure, filled circles correspond to the second measure. For
simplicity, the points are distributed on a grid with unit spacing. Left panel: Initial
configuration. Numbers indicate probability mass at each point. Right panel: An
optimal transportation plan with Wasserstein distance W ≈ 3.122. The numbers
next to the arrows indicate how much probability mass is transported from the first
measure to the second measure.

Such problems arise in a number of applications in image analysis (Haker et al.,

2004), shape matching (Gangbo and McCann, 2000) and inverse modeling in phy-

sics (Frisch et al., 2002). The measure theoretic formalism allows a unified treatment,

but for finite time series the natural measure corresponds to a finite sum of Dirac

measures. In this case the optimal transportation problem reduces to a convex op-

timalization problem between two weighted point sets and can be calculated by stan-

dard methods (see Section 2.3). In Figure 2.2, we show an example with the Dirac

measures distributed on a regular grid.

Note that the specific Wasserstein distance we consider here is often called the

Earth Mover’s distance in the image analysis community (Rubner et al., 2000) and

the Kantorovich-Rubinstein distance in the mathematical literature (Villani, 2003).

This distance is preferred over the theoretically better understood squared Wasser-

stein distance (see (Villani, 2003) again), since it is more robust with respect to its

statistical properties (confer the discussion in (Mielke and Berry, 2007)).

Remark 1. It is only possible to compare the long term dynamics of dynamical sys-

tems that occupy the same (reconstructed) phase space. This is not a problem in

practice, when we compare classes of comparable dynamical systems, e.g., study

the same system under parameter changes. This issue is further considered in Sec-

tion 2.7.
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2.3 Implementation

2.3.1 Calculation of Wasserstein distances

We assume that the reconstruction of the invariant measures has been performed,

utilizing Theorem 1, resulting in discrete approximations of the invariant measures.

As remarked before, the optimal transportation problem in the discrete case reduces

to a transportation problem of weighted point sets (for possible approaches in the

continuous case, which is an active area of research, see (Benamou et al., 2002; Haker

et al., 2004)). Let the discrete measures be given by

µ =

n1
∑

i=1

αiδxi
, ν =

n2
∑

j=1

βjδyj
, (2.11)

where the supplies αi ∈ (0, 1] and the demands βj ∈ (0, 1] are normalized such that
∑

i αi =
∑

j βj = 1. The left panel of Figure 2.2 shows an example of two such

measures (on a regular grid).

Any measure in Π(µ, ν) can then be represented as a nonnegative matrix fij that

is feasible, which is to say that it fulfills the source and sink conditions

∑

j

fij = αi, i = 1, 2, . . . , n1, and (2.12)

∑

i

fij = βj , j = 1, 2, . . . , n2. (2.13)

These are the discrete analogs of the respective conditions on the marginals in Eq. 2.9.

In this case the optimal transportation problem reduces to a special case of a

minimum cost flow problem, the so-called transportation problem (Bertsekas, 1991;

Balakrishnan, 1995):

W (µ, ν) = min
∑

ij

fijcij , (2.14)

over all feasible flows fij , where cij = ||xi − yj ||2.

In principle, a general linear programming solver can be used to find the solu-

tion, but the special structure allows more efficient algorithms1. Indeed, the trans-

portation problem can be solved in polynomial time by a network simplex algorithm

(Schrijver, 1998; Balakrishnan, 1995). An actual implementation can be found in (Lö-

bel, 1996). It is this algorithm that we have used in the examples in this paper.

Remark 2. Alternatively, relaxation methods can be used, for example, the Auction

algorithm developed by Dimitri Bertsekas (Bertsekas and Castanon, 1989): Starting

1 In the two-dimensional case, the transportation problem can be solved effectively in linear time, as already

noted by Kantorovich. This is a consequence of the so-called Monge property of the distance matrix

(Burkard et al., 1996).
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from an initial condition, the total cost of the problem is successively reduced by a

converging bidding process. Its main advantage is its ability to restart the problem

from an approximate solution. Large numbers of similar transportation problems

can be efficiently solved thereby. However, its implementation is non-trivial, so for

most problems the algorithm of (Löbel, 1996) should be the first choice2.

2.3.2 Bootstrapping and binning

Even with state-of-the-art algorithmic implementations, the computational cost of

the calculation of Wasserstein distances remains a concern. A practical solution is

to resample smaller subseries from the reconstructed trajectory and to estimate the

Wasserstein distances multiple times, bootstrapping its expected value (Davison and

Hinkley, 1997). Not only does this ease the computational burden tremendously

(most algorithms for the transportation problem have at least a quadratic depen-

dence on sample size), but it also supplies a quantitative measure of accuracy in the

form of the bootstrapped self-distances W (µ, µ) (see the discussion in Section 2.5.1),

and introduces a further level of robustness (as the original time series are finite, we

have to consider them as approximations of the true dynamical behavior anyway).

This is the preferred method for most problems, and we discuss its properties in

Section 2.5.

For completeness, we also mention that the reconstructed points can be clustered

or binned prior to the calculation, as utilized in (Moeckel and Murray, 1997), for

example. Since, by the Kantorovich-Rubinstein theorem, the distance function is

based on a metric, we have that W (µ, ν) depends only on the difference of µ and

ν (see (Villani, 2003)). Therefore, if a measurement point x ∈ Ω of weight µ[x] is

moved to a different location x + ξ, where ξ ∈ Ω is a displacement vector, the total

cost changes by at most ||ξ|| · µ[x]. This also shows that the Wasserstein distances

are robust against the influence of (additive) noise, with the expected maximal error

bounded by the standard deviation of the noise. Likewise, binning with regular bins

of diameter b ∈ R introduces an error of at most
√
k · b to the total cost.

2.3.3 Incomplete distance information

In the following, we always assume that all pair-wise Wasserstein distances have

been calculated for a set of dynamical systems under considerations. Since the num-

ber of distances grows quadratically with respect to the number of systems, in prac-

tice one might want to reduce the number of computations by only computing a

fraction of the distance matrix. This point is discussed in (Borg and Groenen, 2005,

Section 6.2), where it is shown that under low noise levels even in the absence of

2 An implementation as a package for the statistical computing environment R (http://www.r-

project.org/) is available from the author’s homepage.
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80% of the distances (randomly chosen) the remaining distances contain enough in-

formation for excellent recovery when a modification of the method of Section 2.4.2

is applied (Spence and Domoney, 1974). In the case of noisy time series, the recon-

struction of dynamical behavior is an area of active research. At the moment, the

recently published method of (Singer, 2008) should be the preferred approach.

2.3.4 Violations of distance properties

In practice, if the invariant measures are bootstrapped because of computational

complexity considerations, violations of the distance properties can arise. These are

due to the finite number of points sampled, and only the triangle inequality is poten-

tially affected. For completeness, we will also discuss violations of reflexivity here.

The triangle inequality is violated if

W (µ, ν) > W (µ, η) +W (η, ν) (2.15)

for some triple of points µ, ν, η from the set of invariant measures that are considered.

For a finite number of points such a violation can always be corrected. If it occurs,

let

c = max
µ,ν,η∈P (Ω)

W (µ, ν) −W (µ, η) −W (η, ν) ≥ 0 (2.16)

be the maximal violation of the triangle inequality, where P (Ω) denotes the set of the

dynamical systems considered. Adding c to all distances, W (µ, ν) 7→ W (µ, ν) + c,

corrects the violation. The value of c can be found in time of order O(N2 logN) by

sorting the sums of distances on the right-hand side of Eq. 2.15. The effect of adding

such a constant is more pronounced for the smaller distances, which get stretched

more than the larger ones. The constant c is a very interesting measure in itself (Laub

et al. (2006); also see the discussion of this point in (Borg and Groenen, 2005)).

Violations of reflexivity arise, for example, when one estimates the self-distances

W (µ, µ) under bootstrapping. Of course, these can be simply corrected by setting

W (µ, µ) 7→ 0; nevertheless, the estimation of W (µ, µ) under bootstrapping allows

one to assess the simulation error. It seems a reasonable assumption that each dis-

tance is perturbed by a normal distribution with mean zero and standard deviation

σ(µ, ν) that depends on the two measures. However, since distances can be only

nonnegative, for the self-distances and measures whose true distance is smaller than

σ(µ, ν) this has to be modified. A simple model for the errors is then

W (µ, ν) = W0(µ, ν) + |ǫ(µ, ν)|, (W0(µ, ν) < σ(µ, ν)), (2.17)

W (µ, ν) = W0(µ, ν) + ǫ(µ, ν), (W0(µ, ν) > σ(µ, ν)), (2.18)

whereW0(µ, ν) is the theoretical distance for infinite time series and sample size and

ǫ(µ, ν) ∼ N (0, σ2(µ, ν)). Of course, since W0(µ, ν) is not known, in practice it is
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difficult to tell whether a small distance signifies almost identical systems, i.e., the

resolution of the Wasserstein distances is on the order of ǫ(µ, ν). The standard choice

then is to leave all distances W (µ, ν) with µ 6= ν unchanged, lest they violate the

triangle inequality. However, depending on the application, one might make differ-

ent choices with regard to this (see Section 2.5.4). In Section 2.5 we show numerical

evidence that the assumption of normality is approximately fulfilled in practice.

2.4 Analysis

In Figure 2.3 we show the steps in the analysis of dynamical systems by Wasserstein

distances. From an underlying dynamical system, measurements are obtained in the

form of time series. From these, discrete approximations of the invariant measures

are reconstructed by standard delay embedding. After calculating the Wasserstein

distances for all pairs of such probability measures, one can store the information in

a distance matrix. In the following we discuss how to proceed with the analysis of

the information contained in this matrix.

2.4.1 Distance matrices

The statistical analysis of distance matrices is a well developed topic in multivariate

analysis (Härdle and Simar, 2003; Borg and Groenen, 2005). Important applications

arise in ecology (Legendre and Legendre, 1998), psychology, and in the statistical

analysis of shape (Small, 1996). Far from being comprehensive, we give a short

overview of some techniques that are particularly useful in the analysis of Wasser-

stein distances.

Throughout we assume that the distance information is presented in the form of a

single matrix M whose entries Mij = W (µi, µj) represent the distance between two

dynamical systems (which are calculated from their invariant measures µi and µj , as

discussed before). The actual distance used is left unspecified. In the later examples

(Section 2.5-2.6) we employ the Kantorovich-Rubinstein distance (Eq. 2.10), but the

class of Wasserstein distances contains other interesting distances (e.g. total varia-

tion) that test distinct properties of the invariant measures. The interesting problem

of how to combine the information obtained from various distance measures into a

generalized distance matrix is beyond the scope of the present paper. In any case,

we first need to consider how a single distance matrix can be analyzed.

2.4.2 Reconstruction by multidimensional scaling

Multidimensional scaling (MDS) is the generic name for a number of techniques that

model distance data as points in a geometric (usually Euclidean) space. In the appli-

cation to dynamical systems, each point in this space represents a single dynamical
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Probability distributions
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Figure 2.3: Outline of the methodology of distance-based analysis of dynamical sys-
tems and time series. The solid arrows indicate the main flow of steps. The bro-
ken arrows indicate optional steps that are applicable in particular situations. Note
that we do not discuss clustering methods in this paper, as they are generally well-
known.

system and the space can be interpreted as the space of (the totality of) their possi-

ble dynamical behavior. We therefore call it the behavior space. It should not be con-

fused with the k-dimensional reconstruction spaces of each single dynamical system,

which are only used in the calculations of the Wasserstein distances. As the behavior

space represents possible dynamical behavior, its dimension is not directly related to

the dimensionality of the dynamical systems under consideration, but rather reflects

the structure of the dynamical variability inherent in the totality of systems studied.

Classical (also called metric) MDS is similar to principal component analysis

(PCA) and has been pioneered by Torgerson and Gower (see (Borg and Groenen,

2005) for references). Although there are many modern developments and variations
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(a few of which are discussed in Section 2.8), we only focus on classical MDS. Let us

assume a priori that the distances Mij are the distances between n points (represent-

ing n dynamical systems) in a m-dimensional Euclidean space, for some choice of

m ≤ n. Denote the coordinates of the i-th point by xi1, xi2, . . . , xim. In the following,

we want to determine the n-by-m matrix X = xij of the totality of these coordinates

from the distances in Mij .

The squared distances (Mij)
2 can be expanded as

(Mij)
2 =

m
∑

a=1

(

x2
ia + x2

ja − 2xiaxja

)

, (2.19)

which results in the matrix equation

D2 = c1′n + 1nc
′ − 2XX ′. (2.20)

HereD2 represents the matrix with elementsD2
ij = (Mij)

2, the vector c = (c1, . . . , cn)′

consists of the norms ci =
∑m

a=1 x
2
ia, and 1n is an n-by-1 vector of ones. The matrix

transpose is indicated by ′.

Reversing this identity, the scalar product matrix B = XX ′ is given by

B = −1

2
JD2J, (2.21)

where J = I − 1
n1n1′n is the centering matrix, and I denotes the n-by-n identity ma-

trix. The operation in Eq. 2.21 is called double centering and has been thouroughly

studied (Critchley, 1988). It is often called “an application of the law of cosines” in

the literature. Note the use of squared distances; this is necessary since the “dis-

tances” xi· − xj· are unknown, as the (absolute) distances Mij = |xi· − xj·| contain

no information on the sign.

To find the classical MDS coordinates from B, we factor B by its eigendecompo-

sition (singular value decomposition):

B = QΛQ′ = (QΛ1/2)(QΛ1/2)′ = XX ′. (2.22)

Here Λ1/2 is the matrix square root of Λ; this exists as Λ is a diagonal matrix, with

the eigenvalues of B on its diagonal.

In general, the dimension m is not known in advance, and has to be considered a

parameter. Let the eigenvalues ofB be ordered by decreasing size (by permuting the

relevant matrices, if necessary). Denote byQm the matrix of the firstm columns ofQ;

these correspond to the first m eigenvalues of B, in decreasing order. The coordinate

matrix of classical MDS is then given by

X := QmΛ1/2
m . (2.23)
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The distances in M can now be represented as points in a Euclidean space if X

is real, or equivalently, if the first m eigenvalues of B are nonnegative (Young and

Householder, 1938; Havel et al., 1983). In that case, the coordinates in X are found

up to a rotation. Moreover, the reconstructed coordinates are a principal axes solu-

tion, i.e., the coordinates of a m′-dimensional reconstruction, where m′ < m, corre-

spond to the first m′ coordinates of an m-dimensional reconstruction, which allows

a nested analysis. Since this is PCA of scalar products, it has been called principal

coordinate analysis by Gower. However, there is a subtle difference: The centering

operation usually has the effect that the first principal component (representing a

baseline/mean) has been removed (Heiser and Meulman, 1983).

The optimal maximal dimensionality m of the reconstruction can be determined

by considering the strain,

S = ||XX ′ −B||2 =
∑

ij

|(XX ′)ij −Bij |2. (2.24)

The strain quantifies the error made by projecting the distances to them-dimensional

subspace, and decreases monotonously as the reconstruction dimension m is in-

creased, as long as no negative eigenvalues are encountered under them eigenvalues

used in the reconstruction. However, the speed of decrease varies with the dimen-

sionality. A rapid fall in the beginning usually turns into a much slower decrease

above a certain dimensionality m∗, a so-called elbow phenomenon (see Panel C in Fig-

ure 2.15 for an example). The dimension m∗ so obtained is the usual, optimal choice

for m, representing a compromise between parsimony and resolution similar to the

Akaike information criterion. Of course, depending on the actual use of the behav-

ior space representation, there might be more appropriate ways of determining the

optimal dimension.

Note that the primary use of the MDS reconstruction is dimension reduction. This is

particularly useful in exploratory data analysis, i.e., as a first step in a comprehensive

analysis where the emphasis is on the detection of interesting features, and in the

visualization of distance information. In the example sections, we use a number of

two-dimensional reconstructions of the behavior space for visualization purposes

(as more than two dimensions are obviously difficult to assess visually).

A different application is the discrimination of lung diseases by their dynamical

properties (Section 2.6). In this example, we determine the optimal dimension of the

behavior space by cross-validation of the accuracy of linear discrimant analysis. We

now turn to a discussion of this technique. Before that, however, let us stress the

main principle underlying the distance-based analysis of dynamical systems.

Principle 1. The reconstructed behavior space, i.e., the MDS coordinates derived

from a distance matrix, is the object at which all (statistical) analysis starts.

Following this principle, in the following sections on statistical analysis we only
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consider points in behavior space and do not consider distance matrices anymore.

2.4.3 Classification and discriminant analysis

In applications, an important problem is the classification of time series, see Sec-

tion 2.6 where we use time series of respiratory measurements to discriminate be-

tween two lung diseases. Again, we only discuss the standard approach, linear dis-

criminant analysis (LDA) or Fisher discriminant analysis, for two classes.

Assume a number of points xi ∈ R
m are given, where 1 ≤ i ≤ n. Consider

a partition of the index set I = (1, . . . , n) into the indices I1 belonging to the first

class, and the remaining indices I2 = I \ I1. The weighted class means (also called

centroids) are

c1 =
1

n1

∑

i∈I1

xi, c2 =
1

n2

∑

i∈I2

xi, (2.25)

with corresponding intra-class variances

Σ2
1 =

∑

i∈I1

(xi − c1)(xi − c1)
′, Σ2

2 =
∑

i∈I2

(xi − c2)(xi − c2)
′. (2.26)

The overall mean is

x̄ =
1

n

∑

i

xi =
n1c1 + n2c2

n
. (2.27)

The goal of LDA is to find a vectorw ∈ R
m that maximizes the generalized Rayleigh

quotient

J(w) =
w′(c1 − c2)(c1 − c2)

′w

w′(Σ2
1 + Σ2

2)w
, (2.28)

i.e., the difference in means divided by the sum of variances, all of which are pro-

jected onto the direction of w. The motivation for this is that the optimal direction

maximizes the separation (or inter-class scatter) of the means, scaled by the vari-

ances in that direction (the corresponding sum of intra-class scatter), and which can,

in some sense, be considered the signal-to-noise ratio of the data.

The direction w is easily found by a spectral technique (Shawe-Taylor and Cris-

tianini, 2004), and the method is implemented in standard software packages (for

example, see (Maindonald and Braun, 2003)). Points are then classified by their near-

est neighbour in the projection onto the direction of ω. Application of LDA to point

coordinates in behavior space allows to classify dynamical systems.

Note that it is not possible to apply LDA directly on distance matrices since these

are collinear, and the results therefore cannot be trusted (Næs and Mevik, 2000). This

is the main reason behind Principle 1.
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2.4.4 Cross-validation

It is well known from work in machine learning that resubstitution accuracy, i.e., pre-

dictive accuracy on the data used to derive a model, inevitably improves as the pre-

diction model becomes more complex. In the case of LDA in behavior space, increas-

ing the dimensionality m of the behavior space inevitably improves the accuracy of

classification (as long as no negative eigenvalues are encountered). However, this

does not usually tell us much about the accuracy obtained when faced with the clas-

sification of an additional data item of unknown class.

The usual solution to assess predictive accuracy in a useful way is to partition

the available data into a training and a test set of about the same size. After setting

up the discrimination method on the former, its accuracy is then tested on the latter.

However, for small datasets this is usually not feasible, so we recommend the use

of cross-validation. In leave-one-out cross-validation, the i-th data point is removed

from the n points available, the discriminant function is set up, and the i-th point

classified, for all possible values of i ≤ n. The average accuracy of all these classifi-

cations is the (leave-one-out) cross-validated predictive accuracy of the classification.

Cross-validation of LDA in behavior space seems straightforward: first the be-

havior space is constructed by the classical MDS solution, then the classification of

points in this space is cross-validated. Note however that a (often significant) bias is

introduced, if the MDS reconstruction makes use of the distance information of each

point that is left out in the cross-validation step. Ideally, when classifying the i-th

point as an “unknown data item” we would like to construct behavior space from a

submatrix of the distance matrix, with the i-th row and column removed, classify-

ing the i-th point in this space. For simplicity, let i = n, such that the coordinates

of the last point need to be found in the behavior space defined by the first n − 1

points. A solution to this problem has been recently given in (Trosset and Priebe,

2008), following earlier work of (Anderson and Robinson, 2003).

The main idea is to apply double centering to D2 with respect to the centroid of

the first n− 1 points only. Instead of deriving the scalar product matrix by the usual

double centering (Eq. 2.21), the scalar product matrix B is then computed as

B = −1

2

(

I − 1

n− 1
1n−11

′
n−1

)

D2

(

I − 1

n− 1
1n−11

′
n−1

)

, (2.29)

where 1′n−1 is used instead of 1′n. Denote by b the fallible scalar products of the cross-

validated item with the others, and by β its squared norm. The coordinates y ∈ R
m

of the last item are then given as the solution of the following nonlinear optimization

problem (Trosset and Priebe, 2008):

min
y∈Rm

(β − y′y)2 + 2

n
∑

i=1

(bi − x′iy)
2, (2.30)
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which can be solved by standard methods. Our implementation uses the Nelder-

Mead simplex algorithm (Nelder and Mead, 1965).

2.4.5 Statistical significance by permutation tests

Given a partition of time series into two or more classes, one way to quantify the

separation between the classes is given by the cross-validated predictive accuracy of

the previous section.

More directly, however, from the representation in behavior space we can calcu-

late the ratio of the intra-class average distances by the inter-class average distances.

Unfortunately, this single number does not tell us how significant (in the statistical

sense) the separation is. A solution to this problem is given by the multiple response

permutation procedure (MRPP) (Mielke and Berry, 2007), a method that allows to

assess the significance of separation of two or more classes in an independent and

unbiased way. Its advantage is that it does not require the assumption of normality

that is inherent in most multivariate tests of association (see Huberty and Olejnik

(2006) for an overview).

Assuming two classes of systems as before, the usual MRPP statistic is given by

δ =
2
∑

i=1

ni

n1 + n2
∆i, (2.31)

where

∆i =
1
(

ni

2

)

∑

k,l∈Ii

Mkl, i = 1, 2. (2.32)

is the average distance of the i-th class.

Under the null hypothesis that the classes of dynamical systems arise from the

same (unknown) distribution of systems in behavior space, we can reassign their

class labels arbitrarily. For each of these
(

n1+n2

n1

)

labelings, the MRPP statistic δ is cal-

culated. The distribution of values of δ under all possible relabelings is (for historical

reasons) called the permutation distribution. The significance probability (P-value) of

this statistical test is given by the fraction of labelings of the permutation distribution

with a smaller value of δ than the one obtained by the original class labels. Note that

the δ statistic itself is generally not scale-invariant, but that the P-value derived from

it can be used to compare the quality of separation across different datasets.

In practice the number of possible labelings to consider is usually too large, so

the results in the example sections are based on 105 randomly generated labelings,

as is common practice in statistics.
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2.5 Example: The Hénon system

In this section we demonstrate some basic properties of Wasserstein distances using

the well-known Hénon map (Hénon, 1976) to generate the time series. The Hénon

map is given by

xn+1 = 1 + yn − ax2
n,

yn+1 = bxn.
(2.33)

Throughout, we use simulations of the Hénon system for 5096 time steps. Dis-

carding the first 1000 samples as a transient leaves N = 4096 values for the analysis.

2.5.1 Sample size and self-distances

As discussed before, bootstrapping the Wasserstein distances leads to an error which

is a combination of simulation error, due to the finite number of bootstraps, plus a

statistical error, due to the finite number of points from the invariant measures sam-

pled and the finite length of the time series. Fortunately, the estimation of the self-

distancesW (µ, µ) allows to assess these errors. The left panel of Figure 2.4 shows the

self-distances against the sample size used for bootstrapping in a double logarithmic

plot. Only the values of the x variable have been used for the reconstruction, with

the standard choice of parameters a = 1.4 and b = 0.3, for which it is known that

the Hénon map exhibits chaotic behavior. All distances have been bootstrapped 25

times.

The standard deviation of the bootstrapped distance was lower than the vertical

extent of the crosses used in the plot and is therefore not indicated in Figure 2.4. This

shows that the simulation error is much smaller than the statistical error, so boot-

strapping the Wasserstein distances with the low number of 25 realizations seems

sufficient. Compare Figure 2.5 for a typical distribution of the bootstrapped dis-

tances for the Hénon system (N = 25 and N = 1000 realizations).

The lowest line in Figure 2.4 corresponds to a one-dimensional (trivial) embed-

ding. Increasing the embedding dimension leads to the lines above it, with the high-

est one corresponding to a six-dimensional delay embedding. As expected, the self-

distances decrease with increasing sample size. Interestingly, the slope of this de-

crease is −0.53 ± 0.03 (R2 = 0.989, P-value 4.4 · 10−6), in the double-logarithmic

plot (for embedding dimension k = 3, with similar values for the other dimensions),

which is consistent with the typical scaling behavior of Gaussian noise. In other

words, the error is mainly statistical, which is evidence for the robustness of the

Wasserstein distances. This also provides evidence for the hypothesis in Sec. 2.3.4

on the Gaussian nature of the errors. A different value of the slope would suggest

that the dynamics of the Hénon map influence the Wasserstein self -distances, but
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Figure 2.4: Dependence of Wasserstein self-distances on sample size. Left panel:
Wasserstein distances for embedding dimensions 1 (lowest curve) to 6 (highest
curve). The deviation from the true value of zero is an indication of the statistical
error. The slope of the regression lines is roughly −1/2, which is the typical scaling
behavior of Gaussian noise. Right panel: CPU time needed for these calculations,
with a slope of roughly 2, i.e., a quadratic dependence on sample size.

even for small sample sizes no deviation from the square root scaling behavior can

be discerned.

The right panel of Figure 2.4 shows CPU time in seconds, on a typical personal

computer (AMD Athlon XP 2400+). The exponent in this case is 2.01 ± 0.04 (R2 =

0.989, P-value < 10−16), so the typical time complexity of the Wasserstein distances

is quadratic with respect to sample size.

From the above we see that self-distances can be used to assess errors in em-

beddings, and that they can also provide an alternative way to estimate the optimal

embedding dimension in nonlinear time series analysis.

2.5.2 Influence of noise

To study the influence of additive noise, normally distributed random variates were

added to each point of the time series prior to reconstruction of the invariant mea-

sures. The mean of the noise was zero, and the standard deviation a fixed fraction

of the standard deviation of the signal over time. Figure 2.6 shows the dependence

of the Wasserstein self-distances for different noise levels. In the left panel, the em-

bedding dimension was varied from one (lowest line) to six (highest line), for a fixed

sample size N = 512 and 25 bootstraps. The effect of noise is higher for larger
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Figure 2.5: Distribution of Wasserstein self-distances under bootstrapping in the
Hénon map, for 512 sample points. Left panel: N = 25 bootstraps. Right panel:
N = 1000 bootstraps. Curves are kernel density estimates and the rugs at the bot-
tom indicate the individual values of the distances. Vertical lines show mean dis-
tance (solid) and its standard deviation (stippled) over all N realizations.

embedding dimensions, with a linear change in the slope of the regression lines of

0.15 ± 0.01 (R2 = 0.99, P-value 8.0 · 10−5). This results from the added degrees of

freedom in higher dimensions, which account for the linear increase in error. This

error can partially be compensated by increasing the sample size, as can be seen in

the right panel of Figure 2.6, for the case of a three-dimensional embedding. For

N = 512 sample points, the slope of the Wasserstein distances is 2.02 ± 0.03 (with

similar values for other sample sizes), i.e., the statistical error doubles for noise on

the order of the original variability in the signal. This shows the robustness of the

Wasserstein distances with respect to noise, since the statistical error is of the order

of the signal-to-noise ratio, and not higher.

Moreover, due to this (almost) linear dependence of the Wasserstein distances

on the signal-to-noise ratio, it should be possible to estimate the noise level of the

signal and extrapolate its theoretical noise-free value by estimating the Wasserstein

distances under artificially added Gaussian noise (“noise titration”, see (Poon and

Barahona, 2001)) of known standard deviation, for a few distinct noise levels.

2.5.3 Visualizing parameter changes

One of the most interesting aspects of the distance analysis outlined in Section 2.4 is

the possibility to visualize changes in dynamical behavior with respect to parameter
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Figure 2.6: Dependence of Wasserstein self-distances on noise. Left panel: Wasser-
stein distances for embedding dimensions 1 (lowest curve) to 6 (highest curve) and
fixed sample size N = 512. Right panel: Wasserstein distances for sample sizes
N ∈ {64, 128, 256, 512} (from top to bottom) and fixed embedding dimension k = 3.

changes, similar to a bifurcation analysis. However, whereas in the usual bifurcation

analysis only regions of phase space are identified where the qualitative behavior of

a dynamical system changes, in the distance-based analysis of dynamical systems

these changes are quantified. This has not only potential applications in numerical

bifurcation analysis, but also aids in quickly identifying interesting (for example,

atypical) regions of parameter space. We demonstrate this approach again using the

Hénon map.

The parameters a, b of the Hénon map were varied, with a ranging from 0.7 to

1.4 in steps of 0.05, and b ranging from 0.02 to 0.3 in steps of 0.02. For simplicity,

only parameter values (a, b) = (ai, 0.3) and (a, b) = (1.4, bj) were considered, where

ai = 1.4 − 0.05i, for 0 ≤ i ≤ 14, and bj = 0.3 + 0.02j, for −14 ≤ j ≤ 0. The invariant

measures of the x-variable, corresponding to the trivial embedding dimension k = 1,

are shown in Figure 2.7. Dark areas correspond to large time averages, and light

areas to small time averages. On the top of the plots, the indices of the corresponding

parameter values are indicated.

Bootstrapping all mutual distances, again by 25 bootstraps with 512 sample points

each, the left panel of Figure 2.8 shows a two-dimensional projection of behavior

space, i.e., of the Wasserstein distances of the respective dynamical systems. The

distinct behavior of these systems, with respect to parameter changes, is clearly

discernible. Larger deviations of the parameters from (a0, b0) = (1.4, 0.3) result in

points that are farther away from the point 0, corresponding to (a0, b0). Summariz-
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ing, the points are well-separated, although quite a few of their distances are smaller

than the mean self-distance 0.091 ± 0.005 (indicated by a circle in the left panel of

Figure 2.8). Note that the triangle inequality was not violated, but subtracting more

than 0.030 will violate it. Only the self-distances have therefore been adjusted, by

setting them to zero.

Theoretically, as the Wasserstein distances are true distances on the space of (re-

constructed) dynamical systems, it is clear that the points corresponding to changes

in one parameter only lie on a few distinct piecewise-continuous curves in behavior

space. At a point where the dynamical system undergoes a bifurcation, i.e., a qualita-

tive change in dynamical behavior occurs, these curves are broken, i.e., a point past

a bifurcation has a finite distance in behavior space from a point before the bifurca-

tion. The relatively large distance of point 10 (with parameter a10 = 0.9) from the

points with indices larger than 11 corresponds to the occurence of such a bifurcation,

as seen in Figure 2.7.

The right panel of Figure 2.8 shows a two-dimensional reconstruction of the

Hénon system on a smaller scale, where the parameters were varied as ai = 1.4 −
0.0125i, for 0 ≤ i ≤ 14, and bj = 0.3 + 0.005j, for −14 ≤ j ≤ 0, i.e., for values of

a ranging from 1.4 to 1.225, and b ranging from 0.3 to 0.23. Even on this smaller

scale, where the mean self-distances were 0.118±0.003, the points are relatively well

separated and there are indications of bifurcations. Note that the triangle inequality

again holds, with a threshold of 0.070 before it is violated.

2.5.4 Coupling and synchronization

Wasserstein distances also allow to quantify the coupling between two or more dy-

namical systems, for example, to analyze synchronization phenomena in dynamical

systems (Pikovsky et al., 2003). In this section we consider two unidirectionally cou-

pled chaotic Hénon maps similar to the example discussed in (Stam and van Dijk,

2002). The systems are given by the following equations

xn+1 = 1 + yn − 1.4x2
n, yn+1 = 0.3xn, (2.34)

un+1 = 1 + vn − 1.4(Cxn + (1 − C)un)un vn+1 = Bvn, (2.35)

and we call the (x, y) system the master and the (u, v) system the slave system. The

strength of the coupling is given by the coupling parameter C, which was varied

from 0 (uncoupled systems) to 1 (strongly coupled systems) in steps of size 0.05. The

parameter B was either B = 0.3 (equal systems) or B = 0.1 (distinct systems).

Figure 2.9 shows Wasserstein distances between the dynamics reconstructed from

the variables x and u, respectively, against coupling strength C, in a separate panel

for each of these two distinct cases. As before, the time series consisted of 5096 val-

ues of which the first 1000 values were discarded as a transient. Reconstruction was

performed in three dimensions and the distances were bootstrapped 25 times, with
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Figure 2.7: Invariant measures of the x-variable in the Hénon system, for different
values of the parameters. Left panel: Variation in parameter a, with constant b = 0.3.
Right panel: Variation in parameter b, with constant a = 1.4. See text for details of
the parameter values used. Darker shade indicates large time averages, and lighter
shade smaller time averages. Top axis of the panels shows indices of the dynamical
systems used in Fig. 2.8.

512 samples each. The initial conditions of the two Hénon systems were chosen uni-

formly from the interval [0, 1]. Ten such random initial conditions were considered

and are depicted in Figure 2.9 as distinct lines (top). The dots correspond to the mean

of the distances over the ten realizations. The variation over the 10 different initial

conditions is considerably small, as expected, i.e., the approximations of the invari-

ant measures are considerably close to the true, unique invariant measure, that does

not depend on the initial condition. The bottom lines display corrected distances,

where the minimum of all distances has been subtracted. This seems appropriate in

the setting of synchronization analysis, and does not violate the triangle inequality.

A further important feature of the Wasserstein distances can be seen in the left

panel of Figure 2.9, where the distances for the two Hénon systems with equal pa-

rameters (but distinct, randomly realized initial conditions) are depicted. As the

distances are calculated from (approximations of) invariant measures, these equiv-

alent systems are close in behavior space either when (i) they are strongly coupled,

but also (ii) when the coupling is minimal. The latter arises from the fact that the

invariant measures of the two systems do not depend on the initial condition and

are (theoretically) identical here. In between, for increasing coupling strengths the

distances initially rise to about the four-fold value of the distance forC = 0, and then

fall back to values comparable to the uncoupled case, from about C = 0.7 on.
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Figure 2.8: Two-dimensional MDS representation of Wasserstein distances for the
Hénon system under parameter variation. Left panel: Parameter values as in Fig. 2.7.
Right panel: Smaller range of parameter values (see text). Squares correspond to
variation in the first parameter, triangles to variation in the second parameter. Num-
bers next to the symbols correspond to the indices of the dynamical systems intro-
duced in the top axes of Fig. 2.7. The circles around the points corresponding to
a = 1.4, b = 0.3 have radius 0.091 and 0.118, which are the mean self-distances.

If one interprets the distance between two systems as a measure of “synchroniza-

tion” between them, this leads to the paradox, that in some cases (when C is less

than roughly 0.5 here) an increased distance, usually indicative of “less synchroniza-

tion”, can actually be caused by an increase in coupling strength. Of course, this is

just a variant of the usual fallacy that arises when one falsely assumes that statistical

correlation between two variables does imply an underlying causal connection. This

illustrates that one has to be very careful when drawing conclusions from synchro-

nization measures (not only the one considered here) in practice.

The right panel of Figure 2.9 shows the case of two unequal Hénon systems,

where the initial distances (C = 0) are positive and eventually decrease for stronger

coupling. Interestingly, also in this case one sees the phenomenon that increasing

coupling first results in a rise of the distances, that only decrease after a certain

threshold in coupling is crossed. This can be interpreted as follows: Weak forcing

by the master system does not force the behavior of the slave system to be closer to

the forcing dynamics, rather the nonlinear slave system offers some “resistance” to

the forcing (similar to the phenomenon of compensation in physiology). Only when

the coupling strength is large enough to overcome this resistance does the slave dy-

namics become more similar to the master’s (decompensation).
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Figure 2.10 illustrates this phenomenon in behavior space, reconstructed by mul-

tidimensional scaling from the distances between the dynamics in the u-variables

(the slave systems) only. The left panel, for equal systems, shows a closed curve,

i.e., the dynamics of the slave systems is similar for both small and large coupling

strengths. The right panel, for unequal systems, shows the occurence of the compen-

sation/decompensation phenomenon in the curves of the right panel of Figure 2.9.

Namely, the dynamics of the initially uncoupled slave system (point 1) settles for

large coupling strengths at a different behavior (point 21). However, for small cou-

pling strengths the behavior is perturbed away from this (points 2-6). If the coupling

is increased further, a rapid transition (points 6-9) occurs. Note that this plot contains

more information than Figure 2.9, as the information from all mutual distances (of

the slave systems) is used, in contrast to the single distances between the master and

slave dynamics depicted in the former.

Finally, Figure 2.11 shows the dependence of the Wasserstein distances between

the master and slave systems for different bootstrap sizes. As expected, the (uncor-

rected) distances become lower when increasing the sample size. Interestingly, when

correcting the distances, the distances become larger. This means that increasing the

sample size increases the range of the (corrected) distances, i.e., their sensitivity.

2.5.5 Summary

By studying the behavior of the Wasserstein distances in the Hénon system, the fol-

lowing points have been observed (see also Box 2):

• In practice, when estimating distances by bootstrapping, the simulation error

is almost normally distributed, due to the robustness of the Wasserstein dis-

tances. This justifies the use of statistical techniques with implicit assumptions

of normality. It should also be possible to estimate the amount of inherent noise

in the signals by artifical “noise titration”.

• Due to the metric properties of the Wasserstein distances, numerical bifurca-

tion analysis becomes possible. The distances between systems with varying

parameter settings reflect the changes in their invariant measures and can help

to pinpoint and track bifurcations. Hard bifurcations, e.g., when a stable peri-

odic orbit becomes unstable, should result in detectable jumps in the distances.

• The Wasserstein distances can measure synchronization between two dynam-

ical systems. However, being symmetric, they cannot provide information on

the directionality of coupling. In general, one has to be careful when using sim-

ilarities between dynamical systems as a measure of interaction strength, as in-

dependent systems with the same recurrent behavior will seem to be strongly

coupled.
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Box 2. Wasserstein distances of dynamical systems

• Wasserstein distances of dynamical systems are based on approximations of
the invariant measure of the dynamics. This necessitates that only systems
defined on the same phase space, i.e., determined by the same measurement
process, can be compared.

• Due to the computational complexity of their calculation, Wasserstein dis-
tances usually need to be approximated by resampling estimates. Simulation
error under such bootstrapping is almost normally distributed.

• Numerical bifurcation analysis is possible, with hard bifurcations resulting in
visible jumps in the distances and the reconstructed point configurations.

• Wasserstein distances can quantify synchronization between two dynamical
systems. However, independent systems with the same qualitative behavior
will seem to be strongly coupled; a problem, that is common to most other
synchronization measures.
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Figure 2.9: Distances for coupled Hénon systems (see text for details of the coupling).
Coupling strength varied from C = 0.0 to C = 1.0 in steps of 0.05. Left panel: Equal
Hénon systems (B = 0.3). Right panel: Distinct Hénon systems (B = 0.1). Top
curves are uncorrected distances, the lower curves are corrected by subtracting the
minimum distance encountered. Only the mean curve is depicted at the bottom.
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Figure 2.10: Two-dimensional MDS representation of Wasserstein distances for cou-
pled Hénon systems. Coupling strength varied as in Figure 2.9. Left panel: Equal
Hénon systems (B = 0.3). Right panel: Distinct Hénon systems (B = 0.1). The num-
bers next to the dots indicate the coupling strength, with larger number representing
coupling strengths closer to 1.0. The points in the left panel constitute a closed curve,
since the dynamics of strongly coupled equal Hénon systems is very similar to that
of uncoupled equal Hénon systems. The points in the right panel show a different
pattern, since the dynamical behavior of two distinct uncoupled Hénon systems is
not similar, confer Fig. 2.9.

2.6 Example: Lung diseases‡

An interesting concept to connect dynamical systems and physiological processes

is the notion of a dynamical disease, which was defined in a seminal paper (Mackey

and Milton, 1987) as a change in the qualitative dynamics of a physiological con-

trol system when one or more parameters are changed (also see (Glass and Mackey,

1988; Beuter et al., 2003)). This allows to apply the methods of nonlinear science in

a clinical context as well, and particularly the Wasserstein distances (Muskulus and

Verduyn-Lunel, 2008a).

2.6.1 Background

Both asthma and the condition known as chronic obstructive pulmonary disease

(COPD) are obstructive lung diseases that affect a large number of people world-

wide, with increasing numbers expected in the future. In the early stages they show

‡ This dataset is treated in a more sophisticated way in Chapter 3; here it is used to illustrate the methods

for a real-world example.
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Figure 2.11: Distances for coupled Hénon systems for different bootstrap sizes. Cou-
pling strength varied from C = 0.0 to C = 1.0 in steps of 0.05. Left panel: Equal
Hénon systems (B = 0.3). Right panel: Distinct Hénon systems (B = 0.1).

similar symptoms, rendering correct diagnosis difficult. As different treatments are

needed, this is of considerable concern.

An important diagnostical tool is the forced oscillation technique (FOT), as it

allows to assess lung function non-invasively and with comparatively little effort

(Oostveen et al., 2003). By superimposing a range of pressure oscillations on the

ambient air and analyzing the response of the airway systems, a number of param-

eters can be estimated that describe the mechanical properties of airway tissue. In

particular, for each forcing frequency ω, transfer impedance Z(ω) can be measured.

This is a complex quantity consisting of two independent variables. The real part

of Z(ω) represents airway resistance R(ω), and its imaginary part quantifies airway

reactance X(ω), i.e., the elasticity of the lung tissue. Both parameters are available

as time series, discretely sampled during a short period of tidal breathing. The dy-

namics ofR(ω) andX(ω) are influenced by the breathing process, anatomical factors

and various possible artifacts (deviations from normal breathing, movements of the

epiglottis, etc.). Clinicians usually only use the mean values R̄(ω) and X̄(ω) of these

parameters, averaged over the measurement period, but clearly there is a lot more

(dynamical) information contained in these time series. Figure 2.12 shows example

time series of these fluctuations for two patients, with the mean values indicated as

horizontal lines.

It is well known that asthma usually results in increased values in both mean

R(ω) and meanX(ω) compared to COPD (Lutchen et al., 1998). However, the values

given in the literature are group means, and the parameters can fluctuate largely in
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Figure 2.12: Example time series of respiratory resistanceR(8) (upper curves) and res-
piratory reactance X(8) (lower curves) by forced oscillation technique during thirty
seconds of tidal breathing. Left panel: A patient with mild asthma. Right panel: A
patient with mild to severe chronic obstructive pulmonary disease. The horizontal
lines indicate the mean values used routinely in clinical assessment.

individuals from the same group, usually with considerable overlap between the

groups.

Figure 2.13 shows the distribution of mean resistance (left panel) and mean re-

actance (right panel) in a study conducted by A. M. Slats et. al (Slats et al., 2007),

measured at 8 Hz forcing frequency. The solid curves show kernel density estimates

of the distribution of mean values in the group of patients that suffer from mild, per-

sistent asthma (N1 = 13). The dashed curves show kernel density estimates in the

group of patients suffering from mild to moderate COPD (N2 = 12). Both resistances

and reactances have been measured over a 1 minute interval of tidal breathing, re-

peated 12 times in the course of a few weeks. Ripples on top (asthma) and at the

bottom of the plot (COPD) indicate the individual values of mean R(8) and X(8)

per patient, and considerable overlap between the two classes of patients can be

discerned. Note that, for these patients with mild asthma, the resistance values are

actually lower (on the average) than the ones for the COPD group.

2.6.2 Discrimination by Wasserstein distances

The main motivation for the application of Wasserstein distances to this dataset is

the assumption that the two lung diseases affect the temporal dynamics of transfer

impedance in distinct ways, and not only its mean value. Considering asthma and
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Figure 2.13: The distribution of time-averaged resistances R(8) and reactances X(8)
in the dataset studied. The solid curves are kernel density estimates for the asthma
group (N1 = 13), the dashed curves show the corresponding estimates for the COPD
group (N2 = 12). Ripples at the bottom (asthma group) and top (COPD group)
indicate the individual values of mean R(8) and X(8), respectively.

COPD as dynamical diseases, we assume an underlying dynamical systems with

different parameters for the different diseases. Although these parameters are not

accessible, it is then possible to discriminate the two diseases, with the Wasserstein

distances quantifying the differences in the shape of their dynamics.

For simplicity, we only consider a two-dimensional reconstructing here, where

the time series of R(8) and X(8) were combined into a series of two-dimensional

vectors with trivial embedding dimension k = 1, trivial lag q = 1, and a length of

about 12000 values (recorded at 16 Hz, the Nyquist frequency for the 8 Hz forced

oscillation, concatenating all 12 measurements into one long series per patient). A

more elaborated analysis will be presented elsewhere. Here we consider the distri-

bution of these points in Ω = R
2 an approximation of the invariant measure of the

underlying dynamical system.

The results for the squared sum of differences

dij =
(

(X̄i(8) − X̄j(8))2 + (R̄i(8) − R̄j(8))2
)1/2

(2.36)

in means (not the Wasserstein distances), are shown in Figure 2.14. Panel A on the

left shows a two-dimensional reconstruction of their behavior space by metric MDS.

The strain plot in Panel B suggests an optimal reconstruction occurs in two dimen-

sions, and indeed the classification confirms this. Although the maximal accuracy
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Figure 2.14: Results for distances in means (see text for details). Panel A: Two di-
mensional MDS reconstruction for patients suffering from asthma (open circles) and
COPD (filled squares). The patient number, arbitrary assigned for comparison pur-
poses, is shown below the symbols. Panel B: Strain values against reconstruction
dimension. Panel C: MRPP statistic for the two classes. The value of δ for the label-
ing in panel A is indicated by the vertical line. The P-value is shown in the upper
left corner.

of classification is 0.88 in a 11-dimensional reconstruction (i.e., 88 percent of the

patients could be correctly classified), this drops to 0.72 in two dimensions when

cross-validated. The separation of the two classes is significant at the 0.033 level, as

indicated by the MRPP statistic in Panel C.

For comparison, the results for the Wasserstein distances W of normalized and

centred data (to make the two parameters R(8) and X(8) comparable) are shown in

Figure 2.15. These distances were bootstrapped 9 times for 250 sample points each.

Here the separation of classes is much more pronounced, significant at the 0.0003

level. The classification is even perfect in a 12-dimensional reconstruction, with a

maximal accuracy of 0.88 in a 9-dimensional reconstruction when cross-validated.

Although the information about the means and their variance has been removed, the

classification by Wasserstein distances is actually better. From this we conclude that

the dynamical information contained in the fluctuations of respiratory impedance

contains valuable clinical information. Note that these distances respect the triangle

inequality (with a mean self-distance of about 0.25).
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Figure 2.15: Results for Wasserstein distances W of normalized and centred data.
Representation as in Fig. 2.14.

We have compared the results for the Wasserstein distances with a classifica-

tion based on the differences in means (Eq. 2.36) employing the same distance-based

methodology. If classical tests are used to classify these patients by their mean

impedance values (e.g. in a tree-based classification), the classification results are

even worse (not shown) than the ones we compare with the results obtained by the

Wasserstein distances.

The above results show that the Wasserstein distances are able to capture dif-

ferences of shape of the long-term behavior of real-world time series. Even for the

trivial embedding shown and a low number of bootstrap samples, the Wasserstein

distances allow to classify a large proportion of the lung diseases correctly. In fact,

these are the best known classification results (at single FOT frequency) of these two

lung diseases known to us. As the data have been centred before their calculation,

the information about their mean values, which is usually used for classification,

has been removed, so the classification is achieved by subtle dynamical differences

instead.
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2.7 Generalized Wasserstein distances

In this section we discuss a further generalization of the Wasserstein distances that

addresses a particularly interesting issue in nonlinear time series analysis. We ap-

proach this problem from two sides.

Consider the following general problem: When comparing measurements of the

same modality, but taken at different times or with different equipment, the question

of comparability turns up. This also happens in applications to physiological data,

where large variations can occur due to anatomical differences, when we want to

compare data across subjects.

Detecting a change in the dynamics between two measurements is possible by

simply centering and normalizing both time series before the analysis, but since it

is a priori unknown whether differences in amplitude (standard deviation) and lo-

cation (mean) of the time series are due to uncontrolled effects (noise, drift in the

measurement apparatus, etc.) or due to a change in the dynamics, i.e., in the signal,

this invariably leads to a loss in discriminating power. From the statistical point of

view, although the empirical mean and variance are unbiased, consistent and effec-

tive estimators, they are not robust against outliers and non-stationary behavior. An

interesting idea then is to transform the data in a data-driven way to partially ac-

count for such effects. By extending the notion of Wasserstein distance this can be

done in a robust manner.

A second motivation for this comes from theoretical considerations. As remarked

before, reconstruction by delay embedding results in an image of the attractor up to

a smooth change of coordinates. This diffeomorphic change of coordinates is not acces-

sible, as the underlying dynamical system is usually not known, only its projection

by some measurement function (compare Fig. 2.1). In principle, only invariant, for

example differential topological properties, can therefore be compared reliably be-

tween dynamical systems. Examples of such invariants include the number of fixed

points or Lyapunov coefficients. In practice, however, one wants to use metric in-

formation to quantitatively compare dynamical systems on a much finer scale, as has

also been done in this article.

Comparing a number of dynamical systems that are reconstructed in essentially

the same way, i.e., by the same measurement function, it can be argued that the

embeddings in reconstruction space, with its metric structure, can be compared, as

essentially the same quantities (finite-difference approximations of derivatives, see

(Packard et al., 1980)) are assessed. Nevertheless, it seems desirable to lessen the

dependence of the Wasserstein distances on the particular embedding that is used.

In the following sections we discuss two complementary approaches to this prob-

lem: (i) Generalized Wasserstein distances (Section 2.7.1-2.7.7), and (ii) Nonmetric

multidimensional scaling (Section 2.8).
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2.7.1 Translation invariance

The first approach to the problem outlined before is to define Wasserstein distances

with respect to a class of global geometric transformations as the minima of Wasserstein

distances, optimized over the set of all possible transformations from a given class.

From the statistician’s viewpoint, this is similar to fitting a parametric transformation

to data and then subjecting the transformed data to a distance analysis, and in the

terminology of functional data analysis it can be considered a registration of the data

(Ramsay and Silverman, 1997).

Considering a translation τ ∈ Ω, let µτ be the image of the measure µ under the

transformation x 7→ x− τ .

Definition 1. The Wasserstein distance with respect to translations is given by

W t(µ, ν) = inf
τ∈Ω

W (µτ , ν) = inf
τ∈Ω

W (µ, ν−τ ). (2.37)

The following shows that this is indeed well-defined:

Proposition 1. W t(µ, ν) is a distance on the space of probability measures.

Proof. We have to check the three properties of a distance. Reflexivity W t(µ, µ) = 0

and symmetry W t(µ, ν) = W t(ν, µ) are obvious from the definition and the cor-

responding properties of the Wasserstein distance W . For the triangle inequality,

consider three measures µ, ν and ρ. Assume that the distance W t(µ, ρ) is realized by

some translation τ1, and that W t(ρ, ν) is realized for some translation τ2. Then

W t(µ, ρ) +W t(ρ, ν) = W (µτ1
, ρ) +W (ρ, ν−τ2

)

≥W (µτ1
, ν−τ2

) = W (µτ1+τ2
, ν)

≥ inf
τ∈Rk

W (µτ , ν) = W t(µ, ν),

(2.38)

where we use the triangle inequality for the Wasserstein distances (Clement and

Desch, 2008).

The Wasserstein distance with respect to translations is obviously invariant under

this class of transformations: If the data is shifted before its calculation, the value of

the distance does not change.

Note that the values obtained are usually different from the Wasserstein distances

of normalized data, as can be seen in Fig. 2.16, which is based on two realizations of

N (0, 1) random variables. The minimum of the Wasserstein distance is attained in an

interval to the left of the point where the empirical means coincide. In particular, the

translation for which the minimal distance is realized is not unique. This nonunique-

ness (also of transportation plans) is a special feature of the Kantorovich-Rubinstein

distances, but for larger sample sizes, and especially in more than one dimension,
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Figure 2.16: Translated Wasserstein distances for two normalized realizations (n = 50)
of a N (0, 1) random variable. Lower solid curve: distance between empirical means
against translation. Upper solid curve: Wasserstein distance W (µτ , ν). The mini-
mum, attained in the indicated interval (dotted lines), is the Wasserstein distance
with respect to translations, W t(µ, ν).

the area where the optimum is attained becomes very small, in fact smaller than the

typical numerical accuracy. Moreover, the value of W t(µ, ν) itself is clearly unique.

In the example in Figure 2.16 the difference between W (µ, ν) and W t(µ, ν) is of

a statistical nature and due to the small sample size. For larger sample sizes the

two values indeed converge against each other. In general however, i.e., when the

measures have non-vanishing higher-order (beyond two) statistical moments, there

will be a finite difference between the two values for all sample sizes.

To summarize: the optimization involved in the computation of W t(µ, ν) has the

two-fold effect of (i) finding a more robust alternative to the center of mass, similar

to the geometric median (Fermat-Weber point), and (ii) because of this, the distance

W t(µ, ν) stresses the information on the higher-order moments present in the data,

i.e., on the differences in the shape of the two measures involved.

2.7.2 Rigid motions

Considering rotations Θ ∈ SO(k), where SO(k) is the special orthogonal group of R
k

consisting of all rotation matrices, a center point is needed against which to rotate.

For finite point sets, it has been shown by Klein and Veltkamp (Klein and Veltkamp,

2005) that the only sensible choice for the center point is the mean m(µ),

m(µ) =

∫

Ω

||x||2 dµ[x]. (2.39)

Accordingly, we define a rotation as the image of µ under the map

x 7→ Θ(x−m(µ)) +m(µ), (2.40)
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denoted by Θ · µ. We assume in the following that both measures are centred, such

that m(µ) = m(ν) = 0. Then W (Θ · µ, ν) = W (µ,Θ−1 · ν) holds, and the following is

well-defined:

Definition 2. The Wasserstein distance with respect to rigid motions is

W r(µ, ν) = inf
Θ∈SO(k)

inf
τ∈Ω

W ((Θ · µ)τ , ν). (2.41)

Note that only one rotation is needed, and that the translation is applied last, as

that makes its interpretation easier (the alternative would be to take the infimum

over W (Θ · µτ , ν)).

Proposition 2. W r(µ, ν) is a distance on the space of probability measures.

Proof. Reflexivity and symmetry are obvious again. For the triangle inequality, con-

sider three measures µ, ν and ρ. Assume that the distance W r(µ, ρ) is realized by

some translation τ1 and rotation Θ1, and that W r(ρ, ν) is realized for some transla-

tion τ2 and rotation Θ2. Then

W r(µ, ρ) +W r(ρ, ν) = W ((Θ1 · µ)τ1
, ρ) +W ((Θ2 · ρ)τ2

, ν)

= W ((Θ1 · µ)τ1
, ρ) +W (ρ,Θ−1

2 · ν−τ2
)

≥W ((Θ1 · µ)τ1
,Θ−1

2 · ν−τ2
)

= W ((Θ2Θ1 · µ)Θ2τ1+τ2
, ν)

≥ inf
Θ∈SO(k)

inf
τ∈Rk

W ((Θ · µ)τ , ν) = W r(µ, ν).

(2.42)

2.7.3 Dilations and similarity transformations

An important further class of transformations are the dilations where λ > 0 is a scale

parameter. Again a center point is needed against which to scale, and the meanm(µ)

is the natural choice (Klein and Veltkamp, 2005). A dilation is the image of µ under

the map x 7→ λx, denoted by λµ.

A number of problems are encountered when working with dilations, though, as

these transformations do not respect the distance properties in general. For a start,

to preserve the symmetry of the Wasserstein distances, we either need to consider

W (λµ, λ−1ν) or W (λµ, (1 − λ)ν). As λ is bounded in the second case, we prefer

the latter. Recall that the two measures are centred, such that m(µ) = m(ν) = 0.

We furthermore assume that the measures are normalized, such that their second

moments satisfy

m2(µ) =

(
∫

Ω

||x−m(µ)||22 dµ[x]

)1/2
!
= 1. (2.43)
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This sets a common global scale for these distances and allows to compare them

between different datasets (respecting the Caveats discussed at the beginning of Sec-

tion 2.7).

Definition 3. The Wasserstein “distance” under similarity transformations is

W s(µ, ν) = inf
λ>0

inf
Θ∈SO(k)

inf
τ∈Ω

W ((λΘ · µ)τ , (1 − λ)ν). (2.44)

Note that both measures are transformed reciprocally by λ, since otherwise (in

case we would define the distance to be W ((λΘ ·µ)τ , λν), for example) the optimum

would be achieved by shrinking both measures to single points, i.e., in the limit as

λ → 0. The above definition prevents this: if µ is shrunk (λ < 1/2), the measure ν is

expanded (as 1 − λ > 1/2), and vice versa. The translation is again applied last, as

that makes its interpretation easier.

Unfortunately, it is not clear when W s(µ, ν) is truly a distance, i.e., under which

conditions the triangle inequality holds. In general, therefore, one has to be careful

when using the “distance” W s. In Section 2.3.4 we have discussed how these vio-

lations of metric properties can be corrected. Because of this, Eq. 2.44 presents us

still with a potentially useful notion of distance, and as W s might be interesting for

certain applications, we include W s when we talk about the (generalized) Wasserstein

distances.

2.7.4 Weighted coordinates

Although one elegant property of the delay vector construction is the fact that each

coordinate has the same statistical distribution (disregarding effects due to the finite-

ness of the underlying time series), there are many applications where two or more

scalar time series are available, indeed necessary, for a reconstruction. The simplest

way to accomodate this is by assigning distinct coordinates of the delay vectors to

different time series. For example, if we are given two time series

x(1) = (x
(1)
1 , . . . , x

(1)
N ), x(2) = (x

(2)
1 , . . . , x

(2)
N ) (2.45)

of N measurements, in the simplest case the underlying dynamical system is recon-

structed by mapping each consecutive block

x[i] =(x
(1)
i , x

(1)
i+q1

, . . . , x
(1)
i+(k1−1)q1

,

(x
(2)
i , x

(2)
i+q2

, . . . , x
(2)
i+(k2−1)q2

)
(2.46)

to a single point in Ω = R
k1+k2 (see (Cao et al., 1998) for generalizations and more

advanced techniques).
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Here the question of comparability turns up again. The usual solution is to nor-

malize all time series involved (as has been done in Section 2.6), but again we can

alternatively employ the Wasserstein distances in order to achieve this in a robust

way. Let us consider the generalization of the usual Euclidean distance to a weighted

Euclidean distance,

dα(x, y) =

(

k
∑

i=1

αi|xi − yi|2
)1/2

. (2.47)

Here α ∈ R
k
+ is a vector of positive weights, normalized such that ||α||1 =

∑n
i=1 αi =

k.

Definition 4. Given a Wasserstein distance W ∗(µ, ν; d) (possibly with respect to

some class of transformations) between two measures µ and ν over R
k, with a Eu-

clidean distance function d, the weighted Wasserstein distance (with respect to the same

class of transformations) is

Wα(µ, ν; d) = inf
α≥0,

||α||1=k

W (µ, ν; dα). (2.48)

Restricting the weights further, such that αi is constant for all coordinates arising

from the same original time series, leads to a useful notion of distance. In the above

example of two time series this means the following requirement:

αi =

{

α1 if 1 ≤ i ≤ k1

α2 if k1 < i ≤ k1 + k2,
(2.49)

with the obvious generalization to more than two time series.

Note that again it is not clear under which conditions the triangle inequality

holds for weighted Wasserstein distances, but for the same reasons as in Section 2.7.3

this does not pose a cause for much concern.

2.7.5 Residuals of Wasserstein distances

In the previous sections we have seen a few examples of classes of transformation for

which Wasserstein distances can be optimized. There are obviously many more, but

the advantage of the three classes considered above (translations, rigid motions and

similarity transformations) is that they are successively allow more freedom. Their

respective Wasserstein distances thus form a natural hierarchy:

Proposition 3. The generalized Wasserstein distances satisfy

W s(µ, ν) ≤W r(µ, ν) ≤W t(µ, ν) ≤W (µ, ν). (2.50)



2.7. Generalized Wasserstein distances 49

An easy calculation, similar to the one for the discrete case (Rubner et al., 2000),

furthermore shows that untransformed Wasserstein distances are bounded from be-

low by the distance in mean,

W (µ, ν) ≥ ||m(µ) −m(ν)||2, (2.51)

confer Fig. 2.16.

Eq. 2.51 suggests that we center the measures for which the Wasserstein distances

are calculated. The definition of rotations and dilations suggests that we also nor-

malize the measures. The monotonicity property of the Wasserstein distances for the

classes of transformations in Eq. 2.50 then ensures that the following is well-defined:

Definition 5. Given two normalized and centred measures µ and ν on the same

probability space, the residual of the Wasserstein distance with respect to translations is

Rt(µ, ν) = W (µ, ν) −W t(µ, ν). (2.52)

The residual of the Wasserstein distance with respect to rigid motions is

Rr(µ, ν) = W t(µ, ν) −W r(µ, ν). (2.53)

The residual of the Wasserstein distance with respect to similarities is

Rs(µ, ν) = W r(µ, ν) −W s(µ, ν). (2.54)

Again, these residuals are usually not distances. Nevertheless, due to the non-

linearity inherent in the definition of the generalized Wasserstein distances, these

residuals quantify differences in higher order moments of probability measures, i.e.,

in their shape. However, contrary to moment or multipole expansions, each distance

in the sequence of (residual) distances

(W (µ, ν), Rt(µ, ν), Rr(µ, ν), Rs(µ, ν)) (2.55)

measures a complex interplay of all higher order moments.

2.7.6 Optimization of generalized cost

Optimizing the Wasserstein distances over a class of transformations is straightfor-

ward. The Nelder-Mead simplex algorithm (Nelder and Mead, 1965) is a simple, but

reliable algorithm that only uses function evaluations and does not need gradient

information. We have found that it works reasonably well in practice. If more con-

trol is required, in the distance case (e.g. when considering translations only) it is



50 2. Dynamical systems and time series

possible to show that the generalized Wasserstein distances fulfill a Lipshitz condi-

tion, and global Lipshitz optimalization (Mladineo, 1986) is then an interesting, but

slower, alternative.

To parametrize rotations in k-dimensional space, we use the Lie algebra so(k)

of the group of rotations SO(k). This is the algebra consisting of all k-by-k skew-

symmetric matrices, which is described by k(k − 1)/2 independent parameters. Ex-

ponentiation results in a parametrization of the rotations, i.e., if A ∈ so(k) then

exp(A) ∈ SO(k), and the image of so(k) under exponentiation is precisely the group

of all rotations (since SO(k) is connected and compact, see for example (Frankel,

1997)). The function exp(A) is of course the matrix exponential of A (consult (Moler

and Loan, 1978) for implementation issues).

2.7.7 Example: The Hénon system

Continuing the example of Section 2.5.1, where the Hénon map was discussed in

terms of self-distances, the results for the generalized Wasserstein distances are shown

in Figure 2.17. These distances have been optimized with respect to rigid motions,

where a maximum of 3000 distance evaluations was imposed in the Nelder-Mead

algorithm (which was never exceeded), stopping the iterations if there was no im-

provement of relative size 10−6. Initial rotation parameters in the Lie algebra so(k)

were set to 1.0 to avoid the simplex search to end up in a possible local minimum

around the trivial rotation. Of course, in a more sophisticated application, the opti-

mization should actually be performed a number of times with different initial pa-

rameters.

The slope of these distances is much lower than for the distances in Figure 2.4,

and levels out for larger embedding dimensions. This is an indication that the gen-

eralized Wasserstein distances do not suffer from statistical error as much as the

untransformed distances do. In fact, for embedding dimensions larger than two, the

generalized distances have comparable values; this is an indication that the attrac-

tor of the system has been properly unfolded. Increasing the embedding dimension

beyond three does not significantly improve the quality of the embedding, as quan-

tified by these self-distances. Note that these distances are calculated for normalized

data, such that they cannot be directly compared with the untransformed distances

in Figure 2.4.

2.8 Nonmetric multidimensional scaling

As a second approach to the problem addressed in the beginning of Section 2.7, we

mention the use of nonmetric (or ordinal) multidimensional scaling. An exposition of

this technique can be found in (Borg and Groenen, 2005, Chapter 9). It is complemen-

tary to the approach of Section 2.7. Instead of transforming the data to achieve more



2.8. Nonmetric multidimensional scaling 51

50 100 150 250 350

0
.0

1
0

.0
5

0
.2

0
1

.0
0

5
.0

0

Sample size

D
is

ta
n

c
e

1

2

3
4
5

6

50 100 150 250 350
1

e
−

0
1

1
e

+
0

1
1

e
+

0
3

Sample size

C
P

U
 t

im
e

 [
s
]

Figure 2.17: Dependence of estimated self-distances on sample size. Left panel: Gen-
eralized Wasserstein distances (with respect to rigid motions) for embedding dimen-
sions 1 to 6. The embedding dimension has been indicated on the right side of the
regression lines. Right panel: CPU time needed for these calculations, with a slope
of roughly 3/2 (for dimensions greater than two).

natural distances, the basic idea in this approach is that we transform the distances.

The admissible transformations are those that preserve the (rank-) order of the dis-

tances. Thereby, the impact of the particular metric structure of phase space, and

consequently of the delay embedding, is reduced considerably. On the other hand,

topological properties of the systems in behavior space (i.e., the “relative closeness”

of their dynamical behaviors) is preserved by such transformations. The simplest

transformation is the rank transformation, in which the totality of 1
2n(n + 1) dis-

tances (the entries of an n-by-n distance matrix) are sorted according to their size,

and replaced by the corresponding rank numbers from {1, 2, . . . , 1
2n(n+ 1)}. Unfor-

tunately, the rank transformation does in general not respect the triangle inequality,

and does not result in a suitable reconstruction of behavior space.

We see that the prize to pay for this generalization is the complexity of recon-

struction of behavior space, which cannot be calculated by way of a simple matrix

decomposition as in metric MDS. Instead, one needs to use an iterated optimization

algorithm, that tries to minimize a given error functional. Instead of strain (Eq. 2.24),

this is usually taken to be the stress,

σ(X) =
∑

i<j

(||Xi −Xj || − δij)
2, (2.56)

where δij are the transformed dissimilarities of the measured distances Mij , and
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the Xi are the coordinates of the i-th system in behavior space. Then one can use

monotone regression (Kruskal, 1964) to iteratively move the reconstructed points X ,

minimizing the stress value (see Meulman et al. (1983) for a possible approach).

Not only is this computationally much more involved, but two main problems

are encountered: (i) it is possible for the optimization algorithm to return a local

minimum of stress, and (ii) degenerate solutions can exist. Nevertheless, this is a

viable alternative to Wasserstein distances under transformations. Depending on

the situation, one or the other approach, or even a combination of the two, should be

considered.

2.9 Conclusions

We have discussed Wasserstein distances in the context of dynamical systems and

time series, with a focus on the statistical analysis of the resulting distances. This

point has been neglected in the literature so far, which probably explains why the

Wasserstein (or transportation) distances are not as well known as they deserve to

be. Possible applications of the distance-based analysis of dynamical systems in-

clude the classification and discrimination of time series, the detection and quantifi-

cation of (generalized) synchronization and the visualization and quantification of

parameter changes and bifurcations. More generally, the behavior space introduced

allows to apply the tools of multivariate statistical analysis, and to test statistical

hypotheses about dynamical systems.

Due to their elegant definition and natural properties, e.g., their interpolation

properties (see Villani (2003)), Wasserstein distances are very interesting from the

theoretical side. However, their estimation in practice is time-consuming and one

usually needs to resort to various approximations, e.g. the bootstrapping of the dis-

tances. By way of a few examples of synthetic and real-world data sets we have

shown that this is quite feasible. This should convince the reader of the utility

of the Wasserstein distances and, more generally, of the distance-based analysis of

dynamical systems (different applications, e.g., in texture analysis, are hinted at

in (Muskulus, Scheenstra, Braakman, Dijkstra, Verduyn-Lunel, Alia, de Groot and

Reiber, 2009); applications in electrophysiology, both for sensor recordings and for

phase distributions, are discussed in (Muskulus, Houweling, Verduyn-Lunel and

Daffertshofer, 2009)). The algorithms used to derive the results of this paper are

available from the first author’s homepage.

Various questions remain, however. In particular, one would like to (i) under-

stand better how to lessen the dependence of the Wasserstein distances on the par-

ticular embedding used, a point that was introduced and discussed in Section 2.7,

and (ii) address the point how various distinct Wasserstein (and possibly other) dis-

tances can be combined in an analysis of dynamical systems or time series (see the

seminal article (Xu et al., 1992) for first steps in this directions). In this article we
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have exclusively used the Kantorovich-Rubinstein (or Earth Mover’s) distance, but

the class of Wasserstein distances encompasses other distances (e.g. total variation)

that test different properties of the shape of the invariant measures under study.

Combining more than one distance measure should improve the analysis, e.g., the

classification of dynamical systems. The details of this last point are postponed to

future work.





Applications





Chapter 3

Lung diseases
Medicine is not only a science; it is also an art. It does not

consist of compounding pills and plasters; it deals with the

very processes of life, which must be understood before they

may be guided.

Paracelsus

I
n this chapter we apply the distance-based analysis to experimental time series ob-

tained from patients that suffer from two lung diseases, as well as healthy controls.

Section 3.1 offers background information on the respiratory system. Section 3.2 in-

troduces the forced oscillation technique that was used to obtain the time series.

Section 3.3 describes the data in more detail. Section 3.4 is a digression in which two

methods of fluctuation analysis are introduced, power-law and detrended fluctua-

tion analysis. Section 3.5 discusses the nonlinear analysis techniques used, including

(sample) entropy and Wasserstein distances. Experimental results are presented in

Section 3.6 and discussed in Section 3.7, where also clinical implications and future

directions are outlined.

3.1 Respiration

Human respiration is a complex phenomenon that is influenced and controlled by

diverse factors. Physically, respiration is simply the movement of air through the air-

ways due to differences between pleural pressure and the pressure of the surround-

ing air, which are created by movements of the pleura and the ribs. The geometry

of the airways is intricate, however: already between the opening of the mouth and

the main trachea the volume is quite variable, and the air needs to pass the pharynx,

epiglottis and larynx before beginning its voyage through the lungs. There, the main

trachea branches many times into successively smaller generations of bronchi and

bronchioles until reaching the alveoli through the acini. This hierarchical branching

greatly increases the surface of the lung. Although consisting of a finite number of

levels (usually ∼ 25), it is not uncommon to consider the branching of the airways

a prime example of self-similarity in the physical world, and fractal descriptions of

the lung offer explanations of its efficiency (Weibel, 1963, 1991).

In the alveoli, diffusion of gases removes carbon dioxide from venuous blood

and transports oxygen across the respiratory membrane into the capillaries. This

transport is modulated by cardiac status and posture, causing local inhomogeneities



58 3. Lung diseases

in the ventilation-perfusion ratio. The upper part of the lung usually suffers from

a moderate physiologic deadspace due to increased hydrostatic pressure, and the

lower part of the lung usually exhibits too little ventilation, leading to a moderate

physiologic shunt (Guyton and Hall, 2006).

The rate of respiration is regulated in the central nervous system (CNS). The pri-

mary respiratory rhythm is generated from bursting inspiratory neuronal action po-

tentials in the brain stem that are subsequently modulated and filtered. Since the

hemoglobin-oxygen system buffers the amount of oxygen delivered to tissues, the

respiratory drive is mainly regulated by carbon dioxide chemoreceptors; oxygen re-

ceptors in the peripheral chemoreceptor system play a role when sufficient arterial

oxygen levels cannot be sustained. Interestingly, under exercise, when oxygen de-

mand increases to a multiple of normal values, the main adaptation of respiratory

drive seems to be caused by anticipatory signals from muscles, and the chemical

receptor-loops are only used for fine control.

Respiration can and has been described on roughly four distinct levels. First of

all, there is the mechanical act of breathing, i.e., the geometric and mechanical proper-

ties of the channels and openings through which the air passes. Secondly, the actual

gas exchange by diffusion is a chemical transport phenomenon. Thirdly, the total

cardiorespiratory system influences respiration through heart rate, blood pressure

and the ensuing dynamic shunting phenomena, that are related to body posture and

other systemic properties. Lastly, this system is driven centrally by a complicated

regulatory system that is influenced not only by physiological factors and various

signalling systems, but also by cognitive state and environmental influences. At each

of these levels of description there exist mathematical models that try to capture the

essential properties of the observed phenomena, and also integrative approaches

that try to model interactions between the various levels of description.

Here we will be mainly interested in the mechanical properties of the airways,

which are, however, modulated by all the above mentioned influences. In fact, our

prime interest is to use easily measured mechanical properties as markers of more

complex changes in the underlying physiological control systems. In particular, we

will focus on breathing with a diseased lung.

Box 3. The main questions

• To what extent are mechanical properties of breathing changed in diseased
lungs?

• How can this be used to assess airways and disease status?
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Subject populations

A Asthma
C COPD
H Healthy

Measurements

Rrs Respiratory resistance Rrs = Re Zrs

Xrs Respiratory reactance Xrs = Im Zrs

Z∗
rs Complex respiratory impedance Z∗

rs = Rrs + iXrs

Zrs Respiratory impedance (gain) Zrs = |Rrs + iXrs|
Zvar Squared residuals of Zrs Zvar(i) = (Zrs(i) − Z̄rs)

2

lnZrs Natural logarithm of Zrs lnZrs = log(Zrs)
lnZrsSD Standard deviation of lnZrs lnZrsSD = SD(log(Zrs))

Table 3.1: Abbreviations used in this chapter.

Subscript

ao airways
cw chest wall
eq equivalent (to the value of a lumped, single-compartment model)
in input (forcing at the mouth)
pl pleural
rs respiratory system
tr transfer (forcing at the chest wall)

Table 3.2: Subscripts used in this chapter.

3.2 The forced oscillation technique

Th forced oscillation technique (FOT) measures the mechanical properties of lung

tissue noninvasively and continuously. A pressure oscillation is superimposed on

the air, resulting in a longitudinal pressure wave travelling through lung tissue and

back, during which its amplitude and phase are modulated relative to the mechani-

cal properties of the respiratory system. These properties are expressed in quantities

characteristic of fluid dynamics (Herman, 2007):

• Resistance is the pressure difference ∆P needed to cause a given flow rate Q =

V̇ ,

R =
∆P

Q
, (3.1)

and is usually measured in units of cmH2O s/L.
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Figure 3.1: Simple compartment model fitted in single frequency FOT. A: Mechan-
ical model of a single airway with resistance Req and elasticity Eeq. B: Equivalent
electrical circuit.

• Complicance is the change in volume caused by pressure changes in an elastic

airway,

C =
∆V

∆P
, (3.2)

and is measured in units of L/cmH2O. Its inverse, E = 1/C is called elastance

and is a measure of the airways’s rigidity.

• Inertance is the change in pressure caused by a change in flow rate,

L =
∆P

∆Q
, (3.3)

and usually given in units of cmH2O s2/L.

By using a small amplitude oscillation (typically about ±1cmH2O), the respira-

tory system can be considered a linear time-invariant (LTI) system, and its total fre-

quency response (transfer function) at frequency f is

Z∗
rs(f) =

P (f)

Q(f)
, (3.4)

where P (f) and Q(f) are the Fourier transforms of the pressure and flow signal,

respectively. Although respiratory impedance is a complex quantity, it is common

in the literature to refer to its magnitude by the same name. To avoid confusion,

we denote respiratory impedance by Z∗
rs and reserve Zrs = |Z∗

rs| for its magnitude.

The expression respiratory impedance will in the following refer to Zrs. The real and

imaginary parts of the complex respiratory impedance Z∗
rs are called resistance Rrs and

reactance Xrs,

Z∗
rs(f) = ReZ∗

rs(f) + i ImZ∗
rs(f) = Rrs(f) + iXrs(f), (3.5)



3.2. The forced oscillation technique 61

and can alternatively be expressed by a real-valued gain Zrs and phase angle ϕrs,

Rrs(f) + jXrs(f) = Zrs(f)eiϕrs(f). (3.6)

Assuming negligible inertance, they represent equivalent mechanical resistance and

elastance of a single compartment model under periodic forcing (Figure 3.1), where

Req(f) = Rrs(f) and Eeq(f) = −Xrs(f)/(2πf). Under this abstraction, the respira-

tory system is described by the first-order model

PA(t) − P0 = ReqV̇ (t) + EeqV (t) (3.7)

with baseline pressure P0 and harmonic forcing PA(t) = A sin 2πft.

In practice, two main protocols are used to generate the forcing. Input forcing

at the mouth1 results in measurement of input impedance Z∗
in(f) = Pao(f)/V̇ao(f).

Input forcing at the chest results in the measurement of transfer impedance Z∗
tr(f) =

Pcw(f)/V̇ao(f). The latter has been shown to be more reliable in separating different

airway and tissue components and is also less sensitive to upper airway shunting

(Lutchen et al., 1998), but more difficult to measure, as total body plethysmogra-

phy is needed. Input impedance, on the other hand, is easy to measure and well-

tolerated, rendering it the most viable for routine assessments of lung function.

Until recently, only average values of Z∗
rs were used. Real-time tracking of single

frequency FOT signals is possible, however, either through a recursive least-squares

algorithm in the time domain (Avanzolini et al., 1997), or through the use of win-

dowed Fourier transforms. In the latter approach, one usually assumes that the true

pressure pi and flow qi, sampled at finite time points (i = 1, 2, . . . ,N), are subject to

white noise errors ǫPi , ǫQi in the frequency-domain,

Pi(f) = qi(f)Zrs(f) + ǫPi (3.8)

Qi(f) = pi(f)/Zrs(f) + ǫQi . (3.9)

Estimation of pi(f) and qi(f) from the observed spectral components Pi(f) and

Qi(f) then becomes possible by a total least squares approach (Slats et al., 2007,

online supplement). The gain and phase angle are thereby estimated from the win-

dowed spectral power estimates Ŝ2
Q, Ŝ

2
P and the cross-power estimate ŜPQ as

Zrs =
√

Ŝ2
P(f)/Ŝ2

Q(f) (3.10)

ϕrs = arg ŜPQ(f). (3.11)

During breathing, respiratory impedance is modulated in a complex way. Within-

breath measurements show a marked bi-phasic pattern that is the result of volume

1 The subscript “ao” refers to airway-opening, confer Table 3.2.
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Figure 3.2: Typical forced oscillation signal from input impedance measurements in a
healthy subject. A: Flow (positive: expiration, negative: inspiration). B: Volume. C:
Estimated respiratory system resistance. D: Estimated respiratory system reactance.

Box 4. Real-time tracking of single-frequency FOT signals
The following important points should be kept in mind about the TLS approach:

• The Fourier transforms are estimated over (maximally overlapping) windows
of a characteristic finite length, introducing temporal correlations in the esti-
mates of mechanical lung properties.

• Spontaneous breathing interferes with impedance estimation through higher
harmonics (McCall et al., 1957; Delavault et al., 1980; Daróczy and Hantos,
1982), although this influence is usually negligible at high enough forcing fre-
quencies (> 4Hz).

and flow dependence (Davidson et al., 1986a; van der Putten et al., 1993), with

slightly different behavior for inspiratory and expiratory phases (Oostveen et al.,

1986), which is partially attributed for by interference with the larynx and glottis,

but also hints at hysteresis in the respiratory system (Vincent et al., 1970). Figure 3.2

shows an example. The impedance signal also depends on posture, sympathetic

tone (Butler et al., 1960), ventilatory inhomogeneities (Gillis and Lutchen, 1999) and
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Figure 3.3: Artifact detection in respiratory impedance signals. A: Flow signal sam-
pled at 16 Hz. B, C: Estimated respiratory resistance Rrs and reactance Xrs. Possible
expiratory flow limitation is visible around T = 38s, resulting in large Rrs/Xrs val-
ues at minimal flow that lie outside the depicted confidence region (here: Xrs). D:
Flow signal after artifact detection and preprocessing. Distinct respiratory cycles are
separated by zero-crossings of flow, and the shaded regions are rejected as incom-
plete or unreliable.

airway calibre (Peslin et al., 1992).

A further problem is the existence of various kinds of artifacts. Figure 3.3 shows

the occurence of a common artifact (expiratory flow limitation) which is probably

caused by closure of the glottis, i.e., swallowing or coughing, but might also have a

disease-specific origin.

3.3 Asthma and COPD

Asthma and chronic obstructive pulmonary disease (COPD) are two of the most

common chronic lung diseases, affecting millions of people worldwide (Global Ini-

tiative for Asthma, 2009; Global Initiative for Chronic Obstructive Pulmonary Dis-

ease, 2009). These numbers are expected to rise significantly in the years to come,

further increasing the global burden. Although there is much known about the
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pathophysiology, etiology and genetic epidemiology of these diseases, there are still

many intriguing and not-well understood aspects. In particular, the overlap problem

consists in the fact that the two diseases can be difficult to be correctly identified

in clinical practice (Guerra, 2005), since they share many common features, and can

even co-exist in the same patient.

3.3.1 Materials: FOT time series

Time series were obtained from the baseline part of a previous study (Slats et al.,

2007) in which 13 asthma patients, 12 COPD patients and 10 healthy controls par-

ticipated. The asthmatic patients were characterized by GINA guidelines (Global

Initiative for Asthma, 2009) as mild and intermittent asthma (step I and II), were

all non-smokers or ex-smokers with less than five pack years exposure, and had a

history of episodic wheezing or chest tightness. Baseline forced expiratory volume

in 1s (FEV1) was more than 70% of predicted and the provocative concentration of

methacholine for a 20% fall in FEV1 (PC20) was less than 8 mg/mL. All asthma pa-

tients were atopic, as determined by one or more positive skin prick tests against 10

common aeroallergens.

The COPD patients were diagnosed with mild to moderate COPD (type I and II)

according to GOLD guidelines (Global Initiative for Chronic Obstructive Pulmonary

Disease, 2009) and were all smokers or ex-smokers with more than ten pack years

exposure that had a history of chronic cough or dyspnea. Their FEV1/FVC ratio

was less than 70% predicted post-bronchodilator, and the reversibility of FEV1 by

salbutamol was less than 12% of predicted.

All patients were clinically stable, used β2-agonists on demand only, and had

no history of respiratory tract infection or other relevant diseases up to two weeks

prior to the study. None of the asthma or COPD patients had used inhaled or oral

corticosteroids up to three months prior to the study.

The healty controls had no history of respiratory symptoms and were non-smo-

kers or ex-smokers with less than five pack years exposure. Baseline FEV1 was more

than 80% of predicted and PC20 methacholine was more than 16 mg/mL. They also

showed no positive reaction to the skin prick test.

A forced oscillation device (Woolcock Institute, Australia) with a fixed oscillation

frequency of 8 Hz and an amplitude of ±1cmH2O was used, after being calibrated

with tubes of known resistance. Subjects breathed through an antibacterial filter with

a resistance of 0.2 cmH2O s/L. Respiratory flow was measured by a Fleisch pneuom-

tachograph (diameter 50 mm, Vitalograph Ltd, Maids Moreton, UK) and differential

pressure was measured by a ±2.5 cmH2O solid-state transducer (Sursense DCAL4;

Honeywell Sensing and Control, Milpitas, USA). Mouth pressure was measured us-

ing a similar transducer with a higher range (±12.5 cmH2O). Analog pressure and

flow signals were digitized at 400 Hz.
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Pressure and flow time series were transformed to the time-frequency domain by

a maximal overlap discrete Fourier transform that acts as a band-pass filter for the

frequency 8 Hz (filter width 100 samples, i.e., 0.25 s characteristic time). Time- and

frequency-dependent complex respiratory impedance Z∗
rs was then estimated by the

TLS fit (3.10-3.11), which is equivalent to maximum likelihood estimation.

In each subject measurements were repeated three times during 60 s of tidal

breathing on four distinct days, during the course of a few weeks, yielding 12 time

series in total. Before further analysis the impedance and accompanying pressure

and flow signals were downsampled to 16 Hz, i.e., the Nyquist frequency for the

applied pressure oscillation of 8 Hz.

3.3.2 Artifact removal

Artifacts were removed automatically by a custom-written algorithm. First, zero-

crossings of the flow were identified that separated respiratory half-cycles, from

which full respiratory cycles were constructed, concatenating consecutive expiratory

and inspiratory half-cycles (in that order). Each respiratory cycle was then consid-

ered individually and rejected if one of the following three conditions were fulfilled:

• flow values within 1/5 SD of zero occured at some time point where also at

least one of Xrs or Rrs lay outside 3 SD from their mean values, being an indi-

cation of a flow artifact (flow limitation, glottis closure, coughing, etc).

• negative resistance values occured or the TLS estimation did not converge at

some time point.

• values of Rrs or Xrs occured that lay outside a range of 5 SD from their mean

values, being indicative of otherwise unidentified artifacts.

These events occured infrequently and only a few percent of breathing cycles were

thereby rejected. The remaining cycles were concatenated to yield a single time series

without gaps for each subject. Information on the beginning and end of each cycle

was recorded separately.

3.4 Fluctuation analysis

A characteristic feature of asthma and COPD is their fluctuating behaviour, both

in clinical symptoms and in the degree of airway obstruction. This behavior can-

not be explained by simple models and suggests either a complex, high- or infinite-

dimensional dynamical component and/or a strong stochastic component (Frey and

Suki, 2008). Daily measurements of peak expiratory flow (PEF), e.g., exhibit long-

range correlations over the course of months, indicating the existence of a long-term

memory component in the respiratory system (Frey et al., 2005).
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Special tools have been developed to analyze time series with regard to such fluc-

tuations, and we consider power-law analysis in Section 3.4.1, and detrended fluc-

tuation analysis in Section 3.4.2. Results obtained by these are given in Section 3.6.

These will be compared to previously obtained results in the final discussion, Sec-

tion 3.7.

3.4.1 Power-law analysis

Power-law probability distributions occur in a wide variety of contexts (Newman,

2005). Although there exist simple mechanisms that can generate power-laws (Reed

and Hughes, 2002; Barabási and Albert, 1999), such distributions usually hint at hid-

den internal structure and complexities in an observed system, e.g., self-organized

criticality (Bak et al., 1987). A characteristic of power-law distributions is that there is

no preferred size, i.e., that the dynamic range of the observed realizations is unusu-

ally large. It is this latter property that motivates the use of power-laws as models

for fluctuations in FOT time series.

Assuming a power-law probability density f(x) ∝ xα with exponent α ≤ −1,

this density diverges as x→ 0, so there must be some lower bound to the power-law

behaviour2. We denote this bound by xmin. Discarding values below xmin, we can

then normalize the density to obtain

f(x) = −(1 + α)x
−(1+α)
min xα, for x ≥ xmin. (3.12)

Traditionally, the density (3.12) is visualized in a double logarithmic plot of f(x)

against x, and the exponent α is estimated by a least-squares linear fit in this rep-

resentation. However, it is now known that this method is potentially unreliable

(White et al., 2008); the preferred robust method is to determine the exponent α by

its maximum likelihood estimate (MLE),

α̂ = −1 −
[

1

n

n
∑

i=1

log

(

xi

xmin

)

]−1

. (3.13)

The density (3.12) is known as the density of the Pareto distribution, and (3.13) is

essentially equivalent to the Hill estimator commonly used in econometrics (Hill,

1975).

The MLE estimate α̂ depends on the usually unknown cutoff point xmin, and will

respond strongly to deviations from power-law behaviour at small values of x. To

estimate it, Clauset et al. (2009) recommend to use the value x̂min for which the raw

2 In practice, it is not uncommon that the assumption of an additional upper bound further improves the

model fit (Newman, 2005), and often seems warranted due to physical limitations. However, as the esti-

mation of both the power-law exponent and the lower/upper bounds become much more involved then

(Aban et al., 2006), we limit the discussion here to the simple model discussed in the text.
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Figure 3.4: Power-law behavior in the distribtion of Zrs fluctuations. A: Time series
of fluctuations (Zvar) of respiratory impedance; the broken lines indicate the 12 dis-
tinct measurements. B: Kernel density estimate of the probability density of lnZvar.
The estimated onset of power-law behavior is indicated (broken vertical line). C:
Estimated power-law exponent α and Kolmogorov-Smirnov statistic D. The opti-
mal threshold is located at the minimum of D (broken vertical line). D: Estimated
power-law behavior in the right tail of Zvar leads to a linear relationship in a double
logarithmic plot of the distribution function F . The maximum likelihood estimate of
the power-law behavior(with exponent α) is indicated (broken line).

Kolmogorov-Smirnov distance

D(xmin) = max
x≥xmin

|F (x;xmin) − S(x;xmin)| (3.14)

is minimized. Here F (x;xmin) denotes the empirical distribution function (only tak-

ing into account samples with x ≥ xmin) and S(x;xmin) denotes the model distribu-

tion function

F (x;xmin) = 1 − x
−(α+1)
min xα+1. (3.15)

We note that MLE estimation of the lower bound is difficult, if not impossible,

as the effective sample size depends on xmin. Figure 3.4 shows an example of the
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estimation procedure, applied to fluctuations

Zvar(i) =
(

Zrs(i) − Z̄rs

)2
(3.16)

of Zrs about its mean.

Given a nonnegative time series, it is always to possible to obtain estimates x̂min

and α̂ of power-law behavior. How reliable are these? In other words, how likely is

the hypothesis that the underlying distribution really arises from a power-law distri-

bution? A simple, relatively conservative test, is to generate suitable surrogate data,

estimate their power-law behavior, and consider the distribution of the Kolmogorov-

Smirnov distances obtained for these. The fraction of values of (3.14) that are larger

than the one observed for the actual data then results in an (approximate) signifi-

cance probability for the null-hypothesis that the data arise from a power-law dis-

tribution. For large enough significance probabilities the (general) alternative is re-

jected and the power-law hypothesis is accepted. The surrogate data is constructed

as described in Clauset et al. (2009): Each sample point arises either by bootstrap-

ping the empirical distribution of the values x < xmin, or is drawn from a power-law

distribution with parameters α = α̂ and xmin = x̂min. The probability for the first

possibility is simply the fraction of sample points smaller than xmin. This guarantees

an essentially unbiased test that can be assessed, e.g., at the 10 percent significance

level3. Note that it is not possible to correct for multiple comparisons, since for the

general alternative it is not possible to control the family-wise type II error (of falsely

accepting the null hypothesis).

3.4.2 Detrended fluctuation analysis

A different assessment of the fluctuations in time series signals is made possible by

detrended fluctuations analysis (DFA). Invented by Peng and colleagues (Peng et al.,

1995), this technique allows to detect long-range correlations and scale-invariant be-

haviour in time series. The first step in DFA is to integrate the deviations of a signal

time series Xi (i = 1, 2, . . . , N ) from its mean X̄ ,

Yi =

i
∑

j=1

(Xj − X̄). (3.17)

This transforms the (usually bounded) seriesXi into an unbounded process Yi, called

the profile of Xi. This profile is then divided into Ns = ⌊N/s⌋ nonoverlapping seg-

ments of length s. Since the length N of the time series is usually not a multiple of

3 Even though this permutation test can rule out the case where a power-law is not a plausible model for the

observed data, it might still be that other distributions (stretched exponential, log-normal) offer a better

model. This is a general problem, however, and instead of further investigating this, we will be content

here if the experimental evidence does not falsify the power-law assumption.
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the scale s, a short part at the end of the profile may remain. In order not to disre-

gard this part of the series, the procedure is repeated starting from the opposite end,

leading to a total of 2N segments (Kantelhardt et al., 2002). For each such segment

the local quadratic trend y is estimated by least-squares regression and subtracted

from the data. The squares of the residuals are summed and divided by the length

to yield the mean-square error F (2)(j, s) of the j-th segment at scale s,

F (2)(j, s) =
1

s

s
∑

k=1

(Y ((j − 1)s+ k) − yj(k))
2 , (3.18)

with quadratic trend yj subtracted. Formula (3.18) only covers the forward case,

the backward case for j > Ns is calculated analogously. The second order fluctuation

function is the total root-mean square error,

F2(s) =





1

2Ns

2Ns
∑

j=1

F (2)(j, s)





1/2

. (3.19)

The scaling behaviour of F2(s) is then assessed in a double logarithmic plot for a va-

riety of scales s. In detail, since the smallest scales are biased due to the detrending,

the smallest scale considered is usually chosen to be at least s = 10. The scale is then

successively doubled until s is at most half of the length of the time series.

Power-law behaviour of F2(s) results in a line in the double logarithmic plot of

F (s) against s, which is estimated by weighted linear regression4. Weights propor-

tional to the inverse of scale are usually used to account for the fact that the larger

scales are estimated from less segments, i.e., with increased invariance. Figure 3.5

shows the procedure applied to (parts of) the impedance time series of a single sub-

ject, and Figure 3.6 shows the scaling behaviour found in this series.

The theoretical origin of DFA is the theory of diffusion processes. Assuming

independent and identically distributed Gaussian increments Xi+1 −Xi, the profile

Yi will be a trajectory of a random walk, and its variance will increase linearly in

the number of time steps. Without detrending, the RMS error (3.19) will then exhibit

scaling behaviour,

F (s) ∝ sα, (3.20)

with a characteristic exponent α = 1/2. More generally, this relationship holds

whenever the increments Xi+1 − Xi are uncorrelated; in particular, reshuffling the

time series randomly will in principle result in such an estimate. On the other hand,

long-range correlations in the Xi will lead to superlinear scaling. For example, frac-

tional Brownian motion (“1/f noise”) of the profile Yi is a Gaussian process with zero

4 Here it is not necessary to use maximum likelihood estimation (compare with the previous section). The

number of scales is usually small, and each value F2(s) is a complex aggregate, so weighted linear regres-

sion is actually preferred in this case.
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Figure 3.5: Detrended fluctuation analysis. A: Original Zrs time series, only a part of
which is shown. B: Integration leads to an unbounded signal, for which a quadratic
trend is estimated. C: Subtracting the trend, the residual root-mean squared error
(RMS) is calculated from the dark area. D: This process is repeated on a smaller
scale, e.g., for each half of the original signal (separated by the vertical line). E: The
RMS decreases for smaller scales. If the relation between RMS and scale follows a
power-law, self-affine behaviour of the time series is detected and quantified by the
DFA exponent (see Fig. 3.6.

mean, stationary increments, variance EY 2
i = i2H , and covariance

E[YiYj ] =
1

2
(i2H + j2H − |i− j|2H), 0 ≤ H ≤ 1.

The parameterH is called the Hurst exponent, and the increment of fractional Brow-

nian motion, i.e., fractional Gaussian noise, exhibits a DFA scaling exponent α = H .

Its autocorrelation function falls off with an exponent of 2H − 2, leading to power-

law behavior P (f) ∝ f−β of the power spectral density with an exponent of β =
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Figure 3.6: Calculation of the scaling exponent α of detrended fluctuation analysis.
The relation between root-mean square error (RMS) is plotted against different scales
in a double logarithmic plot. A linear least-squares fit with large coefficient of de-
termination R2 indicates the existence of scaling, here with an exponent (slope) of
0.933, indicative of 1/f noise.

2H − 1. In case α > 1/2 such processes are therefore long-range dependent, whereas

for α < 1/2 they are anti-correlated5.

A direct calculation also shows that (first-order) detrending does not change the

scaling relationship (3.19) asymptotically (Taqqu et al., 1995). Its advantage is that

detrending allows to account for certain kinds of nonstationarity, e.g., caused by

random external influences that introduce weak trends (“drift”) into the time series.

Different orders of detrending lead to slightly different results, here we focus on

second-order detrending, and the method is variously referred to as “DFA2” in the

literature.

3.5 Nonlinear analysis

The previous section considered the stochastic properties of the respiratory system.

In this section we will approach it from an orthogonal direction, by considering the

respiratory system to be influenced by an underlying nonlinear (deterministic) dy-

namical system. In other words, whereas in the previous section our interest was on

the properties of stochastic events, here we will consider these simply as “noise” and

concentrate on the underlying deterministic component.

As in the previous chapter, from a time series x = (x1, x2, . . . , xN ) we construct

5 An anti-correlated process has the property that successive values change sign with above chance proba-

bility. It’s profile covers less distance from the origin (on the average) than Brownian motion.
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Figure 3.7: Estimation of optimal embedding parameters. A: Autocorrelation func-
tion (ACF) of Zrs time series for a subject with asthma. The decorrelation time where
the ACD falls off to 1/e and confidence intervals about zero are indicated (broken
lines). B: Analogous ACF for a subject with COPD. C: Fraction of false nearest
neighbours (FNN) for the Rrs time series of a subject with asthma. The choice of the
optimal embedding dimension involves a compromise between relative and abso-
lute FNN. The relative FNN indicate the number of false-nearest neighbors relative
to an increase in embedding dimension and falls off monotonously. Values below
1% (broken line) indicate a proper embedding. This has to be judged against the ab-
solute FNN that quantify the number of false-nearest-neighbors with respect to the
diameter of the embedding. Noise in the time series leads to an increase for larger
dimensions, and the embedding dimension should be chosen to minimize this in-
fluence. In this example the optimal embedding would be trhee-dimensional. D:
Analogously for the Xrs time series of the same subject. The optimal embedding
would be four-dimensional.

k-dimensional delay vectors at lag q,

x[i] = (xi, xi+q, . . . , xi+(k−1)q), i = 1, 2, . . . , N∗, (3.21)

where N∗ = N − (k− 1)q. The trajectory x[1], x[2], . . . , x[N∗] in phase space R
k is used

as an approximation of the underlying invariant measure.

Section 3.5.1 discusses how to determine the optimal parameters k and q for this

embedding. Section 3.5.2 introduces a measure that quantifies information produc-

tion in dynamical systems from a given embedding.

3.5.1 Optimal embedding parameters

Although not essential, choosing an optimal time lag in the delay embedding guar-

antees optimal use of the available information. Such an optimal time lag is con-

veniently estimated by the decorrelation time of the autocorrelation function (ACF),

which is the lag for which the ACF has fallen off to 1/e, confer Figure 3.7.
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The optimal embedding dimension can be estimated by the method of false near-

est neighbours (Kennel et al., 1992). Figure 3.7 shows an example for a single mea-

surement. False nearest neighbors are identified by either of two methods. First, a

point x[i] is considered to have a relative FNN when increasing the embedding di-

mension increases the distance between the point and its nearest neighbour x[k(i)]

by a factor of 10 or more. Secondly, a point x[i] is considered to have an absolute FNN

when increasing the embedding dimension increases the distance between it and its

nearest neighbor x[k(i)] by more than two times the diameter of the phase space em-

bedding, estimated by the standard deviation of the time series. The fraction of rela-

tive FNNs usually falls off rapidly, and values below the 1 percent threshold indicate

a proper embedding. The fraction of absolute FNNs, however, after a possible initial

fall, usually rises strongly for large embedding dimensions. This rise is attributed to

noise, whose influence becomes stronger for larger embedding dimensions (the so-

called “curse of dimensionality”), and this measure compensates for the effect that

distances in higher embedding dimensions automatically increase.

3.5.2 Entropy

Nonlinear systems often exhibit the property of sensitive dependence on initial con-

ditions. This can be interpreted in information theoretic terms as the production

of information: If two initial conditions are different but indistinguishable at a cer-

tain experimental resolution, they will evolve into distinguishable states after a fi-

nite time. The Kolomogorov-Sinai entropy h quantifies the mean rate of information

production and is defined by a limit involving shrinking partitions of phase space

(Eckmann and Ruelle, 1985). When working with actual data, it has become popular

to approximate h by the K2 entropy of Grassberger and Procaccia (1983), which is a

lower bound for h.

To calculate K2, define the finite correlation sums

Ck
i (r) = N−1

∗

{

number of j such that d(x[i], x[j]) ≤ r
}

(3.22)

Ck(r) = N−1
∗

∑

i

Ck
i (r), (3.23)

where d : R
k × R

k → [0,∞) is a distance on phase space. The K2 entropy is then

given by

K2 =
1

∆t
lim
r→0

lim
k→∞

lim
N→∞

log
Ck(r)

Ck+1(r)
. (3.24)

In practice, the maximum distance d(x[i], x[j]) = maxν=1,...,k |xi+(ν−1)q−xj+(ν−1)q|
is used for computational efficiency. To avoid estimating the limits, the finite values

ApEn(k, r,N∗) = log
Ck(r)

Ck+1(r)
(3.25)
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Zrs ZrsSD lnZrs lnZrsSD

Asthmatics n=13 3.78 ± 1.53 1.07 ± 0.83 1.25 ± 0.37 0.24 ± 0.06
COPD n=12 4.66 ± 1.18 1.43 ± 0.56 1.48 ± 0.27 0.31 ± 0.11
Controls n=10 3.31 ± 0.99 1.03 ± 0.82 1.13 ± 0.28 0.26 ± 0.13

Table 3.3: Total averages (± SD) for FOT dataset.

can be studied. The use of this familiy of measures was popularized in physiology

by Pincus (1991), who recommended to use k = 2 and r = SD(x)/5 as benchmark

values, under the name of “Approximate Entropy”. Richman and Moorman (2000)

showed that ApEn was biased due to self-matches, and modified (3.22) to

Bk
i (r) = N−1

∗

{

number of j 6= i such that d(x[i], x[j]) ≤ r
}

. (3.26)

The measure

SampEn(k, r,N∗) = log
Bk(r)

Bk+1(r)
(3.27)

is called “Sample Entropy” and is the negative logarithm of the conditional proba-

bility that two sequences within a tolerance r for k time points remain within r of

each other at the next time point.

3.6 Results

When comparing the three groups of asthmatics (A), COPD patients (C) and healthy

controls (N), instead of only considering significance probabilities of differences on

the group level, we were mainly interested in predictive accuracy with regard to group

membership. This was estimated for (i) the full contrast between all groups, and (ii)

the constrast asthma/COPD. For comparison, the worst-case classification accura-

cies, classifying all subjects as belonging to the largest group, were 0.37 (A/C/N)

and 0.52 (A/C). If not stated otherwise, all accuracies reported below are conser-

vative assessments based on leave-one-out cross-validation. Statistical significance

was tested at the 1% level, and all tests between two groups of numerical values

were Wilcoxon unpaired two-sample tests.

3.6.1 Statistical analysis

The mean values of respiratory impedance (Zrs), resistance (Rrs) and reactance (Xrs)

are shown in Figure 3.8 and summarized in Table 3.3. There was no significant

group-wise difference between asthmatics and healthy controls, between COPD and

asthma or between diseased subjects (both asthma and COPD) versus healthy con-

trols in mean Zrs, although Zrs was slightly increased (p = 0.014) in COPD compared
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Figure 3.8: Mean values of respiratory impedance Zrs, resistance Rrs and reactance
Xrs in a boxplot that allows group-wise comparison. Significance probabilities (two-
sample Wilcoxon test) are indicated. Groups are labeled (A: asthma, C: COPD, N:
healthy controls).

to normal subjects and asthmatics (p = 0.039). This was attributed to marginally sig-

nificant decreases in Xrs (p = 0.020/p = 0.095) and increases in Rrs (p = 0.016/p =

0.059), allowing for classification of COPD versus healthy subjects by LDA of mean

Zrs values with an accuracy of 0.73, and an accuracy of 0.60 in the asthma/COPD

contrast, marginally above chance levels.

Since it has been suggested that the distribution ofZrs is better explained by a log-

Gaussian distribution than a Gaussian distribution (Diba et al., 2007), Fig. 3.9 depicts

mean values of lnZrs and lnZrsSD. No significant differences between asthmatics

and controls were detected, consistent with the findings of (Diba et al., 2007), but

COPD showed marginal increases in lnZrs and lnZrs variability (p = 0.021 and p =

0.043). Regarding higher moments, there were no significant differences in kurtosis

(peakedness) and skewness (asymmetry) ofZrs between the groups either (Fig. 3.10).

A marginal decrease in skewness (p = 0.094) did achieve an accuracy of 0.73 for the

asthma/COPD contrast, however.

Comparable classification in the asthma/COPD contrast was possible when the

bivariate distributions of joint mean Rrs and Xrs were considered (Fig. 3.11). This

achieved an accuracy of 0.72 (sensitivity 0.58, specificity 0.85 for COPD). The full

contrast did not obtain any discrimination above chance levels (accuracy 0.40); in

particular, of 10 healthy control subjects only one was correctly identified.
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Figure 3.11: Linear discriminant analysis of combined mean resistance (Rrs) and re-
actance (Xrs) A: Scatterplot of mean Rrs against Xrs for all subjects (A: asthma, C:
COPD, N: healthy controls). Note that the classification of normal subjects is al-
most impossible. The decision boundary for the classification of asthma against
COPD is indicated (broken line). B: Discriminant scores for all subjects in the
asthma/COPD contrast, cross-validated by leave-one-out method. C: Receiver-
operator-characteristic for the discrimination of asthma (negatives) against COPD
(positives) for these scores. Sensitivity (true positive rate, 0.58) and specificity (1-
false positive rate, 0.85) for the optimal threshold are indicated (dotted lines), result-
ing in an accuracy of 0.72.
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Figure 3.13: Evidence for power-law behavior and estimated intercept in a group-
wise comparison. A: Significance probabilities for permutation test (100 bootstraps;
A: asthma, C: COPD, N: healthy controls). The null hypothesis of power-law behav-
ior is accepted (0.10 level, broken line) for 12 out of 35 cases, indicating compatibility
with the power-law hypothesis. B: Intercept of power-law maximum-likelihood es-
timate of fluctuations Zvar, to compare with the findings of Que et al. (2000).

3.6.2 Variability and fluctuation analysis

We tested the power-law behavior of the Zrs time series, and limited the MLE esti-

mation of α to tails with at least 200 sample points to avoid spurious minima of the

Kolmogorov-Smirnov statistic; the estimation was only performed for cutoff points

above the 4th decile to speed up the computation. Estimated power-law exponents

and thresholds are shown in Figure 3.12. There were no significant differences in

exponents between the groups (p > 0.06), but in COPD the power-law behavior

seemed stronger (smaller exponent α) and the threshold was significantly higher

than for the other groups (p < 0.009). The latter could be explained by the seem-

ingly larger variability (confer Fig. 3.9) in COPD, and lead to a classification accu-

racy of 0.68 (asthma/COPD) and 0.73 (COPD/controls). The logarithm of the ex-

trapolated probability density at x = 1 showed a marginally significant increase for

COPD with respect to the other groups (p = 0.0016; Fig. 3.13B), probably caused by

the seemingly stronger power-law behavior. However, this only allowed close-to-

chance classification. The null hypothesis of power-law behavior was accepted for

12/35 subjects, distributed almost evenly among the three groups (Fig. 3.13A).

Fig. 3.14 shows the scaling exponents and the goodness of fit obtained by DFA for

all subjects. There were no significant differences in scaling between the groups, but

the exponent was close to one in all cases, which indicates that respiratory impedance
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Box 5. Power-law analysis of FOT signals

• Power law analysis is best done by maximum likelihood estimation.

• Validation of presumed power-law behavior is difficult, but significance testing
with synthetic surrogate data offers a conservative assessment.

• In the sample dataset, the nullhypothesis of power-law behavior was accepted
for 12/35 FOT signals.
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Figure 3.14: Detrended fluctuation analysis of Zrs time series. Scaling exponent (A)
and goodness-of-fit (B) DFA scaling exponent (A) and goodness-of-fit (B) in a group-
wise comparison (A: asthma, C: COPD, N: healthy controls). Significance probabili-
ties (two-sample Wilcoxon test) are indicated.

fluctuation can be considered an instance of 1/f noise, the hallmark of self-organized

criticality (Bak et al., 1987) and complex, long-range dependent systems. Indepen-

dent random fluctuations, e.g., by a white noise process, would result in a scaling

exponent of 0.5, and the larger value found suggests a smoother, more correlated

structure in respiratory impedance, which is expected due to the influence of the

breathing cycle. Note however that the scaling exponent would be close to zero for

a purely periodic process, e.g., simple harmonic variations in Zrs.

To elucidate whether the scaling might be caused or influenced by variations

in the lengths of the breathing cycles (Peng et al., 2002), we additionally extracted

smaller time series of Zrs with only one value per cycle either at the inspiratory

endpoint (IEP), or at the expiratory endpoint (EEP), consisting of about 100 values on

the average. Submitting these time series to DFA, scaling behavior was still detected
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Figure 3.15: Detrended fluctuation analysis of event-related Zvar time series. A: Scal-
ing exponents for Zrs at the inspiratory endpoint (IEP) and B: at the expiratory end-
point (EEP) in a group-wise comparison (A: asthma, C: COPD, N: healthy controls).
Significance probabilities (two-sample Wilcoxon test) are indicated.

(Fig. 3.15), indicating a more subtle, dynamical cause of the scaling. Interestingly,

the EEP fluctuations exhibit a significantly larger exponent in COPD (p = 0.003) as

in asthma, and allowed to indeed classify with an accuracy of 0.72 (asthma/COPD).

Box 6. Detrended fluctuation analysis of FOT signals

• DFA allows to assess self-similarity and long-range dependence of time series.

• The impedance time series exhibit scaling consistent with long-range depen-
dence (“1/f noise”, the hall-mark of complex systems).

• Scaling exponents did not significantly differ between controls and patients
suffering from asthma or COPD, but this is due to large variation of the expo-
nents. It seems that exponents might be slightly larger in asthma and in COPD
(in that order) than in healthy controls, but longer time series are needed to
assess this properly.

3.6.3 Distance-based analysis

Before attempting a dynamical analysis, we quantified differences in the shape of

the joint probability distributions of resistance and reactance (Fig. 3.16). The re-

sults of the distance-based analysis for these 1+1 dimensional joint probability dis-
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Figure 3.16: Wasserstein distances of mixed resistance (Rrs) and reactance (Xrs) time
series. A: Trajectory of Rrs/Xrs in a 1+1 dimensional embedding for a subject with
asthma, normalized to zero mean and unit variance for each component separately.
To improve visualization, stippled lines instead of individual sample points are
shown. B: Analogous trajectory for a subject with COPD. The Wasserstein distance
quantifies the work needed to transform one of these embeddings into the other, and
thereby robustly quantifies differences in shape. For this example, the mean Wasser-
stein distance was 0.412 ± 0.029 SE (bootstrapped 15 times from 512 sample points
each).

tributions, where both Rrs and Xrs were normalized independently, are shown in

Fig. 3.17. All distances were bootstrapped 25 times with a sample size of 512 points

each. The Wasserstein distances were reconstructed in two dimensions for visu-

alization purposes (Fig. 3.17B), and the eigenvector distribution indicates that this

represents the measured distances relatively well (Fig. 3.17C). Consequently, the

misrepresentation error (circles in Fig. 3.17B) was relatively small and more or less

uniformly distributed among the points. The group structure in this functional

space was significantly clustered (p = 0.002), but a within-group agreement A =

0.07 suggests that only about 7% of the variance among distances is explained by

group structure. Indeed, due to the normalization the distributions did not con-

tain any information on mean Rrs and Xrs and their variability anymore, so only

subtle differences in higher-order moments were captured by this approach. Includ-

ing more reconstruction dimensions, the cross-validated classification accuracies de-

creased (Fig. 3.17E) and became unstable for dimensions larger than five (proba-

bly due to numerical inaccuracies related to very small eigenvalues). LDA in two

MDS dimensions classified with accuracy 0.51 in the full contrast, and with accuracy
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Figure 3.17: Distance-based analysis of normalized probability distributions of com-
bined Rrs and Xrs (1+1 dimensional, as in Fig. 3.11). A: Distance matrix for all
subject-wise comparisons of signals by Wasserstein distances. B: Two-dimensional
MDS representation depicting the two major axes of variation. Each subject is repre-
sented by a point in this functional space (A: asthma, C: COPD, N: healthy controls),
approximating the measured distances as close as possible. Misrepresentation error
is indicated (by circles whose area is equal to stress-per-point). C: Eigenvalues of the
scalar product matrix obtained from the distances, as a measure of explained vari-
ance. D: Distribution of the MRPP statistic δ. The value of δ for the original groups
is indicated (broken line). The fraction of permutations to the left of this is the sig-
nificance probability (P-value) that the distances are not structured with respect to
group membership. E: Classification accuracies with respect to the number of MDS
dimensions. Circles: full contrast, cross-validated (•) and resubstitution accuracy (◦).
Squares: asthma/COPD contrast, cross-validated (�) and resubstitution accuracy
(�). The resubstitution accuracy rises with increasing dimensionality of reconstruc-
tion, but the cross-validated accuracy decreases after an optimal dimension, indicat-
ing overfitting. F: Discriminant functions for full classification in a two-dimensional
reconstruction. The decision boundaries are indicated (dotted lines: full contrast;
broken line: asthma/COPD contrast). G: Receiver-operator-characteristic for the
discrimination of asthma (negatives) against COPD (positives) in a one-dimensional
reconstruction. Sensitivity (true positive rate, 0.83) and specificity (1-false positive
rate, 0.77) for the optimal threshold are indicated (broken lines), resulting in an ac-
curacy of 0.80. H: Corresponding discriminant scores.
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Figure 3.18: Optimal time lag estimation. A: Optimal lags determined by first zero of
autocorrelation function (A: asthma, C: COPD, N: healthy controls). B: Optimal lags
determined by decorrelation time. A few outliers not shown. Significance probabili-
ties (two-sample Wilcoxon test) are indicated.

0.76 between asthma/COPD (Fig. 3.17F). The best asthma/COPD classification was

achieved in just one-dimension, leading to an accuracy of 0.80 with sensitivity 0.83,

specificity 0.77 for COPD (Fig. 3.17G-H).

3.6.4 Nonlinear analysis

Assuming the Rrs and Xrs time series to result from an underlying dynamical sys-

tem, the proper time lag for delay vector reconstruction was assessed by the decor-

relation time of the autocorrelation functions, with mean values of 14 ± 13 SD and

12±9 SD, respectively. Due to the high variability, and since stochastic contributions

to the signal might bias these estimates to larger values, the median values of 10 (for

Rrs and Xrs alike) seemed the proper choice, corresponding to 0.625 s as characteris-

tic time scale of the impedance dynamics, i.e., about one-fourth of a breathing cycle.

Assessment of false nearest neighbours (FNN) suggested an embedding dimension

of three to four (FNN Rrs: relative 3.8 ± 0.6 SD, absolute 3.1 ± 1.6 SD; Xrs: relative

3.9±0.7 SD, absolute 2.7±1.5 SD) andm = 3 was chosen, as balancing the influence

of noise seemed more important than improved resolution of the dynamics.

As in the 1+1 dimensional case, we quantified differences between the 3+3 di-

mensional delay vector distributions of Rrs (three delay coordinates) and Xrs (the

other three coordinates), again normalizing the two to zero mean and unit vari-

ance independently. Results are shown in Fig. 3.19. The eigenvector distribution

(Fig. 3.19C) suggests that although two dimensions captured most of the variance
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Box 7. Embedding parameters used in reconstructing impedance dynamics

• Optimal time lag: 10 samples (median decorrelation time of ACF).

• Optimal embedding dimension: 4 values (minimal absolute FNNs and relative
FNNs below 1 percent).

of the distances, quite a few more are needed to represent the distances faithfully.

Indeed, for a two-dimensional MDS reconstruction the misrepresentation error was

quite large (Fig. 3.19B, compare with Fig. 3.17B). The group structure was still signif-

icant (p = 0.005; Fig. 3.19D), although the larger value of the significance probability

(compared with Fig. 3.17D) indicates an increased level of noise, which is confirmed

by the lower within-group agreement A = 0.03. The classification accuracies for the

full contrast attained their maximum for two dimensions and for the asthma/COPD

contrast in six reconstruction dimensions (Fig. 3.19E). The full contrast was difficult

to resolve, due to considerable overlap between asthma and controls (Fig. 3.19F),

and the accuracy in two dimensions was only 0.51. The asthma/COPD contrast

had accuracy 0.88 (sensitivity 1.00, specificity 0.77 for COPD) in six reconstruction

dimensions (Fig. 3.19G-H).

3.6.5 Entropy analysis

Figure 3.20 depicts SampEn of the impedance time series for the reference two-

dimensional embedding and for a four-dimensional embedding with a time lag of

10 samples. For the former, the COPD group exhibits significantly larger entropy

values, but the asthma group does not seem to differ from the control group. Inter-

estingly, in contrast to this the asthma group differs significantly (from the other two

groups) in the four-dimensional embedding, with a seemingly lower entropy. How-

ever, these differences were quite small: Cross-validated classification in the contrast

asthma/COPD by LDA, for example, resulted in an accuracy of 0.59 (2d) and 0.57

(4d), i.e., close to chance classification.

3.7 Discussion

We have attempted to distinguish between asthma, COPD and healthy controls ei-

ther by assessing fluctuations and scaling behavior, or by robustly comparing prob-

ability distributions of the dynamical behavior of Rrs and Xrs, implicitly assuming

an underlying dynamical system.
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Figure 3.19: Distance-based analysis of normalized probability distributions of com-
bined Rrs and Xrs in a 3+3 dimensional embedding, compare Fig. 3.17. A: Distance
matrix. B: Two-dimensional MDS representation of subjects (A: asthma, C: COPD,
N: healthy controls). Note the larger misrepresentation error, due to the increase in
dimensionality. C: Eigenvalues of the scalar product matrix. D: Distribution of the
MRPP statistic δ. E: Classification accuracies. Circles: full contrast, cross-validated
(•) and resubstitution accuracy (◦). Squares: asthma/COPD contrast, cross-validated
(�) and resubstitution accuracy (�). F: Discriminant functions for full classifica-
tion in a two-dimensional reconstruction with decision boundaries indicated (dot-
ted lines: full contrast; broken line: asthma/COPD contrast). G: Receiver-operator-
characteristic for the discrimination of asthma (negatives) against COPD (positives)
in a six-dimensional reconstruction. Sensitivity (true positive rate, 1.00) and speci-
ficity (1-false positive rate, 0.77) for the optimal threshold are indicated (broken
lines), resulting in an accuracy of 0.88. H: Corresponding discriminant scores.

3.7.1 Main findings

Evidence for the controversial power-law hypothesis was found. Although the power-

law hypothesis could not be accepted for all subjects at the 10 percent significance

level, this represents a rather conservative test (Clauset et al., 2009), and the fluc-

tuations of 12/35 subjects were consistent with power-law behavior. However, this

does not rule out the possibility that the data is still better described by other distri-
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Figure 3.20: Group-wise comparison of sample entropies of Zrs time series (A:
asthma, C: COPD, N: healthy controls). Evaluted for each single measurement sepa-
rately. A: In a two-dimensional embedding with trivial lag. B: In a four-dimensional
embedding with lag 10 samples.

Box 8. Sample entropy of FOT signals

• Sample entropy is a simple and efficient method to quantify information pro-
duction in dynamical systems, even for relatively short time series.

• In a two-dimensional reconstruction, the COPD patients exhibited slighly
larger entropies, consistent with larger variability.

• In a four-dimensional reconstruction, the asthma patients exhibited signifi-
cantly lower entropies, paradoxically suggesting a slightly more stable dynam-
ics.

• However, these effects were relatively small and only allowed for marginal
improvements in classification accuracy, compared to the worst-case classifier.

butions. In particular, unphysiologically large values of Zrs cannot a priori occur, so

there should also be an upper threshold for the assumed power-law behavior. Unfor-

tunately the estimation of such distributions is much more involved and introduces

additional sources of uncertainty, so this was not attempted here.

Consistent with earlier findings we did not detect significant changes between

power-law exponents. In contrast to Que et al. (2000), we did not detect significant

differences in power-law properties between asthmatics and controls. Since the ear-

lier analysis was done with methods now known to be potentially unreliable (confer
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(White et al., 2008)), these former findings should be reconsidered.

Detrended fluctuation analysis highlighted the complicated nature of impedance

signals, where self-similar scaling behavior was found. Interestingly, the scaling ex-

ponents were close to one, indicating that Zrs time series exhibit complex 1/f fluctu-

ations in time that are correlated over a wide range of scales. The origin of this 1/f

noise might be the well-known 1/f fluctuations of heart rate (Peng et al., 1995) and

it can be hypothesized that these are mediated by the complex interactions in the

cardiorespiratory system. However, since the scaling behavior also persisted when

only one value per breathing cycle was used, we conclude that this is a subtle effect,

i.e., most probably due to dynamical cardio-respiratory coupling, and not simply

driven by 1/f noise of inter-breath interval variability (Fadel et al., 2004).

Due to large intra-group variance, fluctuation analysis showed no significant dif-

ferences between the groups of subjects, but there were indications that the scaling

exponents might be slightly larger in diseased respiratory systems than in healthy

controls, consistent with the idea that diseased dynamics in physiological system

are characterized by a decrease in complexity (Goldberger et al., 2002).

The distance-based analysis between probability distributions further evidenced

that there exist subtle differences in respiratory properties. Since theRrs andXrs time

series were normalized for this analysis, only differences in the shape of the dynam-

ical behavior were thereby quantified. Interestingly, these were sufficiently large to

allow robust (cross-validated) classification of 80 percent in the asthma/COPD con-

trast, which was better than classification based on mean Zrs, lnZrsSD, skewness and

kurtosis of Zrs, etc., individually. This confirms our hypothesis that the two diseases

differentially affect their within-breath dynamics.

Regarding the 3+3 dimensional delay embedding and its Wasserstein distances,

these did only improve classification marginally (to 88 percent in the asthma/COPD

contrast) with respect to the 1+1 dimensional distributions. In the light of the largely

increased noise level (due to the sparseness of delay vectors) this indicates that such

delay reconstruction might possibly incorporate additional information that is not

present when only using the 1+1 dimensional distributions. However, it seems nec-

essary to reduce the influence of noise considerably before this could be convincingly

demonstrated and is left to future studies.

Classification of asthmatics versus healthy controls was problematic for all mea-

sures due to large overlap; however, there were indications that some time series

should be considered outliers, i.e., either systematically influenced by unidentified

artifacts, or exhibiting a unique dynamic relating to uncontrolled covariates.

3.7.2 Clinical implications

The distance-based time series analysis of respiratory impedance led to a correct dis-

tinction between patients with asthma and COPD in 80 percent of cases. This means
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that the forced oscillation technique can capture discriminative aspects of airway

disease from recordings during simple, tidal breathing. The differential diagnosis of

asthma and COPD can be a challenge in clinical practice (Guerra, 2005) as it appears

that both diseases can exhibit overlapping pathological and physiological features

(Gibson and Simpson, 2009). Part of this overlap may be due to real co-existence of

both diseases in some patients, whereas in others the current diagnostic techniques

apparently fail to pick up the difference (Chang and Mosenifar, 2007; Gibson and

Simpson, 2009). Our patients were used as a so-called ‘training-set’ (Knottnerus

and Muris, 2003), thereby being representative of gold-standard patients of either

disease. The presently observed discriminative capacity of the dynamic time series

analysis is, therefore, promising with regard to differential diagnosis and monitoring

of asthma and COPD. The fully non-invasive nature of the measurements, without

the requirement of artificial breathing maneuvers, offers great prospect for clinical

application in chronic, often elderly patients. However, this still requires valida-

tion experiments, in independently recruited patients with an intention-to-diagnose

(Knottnerus and Muris, 2003), in order to establish the diagnostic accuracy of the

dynamic time series analysis of respiratory impedance in clinical practice.

3.7.3 Further directions

Although the large variability in scaling exponents precludes the reliable discrimina-

tion of respiratory diseases in the case of relatively short Zrs signals considered here,

it can be hoped that fluctuation analysis might elucidate differential mechanisms

in respiratory dynamics if performed with improved input signals. In particular,

obtaining impedance signals at a few additional frequencies and partitioning them

into different compartmental contributions and mechanical properties, should allow

to reduce the influence of upper airway artifacts, thereby enhancing the discrimina-

tory properties. The use of nonlinear compartmental models, e.g., based on Rohrer’s

equation (Suki, 1993) might improve the analysis even further, even under loss of

temporal resolution.

Nonlinear noise reduction algorithms have been quite successful for the removal

of artifacts (Kantz and Schreiber, 2004)[ch. 10.3] and could also be investigated. With

respect to the detected scaling behavior, the heart-lung interaction could be stud-

ied, correlating fluctuations in ECG and respiratory impedance signals. A stochastic

description by a Fokker-Planck equation seems another possibility (Friedrich and

Peinke, 1997; Nawroth et al., 2007) to separate the stochastic and deterministic con-

tributions to the impedance signal.

LDA, although it assumes normality and equal group-wise variance, was used

here instead of more complicated discriminant methods due to its wide spread, ease

of interpretation and relative robustness - since fewer parameters need to be esti-

mated than, e.g., in quadratic discriminant analysis, LDA usually outperforms more
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sophisticated classification methods. Cross-validated LDA results can be judged to

be conservative, however, and more sophisticated methods might lead to improved

classification.

3.7.4 Conclusion

Instead of evaluating Zrs signals with respect to the mechanical properties of air-

ways, we have attempted a stochastic and nonlinear analysis. The distance analysis

showed that there exist subtle differences in these signals, but the nature of the differ-

ential behavior of respiratory impedance is mostly unclear. Self-similar fluctuations

were detected in the signals, that hint at a complex modulation of impedance sig-

nals which needs further elucidation. The distance analysis has proved particularly

useful and detected clustering in functional space, indicating functional changes

in respiratory impedance that are characteristic with respect to disease. Reverse-

engineering of these patterns is a possibility, since the interpolation properties of

Wasserstein distances (Villani, 2003)[ch. 5.1], in combination with nonlinear model-

ing techniques (Gouesbet and Maquet, 1992; Źółtowski, 2000), principally allow to

compute characteristic dynamical models for each group of subjects. This would po-

tentially lead to further insights into how the respiratory system is affected in disease

and possibly also allow to assess and track changes in airway caliber over the course

of time. This may be used for differential diagnosis and monitoring of asthma and

COPD; however, independent validation experiments are required as the next step

towards the assessment of diagnostic accuracy (Knottnerus and Muris, 2003).





Chapter 4

Structural brain diseases
My brain: it’s my second favorite organ.

Woody Allen

Section 4.1 gives a short overview of magnetic resonance (MR) imaging and its

quantitative analysis. The framework for the statistical analysis of MR parame-

ters is introduced in Section 4.2. In Section 4.3 we apply this methodology to data

obtained in the case of an important autoimmune disease, systemic lupus erythe-

matosus (SLE). The dataset is analyzed by two established approaches: “histogram

analysis” and “multivariate discriminant analysis”. Methodological improvements

are introduced and discussed; we compare results obtained by the traditional meth-

ods with the distance-based analysis of MR parameter distributions and by results

obtained when fitting a model distribution to the data. In Section 4.4 we turn to a

different brain disease, Alzheimer’s disease, where a short application is presented.

4.1 Quantitative MRI

Magnetic resonance (MR) imaging, also known as nuclear magnetic resonance (NMR)

imaging, is a medical imaging technique that allows to visualize the internal struc-

ture and function of the body. In comparison to computertomography and positron

emission tomography, MR imaging does not utilize ionizing radiation, and is there-

fore an ideal technique for prolonged or repeated measurements. A strong magnetic

field is used, and a short radio frequency (RF) electromagnetic field causes subatomic

particles with nonzero magnetic moment, e.g., the protons in living tissue, to alter

their alignment relative to the field, inducing precession around the longitudinal

axis. To be precise, the external magnetic field changes the energy levels of the par-

ticles’ intrinsic spin-states. Not only does this introduce a basis for the spin eigen-

states, which now occur either as longitudinally aligned or counter-aligned with the

field, but also introduces an energetic asymmetry, where the aligned state is ener-

getically preferred. This changes the usually random distribution of spin states in

thermal equilibrium, leading to a macroscopic net magnetization vector along the

magnetic field.

Application of an RF field at the resonant (Larmor) frequency causes particles in

the lower energy state to jump to the higher energy state, causing the macroscopic
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magnetization vector to rotate away from the longitudinal alignment. After the RF

field is turned off, the protons subsequently relax to the alignment preferred in the

magnetic field, thereby emitting characteristic electromagnetic radiation. The recov-

ery of longitudinal magnetization is called T1 or spin-lattice relaxation and is macro-

scopically described by an exponential decay M(t) = M∞ + M1 exp(−t/T1) with

time constant T1.

T2 relaxation, or spin-spin relaxation, occurs when the spins in the two energetic

states exchange energy but do not loose energy to the surrounding lattice. This re-

sults in the loss of transverse magnetization, which is again described by a macro-

scopic exponential process, the so-called free induction decay. Its time constant T2

is a measure of how long the resonating protons retain coherent phase relationships

in their precessing motion. In practice, inhomogeneities in the magnetic field and

the electron distribution of the molecules (chemical shifts) render the relaxation time

shorter and a specific excitation protocol (spin-echo series) is needed to measure

T2. If the standard excitation protocol (gradient-echo series) is applied, the magne-

tization suffers from additional losses and is called T ∗
2 . This measure can further

increase contrast for distinct molecules, e.g., venuous blood. Finally, proton-density

(PD) weighted scans use an echo sequence that suppresses relaxation times and al-

lows to measure the total amount of available spins.

In the application to biological tissues, consisting of a variety of distinct molecules,

the relaxation processes are influenced by the natural quantum mechanical energy

levels of the molecules, i.e., their vibrational, rotational and translational energy

spectra. Small molecules like water usually move more rapidly and exhibit higher

natural frequencies than larger molecules, e.g., proteins. Since the natural frequency

of (free) water molecules is much higher than the range of Larmor frequencies used

clinically, water has a long T1 relaxation time relative to other biomolecules. On

the other hand, the methemoglobin in blood shortens T1 times significantly due to

dipole-dipole interactions between the paramagnetic iron and the water protons.

Many alternative MR imaging protocols exist that prescribe different sequences

of excitation signals and thereby allow to measure additional parameters. Important

examples include diffusion weighted and diffusion tensor imaging, functional MRI,

and MR spectroscopy. The magnetic transfer (MT) parameter is another important pa-

rameter that refers to the transfer of longitudinal magnetization from hydrogen nu-

clei of water that are restricted in their movements, e.g., bound to macromolecules

such as proteins and lipids, to nuclei of water that can move freely. Due to inter-

action effects the T2 times of bound nuclei are severly shortened and usually not

observed in the standard MR protocols. However, the use of a special excitation

series allows to saturate the bound nuclei, and during their relaxation magnetiza-

tion will be transferred to the free nuclei, increasing the T1 time. The magnetization

transfer ratio (MTR) expresses the difference between proton-density in the absence
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of saturation (M0) and in the presence of saturation (M1), and is defined as

MTR =
M0 −M1

M0
. (4.1)

To acquire images of an extended object, the magnetic field is caused to vary

spatially by introducing a field gradient. Different spatial locations then become as-

sociated with distinct resonant frequencies, allowing to separate their contributions

to the MR signal, which is usually accomplished by Fourier methods. This results

in a three-dimensional reconstruction of the MR signal, sampled over a discrete set

of voxels (volume-elements). Each voxel is assigned a single numerical value that

represents the average of the MR signals measured for that volume. The mixing of

distinct tissue contributions is called the partial volume effect, and is one of the most

problematic issues in the interpretation and analysis of MR images.

Quantitative MR image analysis refers to the analysis of the measured distribution

of MR parameter values (one for each voxel) by statistical methods (Tofts, 2004).

Instead of the mainly visual analysis by medical experts — which is still the main

mode of evaluation of MR images, utilizing the human capacity to detect patterns

— quantitative MRI analysis is an objective approach that uses the MR scanner in

its original intention, i.e., as a sensitive scientific instrument that results in numer-

ical measurements. The statistical analysis of these measurements, however, is a

relatively recent development. A particular problem are the differences in MR scans

between different scanners, the strong dependence on the details of the imaging pro-

tocols employed, and possible drift, potentially compromising reproducibility even

in the same machine. Moreover, focussing on a distinct region of interest (ROI) in-

side the brain is only possible if that region can be identified and delineated with

sufficient precision. This necessitates the use of nontrivial image analysis techniques

for the segmentation and registration of images that map the observed voxels to a

standardized coordinate system, e.g., an average brain atlas.

4.2 Distributional analysis

The basic idea in the distributional analysis of MR images is to consider the imaging

parameter a stochastic process. Adopting such a stochastic description allows to

apply statistical techniques to quantitatively analyze MR images. The most common

approach is to neglect (microscopic) spatial dependence and consider each value of

the imaging parameter, of which there is one for each voxel measured, a realization

of a single random variable with a common probability distribution. In contrast to

other statistical descriptions, e.g., by Markov random fields or texture analysis, this

at first seems unfortunate, as information on the spatial origin of parameter values

is discarded.
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However, there are many advantages to this approach: It is easy to realize and to

interpret, and one does not need to make assumptions about spatial properties of the

signal. Moreover, focussing on a region of interest (e.g., white or grey matter), it is

still possible to account for macroscopic differences in tissue properties, i.e., for the

anatomical origin of the signals, without the need for perfect registration of voxels

to a common coordinate frame.

The first task in this approach is to estimate the probability distribution of the

imaging parameter. Due to the abstraction involved, the probability distribution is

the most complete description of the information content of the signal. At this point,

a further assumption enters. Namely, the diverse micropscopic tissue contributions

and their properties are superposed and averaged in MR signals, and on the macro-

scopic level of a discrete image with a finite set of voxels this gives rise to a seemingly

continuum of parameter values. Therefore, one seems justified in assuming that the

probability distribution is absolutely continuous, i.e., that there exists a continuous

density function f describing the probability f(x) dx to observe a parameter value

from a small interval [x, x + dx]. As implied from the above, the value f(x) dx can

be interpreted as the probability to observe such values of the imaging parameter if

the origin of the signal is unknown (but constrained to lie in a certain ROI).

Since the probability density f is continuous, it contains an essentially infinite

amount of information and cannot be directly assessed. The standard approach to

deal with this problem has been to discretize the parameter range and to estimate

the value of f(x) in a small interval [x, x + h] by the observed frequency of voxels

exhibiting parameter values falling into this bin. Thereby, the continuous density f

is estimated by a histogram.

Depending on the bin numbers and sizes, the amount of information is largely

reduced. For example, total white matter might be found and measured in thou-

sands up to a few million voxels (depending on scanner resolution), and commonly

used histograms usually contain about 100 bins. This is still a lot of information, and

the next task is therefore the extraction of a number of select statistical descriptors,

also called summary statistics, that summarize this information in a more convenient

and, hopefully, meaningful way. Statistical measures of this kind are the moments

of the distribution and functions thereof, e.g., the mean, the standard deviation, kur-

tosis and skewness. With respect to parameters that exhibit unimodal densities, i.e.,

exhibit a marked single maximum, additional other measures have been considered.

These are the height and location of the mode (“peak”) of the density, and its broad-

eness, quantified by the width at half the height of the peak, the so-called full width

half maximum (FWHM) statistic. The study of these measures is known under the

name of “histogram analysis” in the field of qualitative MR image analysis.

A different way to characterize histograms or, more generally, densities by a num-

ber of features is offered by the methods of multivariate analysis. These cannot be

applied to a single histogram but necessitate the use of multiple histograms, i.e.,
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measurements from a population of subjects. Each bin is then considered a distinct

variable and multivariate methods are applied to the collection of all such variables.

For example, PCA then allows to extract linear combinations of bins that capture the

most variation over the population. Thereby, each single histogram is decomposed

into a number of additive components, and the percentage that each such prinicpal

component (PC) contributes to it leads to a series of numerical scores. Since usually

only a few PCs explain most of the variance, a few of these scroes characterize each

single histogram, greatly reducing the amount of data even further.

Another advantage of the exploratory technique of PCA is that PCs can often be

interpreted substantively, which might lead to insight into neurophysiological pro-

cesses and possible generative approaches, i.e., microscopic models of tissue proper-

ties and their relationship with other factors, e.g., disease severity, cognitive abilities,

age and time, etc. In particular, PCA scores can be used in regression analysis to link

parameter distributions with covariates of interest.

However, if the objective is to discriminate between different groups of subjects,

e.g., healthy controls and one or more populations affected by disease, PCA is often

not optimal. Linear discriminant analysis (LDA) and quadratic discriminant anal-

ysis (QDA) are generalizations of PCA that extract the features of histograms most

useful for classificatory purposes. As in PCA, LDA and QDA determine linear com-

binations of bins, now chosen to separate two or more groups of histograms opti-

mally. The difference between LDA and QDA consists in the underlying parametric

assumptions. In QDA, each population of histograms is assumed to arise as a real-

ization of a multivariate Gaussian distribution, and in LDA the covariance matrices

of these Gaussians are furthermore assumed to be all equal (homoscedasticity as-

sumption). It is questionable whether these assumptions are truly fulfilled, but this

does not compromise classification. Indeed, LDA/QDA are easily implemented and

interpreted, and although they might not be optimal if the assumptions are violated,

as yet they have shown marked successes in discriminating and assessing neurolog-

ical diseases.

4.3 Systemic lupus erythematosus

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that can affect

any part of the body. It has a prevalence of about 40 per 100 000 people in North-

ern Europe (Rahman and Isenberg, 2008) and, as other autoimmune diseases, affects

women more frequently than men, with a ratio of almost 9 to 1. Its diagnosis is com-

plicated as its symptoms vary widely and can occur in unpredicatable outbreaks

(“flares”) with intermediate remissions. Therefore, SLE is often mistaken for other

diseases, and the diagnostic guidelines of the American College of Rheumatology

rely on more than ten possible criteria (Tan et al., 1982). Even when SLE has been di-

agnosed, current treatments with immunosuppressive drugs have undesirable side
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effects and it is imperative to quantify disease severity to improve the quality of life

of patients. A further complication arises from the fact that 11 to 60 percent of pa-

tients exhibit neuropsychiatric symptoms, which is also called “active” SLE (NPSLE),

whereas the remaining patients do not exhibit such symptoms (nonNP-SLE).

It has been shown in the past that noninvasive measurements of MTR distribu-

tions in the brain allow to detect SLE. The SLE group exhibits significant deviations

of histogram-based measures (e.g., peak height) with regard to the control group.

Classification on an individual basis has been attempted by Dehmeshki et al. (2002),

where histograms where considered as multivariate measurements. Linear discrim-

inant analysis (LDA) of histograms allowed to discriminate active SLE from controls

perfectly (in 10 healthy and 9 SLE subjects) under leave-one-out crossvalidation, and

to distinguish nonNP-SLE from SLE perfectly (in 9 SLE and 10 nonNP-SLE subjects).

This study was one of the first to shift attention from a study of groupwise differ-

ences to classification on an individual level, i.e., to the assessment of the predictive

value of MTR parameter distributions in the brain. Unfortunately, the proposed

multivariate discriminant analysis (MDA) of histograms is faced with the problem

that histogram data does not represent independent measurements, and collinearity

in the data can compromise the validity of the classification results. In the follow-

ing, we will therefore use principal component analysis (PCA) to first transform the

data to a smaller and more robust set of scores, and then apply LDA to these to find

an optimal, robust basis for classification. This approach, called linear discriminant

principal component analysis (LDPCA, or MDA for simplicity) is further contrasted

with (1) classification based on histogram measures, (2) a fitted model distribution,

and (3) the distance-based analysis of MTR distributions. It will be shown that the

best method for general classification and discrimination of diseased patients from

healthy controls is the distance-based comparison, whereas slightly better results

can be obtained by LDPCA/MDA for specific comparisons, e.g., when discriminat-

ing active NPSLE from nonNP-SLE.

4.3.1 Materials

A dataset of in total 54 subjects was measured in a 3 Tesla MR scanner at the Lei-

den University Medical Center. The subject population consisted of 19 healthy con-

trols (abbreviated by code “H”), 14 NPSLE patients (code “N”) and 20 patients with

nonNP-SLE (code “O”). The age and gender structure of the population is shown in

Figure 4.1.

All images were obtained in a 256× 256× 20 matrix and automatically registered

and segmented. This led to six distinct, partially overlapping datasets of MTR pa-

rameters for each subject: White matter (WM) and gray matter (GM) were separately

available, and combined result in the total brain parenchym (PAR). Application of

morphological erosion to each of these three image datasets removed one voxel from
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Subject populations

H Controls (“healthy”)
N / NPSLE Systemic lupus erythematosus with neuropsych. problems
O / nonNP-SLE Systemic lupus erythematosus without neuropsych. problems
S = N + O Disased patients

Datasets

WM White matter
EWM Eroded white matter
GM Gray matter
EGM Eroded gray matter
PAR Brain parenchyma = White matter + Gray matter
EPAR Eroded brain parenchyma

Other abbreviations

CV Cross-validated (leave-one-out)
FPR False positive rate
FWHM Full width half maximum
MDA / LDPCA Multivariate discriminant analysis (of histogram data)
MR Magnetic resonance imaging
MTR Magnetic transfer ratio (an MR imaging parameter)
pu Percentage unit
ROC Receiver operator characteristics
TPR True positive rate
T2 Transverse / spin-spin relaxation time (an MRI parameter)

Table 4.1: Abbreviations used in this chapter.

the boundaries of the anatomical regions, thereby greatly reducing possible contam-

ination by the partial-volume effect at the boundaries. This operation resulted in an

additional three datasets of eroded white matter (EWM), eroded gray matter (EWM)

and eroded parenchym (EPAR) per patient. Since we were only interested in global

changes in MTR distributions, the information on the origin of the MTR values was

discarded, leading to six sets of parameter values for each subject that consisted of

about 60 000 (WM/EWM), 140 000 (GM/EGM) and 200 000 (PAR/EPAR) individual

MTR values.

4.3.2 Histogram analysis

For each patient, the MTR values from the interval (0, 1] were binned into 101 regular

bins of width 1 percent unit (PU) each1. From these histograms, three measures were

1 The bins have been chosen such that their centers coincide with the 101 MTR ratios from 0 to 1, in steps of

0.01 pu. Thereby, the bias of the histogram estimate at these MTR ratios is minimal, but the first and last

bin represent values from the intervals (-0.05,0.05] pu and (0.95,1.05] pu, respectively, half of which are un-

physical and cannot occur. This introduces a slight bias into their interpretation as frequencies/densities,
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Figure 4.1: Age and gender structure of the sample dataset.

obtained: the location (bin center) of the peak, the height of the peak, and its FWHM

(Figure 4.2, left panel). The mean values and groupwise standard deviations are

given in Table 4.2 for the total brain parenchym. The peak height is expressed in the

frequency with which MTR ratios from the same bin occur, i.e., normalized such that

the frequency values of all 101 bins sum up to 1. It is seen that on the average the

mode of the MTR ratios is located at about 0.39 and represents on average about 7.5%

of all MTR values in the brain. In patients suffering from NPSLE the height of the

mode is significantly reduced by about 1% and its location is shifted to slightly lower

MTR ratios, with a group-wise average of about 0.38. This shift to lower MTR ratios

leads to a broadening of the MTR distribution, as reflected in a significantly increased

FWHM. The nonNP-SLE group shows intermediate changes in MTR distributions

that suggest that the same structural changes have occured in their brains as in the

NPSLE group, only less pronounced.

Cross-validated classification results are given in Tables 4.5-4.9 for all possible bi-

nary contrasts and the full classification task. These accuracies are based on a linear

model that takes all three histogram measures into account, and range from about

60% in the full contrast to about 80% in the HN contrast. The receiver operating

characteristic for the PAR dataset is given in Panel A of Figure 4.4, showing sensi-

tivity (true positive rate) against 1-specificity (false positive rate). About half of the

active NPSLE patients can be unambigously classified. Note that these accuracies

drop immensely if not all three measures are used. For example, using only the peak

height the cross-validated classification accuracy is about 13%, and using only the

peak location it is only about 31%.

which is ignored here.
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Figure 4.2: Histogram analysis. A: Traditional histogram measures. B: Fitting a stable
distribution.

Group Peak height Peak location FWHM

H 0.0746 (0.0068) 0.393 (0.012) 0.052 (0.005)
N 0.0626 (0.0084) 0.377 (0.021) 0.064 (0.011)
O 0.0713 (0.0073) 0.382 (0.014) 0.054 (0.007)

Contrast Significance probabilities

HN 0.0000913 0.00870 0.00021
HO 0.157 0.00882 0.565
HS 0.00379 0.00228 0.0206
NO 0.00343 0.350 0.00157

Table 4.2: Groupwise means and standard deviations for histogram-based measures
and significance probabilities of differences (Wilcoxon two sample test) for PAR
dataset.

4.3.3 Multivariate discriminant analysis

Prior to classification by LDA, we performed PCA on the histograms to extract those

linear combinations of bins that represent the most variance in the dataset. The first

three principal components, covering about 95.8% of the total variance, are shown

in Figure 4.3, scaled according to their contribution to the variance. The first com-

ponent is bimodal (with a shape typical for the first-derivative), representing the

main shift in MTR ratios to lower values in SLE patients. The second component ex-

hibits a similar shift at a different location, and the third component has a diffusive

(second-derivative) character and partially represents the broadening of the MTR

distribution.

The first panel in Figure 4.3 shows the experimental subjects in the space spanned



100 4. Structural brain diseases

−0.08 −0.04 0.00 0.04

−
0

.0
6

−
0

.0
2

0
.0

2
0

.0
4

PC1

P
C

2

H

H

H

H

H
H

H

H

H

H

HH

H

H

H

H

H

H

H

N

N

N

N

N

N
N

N

N

N

N

N

N

N

N

O

O

O

O
O

O

O

O O

O

O

O

O

O

O
O

O

O

O

O

A

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
4

MTR [pu]

F
re

q
u

e
n

c
y H

N
O

B

0.0 0.2 0.4 0.6 0.8 1.0−
0

.0
1

5
0

.0
1

0

MTR [pu]

F
re

q
u

e
n

c
y 1st PC

C

0.0 0.2 0.4 0.6 0.8 1.0−
0

.0
1

5
0

.0
1

0

MTR [pu]

F
re

q
u

e
n

c
y 1st PC

2nd PC

D

0.0 0.2 0.4 0.6 0.8 1.0−
0

.0
1

5
0

.0
1

0

MTR [pu]

F
re

q
u

e
n

c
y 1st PC

2nd PC
3rd PC

E

Figure 4.3: MDA/LDPCA of PAR dataset. A: Scores for first two principal compo-
nents. B: Mean MTR histograms (100 bins). C: First principal component (64.4% of
variance). D: First two second PCs (92.4% of variance). E: First three PCs (95.8% of
variance).

by the first two principal components (PCs). Clearly, the first component represents

the main signal differentiating healthy subjects from NPSLE patients, with nonNP-

SLE patients half-way in between. However, only about 85% of subjects can be

classified correctly from the first PC, contrasted with about 88% for the first two

PCs (cross-validated) and 91% for the first 11 PCs (covering 99.83% of the variance).

The cross-validated accuracies and the number of principal components used for

all datasets and contrasts are given in Tables 4.5-4.9. Note that the number of prin-

cipal components was constrained to lie between 1 and 12 and was determined by

searching for the smallerst number of PCs where the largest cross-validated accuracy

occurs. The main reason for this was to allow for an essentially unbiased compari-

son with the distance-based accuracies (Section 4.3.5), although the accuracies might

be slightly biased. Ideally, one would first determine the number of principal com-

ponents on a training data set, and then evaluate its performance on the remaining,

independent test dataset. The relatively small dataset precludes such ideal cross-

validation, but the left Panel in Figure 4.6 shows that there is not much variation in

the cross-validated accuracies with respect to the number of PCs, i.e., that the poten-

tial bias should be negligible.

The accuracies achieved with such an adaptive choice of PCs and LDA in the

space of scores range from about 65% in the full contrast to more than 90% when

distinguishing healthy controls from NPSLE patients. The ROC curve in Panel B of

Figure 4.4 shows that essentially all positives (NPSLE patients) can be detected with

only about 20% false positives.
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Figure 4.4: Receiver-Operator characteristics for discriminating active NPSLE from
healthy controls in the PAR dataset. The stippled diagonal is the line of no discrimi-
nation, equal to the situation of a random guess. The total accuracy of classification
(both positives and negatives) and the area under the ROC curve are given for fur-
ther assessment. A: Based on traditional histogram measures. B: Based on histogram
PCLDA/MDA. C: Based on fitting a stable distribution. D: Based on Wasserstein
distances.

4.3.4 Fitting stable distributions

An interesting possibility in the analysis of MTR values is the fitting of experimen-

tally measured distributions to a parametric model distribution. The class of stable

distributions seems a promising candidate. This is a flexible four parameter fam-

ily of distributions which are characterized by the property that they are attractors
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Group α β γ δ

H 1.54 ± 0.06 -0.93 ± 0.05 0.039 ± 0.005 0.386 ± 0.008
N 1.56 ± 0.10 -0.95 ± 0.00 0.048 ± 0.008 0.365 ± 0.016
O 1.50 ± 0.08 -0.93 ± 0.07 0.041 ± 0.006 0.371 ± 0.010

Table 4.3: Fitting stable distributions to the PAR dataset by maximum likelihood es-
timation.

for properly normed sums of independent and identically-distributed random vari-

ables. In detail, a random variable X is stable if for two independent copies X1 and

X2 of X and any constants a, b > 0 the following holds for some constants c > 0 and

d ∈ R (in distribution):

aX1 + bX2
d
= cX + d. (4.2)

. In other words, the shape of the distribution of X is preserved (up to scale and

shift) under addition.

If the variance of these random variables were finite, one would get a Gaussian

distribution as special case of a stable distribution. Without this assumption of fi-

nite variance, the limit may be a general stable distribution that can show various

degrees of heavy-tailed (“power-law”) behavior and skewness. Although there does

not exist a general closed-form formula for stable distributions, they can be parame-

terized and numerically manipulated through series representations. We follow the

parameterization of Nolan (2010), where a stable distribution is characterized by four

parameters: an index of stability α ∈ (0, 2], a skewness parameter β ∈ [−1, 1], a scale

parameter γ > 0 and a location parameter δ ∈ R. Maximum likelihood estimation

of these parameters is provided by the fBasics package from the Rmetrics project2.

The parameter estimates for the PAR dataset are shown in Table 4.3.

The location and scale parameters δ and γ are consistent with the histogram mea-

sures (peak location, FWHM) in Table 4.2, although both are slightly smaller by

about 0.10 pu. The group-wise standard deviation is somewhat smaller than for the

histogram measures. All fitted distributions are highly skewed, and both β and the

stability index α are almost constant within the dataset (up to standard error). Clas-

sification by these parameters resulted in cross-validated accuracies ranging from

about 65% for the full contrast to about 85% for the H-N contrast, improving on the

histogram measures but not quite reaching the LDPCA/MDA accuracies (Tables 4.5-

4.9).

2 http://www.rmetrics.org

http://www.rmetrics.org
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Figure 4.5: Wasserstein distances of PAR dataset. A: Two-dimensional MDS represen-
tation. Strain per point is depicted by circles but too small to be visible. B: Average
strain per number of reconstruction dimensions. C: MRPP statistic indicates highly
significant clustering.

Contrast Best method Second best method
CV Acc. Method Tissue CV Acc. Method Tissue

H-N 0.970 mda (5) EGM 0.939 dist (1) EGM
H-O 0.872 histo EWM 0.846 dist (6) GM
H-S 0.870 dist (6) PAR 0.852 mda (7) PAR
N-O 0.829 mda (8) PAR 0.800 dist (5) PAR
Full 0.796 dist (6) PAR 0.679 mda (2) EGM

Table 4.4: Best crossvalidated classification for each contrast. mda: LDPCA/MDA;
histo: LDA of histogram peak, location and FWHM; dist: 1D Wasserstein distances
and LDA of MDS coordinates.

4.3.5 Distance-based analysis

For the distance-based analysis, we calculated 1D Wasserstein distances between

the MTR distributions of all 54 subjects. Since these distances can be calculated ef-

ficiently in the one dimensional case, no bootstrapping was needed. Results are

shown in Figure 4.5. The MRPP test confirms highly significant clustering of the

three groups, with a chance-corrected withing-group agreement of about A = 0.181,

indicating that almost 20% of the variance of the distances can be attributed to the

group structure. The cross-validated classification accuracies range from about 75%

for the full contrast to 90% for the HN contrast (Tables 4.5-4.9).
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Figure 4.6: Influence of dimensionality on accuracies (triangles) and cross-validated
accuracies (circles). A: LDPCA/MDA. Only small degradation of cross-validated
accuracies occurs due to sligtly increasing numerical errors for a larger number of
principal components. B: Wasserstein distances. Increasing the reconstruction di-
mension beyond six degrades cross-validated discrimination considerably. There
are no negative eigenvalues, so this is a genuine overfitting effect.

Box 9. Systemic lupus erythematosus

• Subjects suffering from SLE can be successfully distinguished from healthy
subjects by the statistical analysis of the distribution of the MTR imaging pa-
rameter.

• SLE patients with neuropsychatric problems exhibit marked differences in gray
matter MTR distributions, whereas SLE patients without such problems differ
mostly in white matter MTR properties.

• The best classification results for the discrimination between (1) healthy and
diseased (NPSLE/nonNP-SLE) subjects and (2) for the full classification task
are obtained by the distance-based comparison of their MTR distributions.

• The best results for the binary discrimination between (1) NPSLE and nonNP-
SLE and (2) between healthy and NPSLE subjects is achieved by LDPCA of
histograms.

4.3.6 Discussion

It has been established that MTR distributions of brain MR images are significantly

changed in subjects suffering from SLE. These changes are more marked if sub-

jects exhibit neuropsychiatric problems (NPSLE), but occur to a lesser extent also in

subjects without these manifestations (nonNP-SLE). The true test whether these ob-
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served differences can be attributed to SLE is the assessment of predictive accuracy in

a blind classification task. Since at present there are not enough measurements avail-

able for such validation, we have used leave-one-out crossvalidation as an approxi-

mation of this ideal situation. In contrast to simply finding “significant” differences

at the group-level, as is still common in most publications on SLE and other brain dis-

eases, the much harder problem of individual classification of subjects has attracted

little attention so far. The work of Dehmeshki et al. (2002) was the first to obtain

predictive accuracies for SLE patients by a multivariate discriminant method (LD-

PCA/MDA). The accuracies obtained with this method are impressive, even when

contrasting NPSLE with nonNP-SLE patients, but have been only assessed in a small

group of 10+9+10 subjects and with a standard 1.5 Tesla MR system. Here we have

presented results for a larger group of 19+15+20 obtained with a modern 3.0 Tesla

MR scanner. These confirm the former results, improving about 10%-15% on the

classification possible by the histogram-based measures mostly used.

Apart from independent confirmation of earlier approaches, our work introduces

four novel aspects into this problem. First, we have distinguished between six dif-

ferent tissues on whose MTR values the classification has been based. The results

show that healthy controls and NPSLE patients can be best classified by their gray

matter MTR distributions, whereas the same controls and nonNP-SLE patients can

be best classified by their white matter MTR distributions. In the full classification

task, or when discriminating NPSLE from nonNP-SLE, the total parenchym MTR

distributions result in the best results.

Secondly, we have shown that MTR distributions can be modelled by the family

of stable distributions. Maximum likelihood estimation resulted in four parameters,

and classification based on these improved on histogram measures based classifi-

cation, although it did not reach quite the accuracies obtained in the multivariate

LDPCA/MDA approach.

Thirdly, we have improved on quite a few aspects of the classification method-

ology. Instead of applying LDA to all histogram bin counts, we have avoided the

collinearity problem by first reducing the histogram data to a few principal com-

ponents. In contrast to the earlier approach by Dehmeshki et al. (2002), where this

problem has not been noticed, our approach is sound, robust, and routinely avail-

able in all statistical software packages. The notes at the end of this thesis contain

more comments regarding improvements of the histogram density estimate by ker-

nel smoothing and consider alternative methods of data reduction.

Finally, we have applied our distance-based analysis to this data. Quantifying

differences between univariate MTR distributions has been achieved by calculating

one-dimensional Wasserstein distances. Since these transportation problems are one

dimensional, they are very efficient to solve and no approximations are needed. Re-

construction of the distances by multidimensional scaling, and classification in the

MDS coordinate space resulted in high classification accuracies. With about six di-
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mensions, classification in the full contrast was possible with an improvement of

more than 10%, compared to LDPCA/MDA, and also when discriminating healthy

controls from all SLE patients, the distance-based approach seems superior. Discrim-

inating between controls and NPSLE, or between NPSLE and nonNP-SLE patients,

the LDPCA/MDA was still slightly better.

We conclude that the distance-based approach is very promising in the detection

and classification of SLE. It would be interesting to see whether some of the six re-

construction dimensions can be attributed or correlated to some accessible covariate.

However, this would need a much larger dataset than presently available.

4.3.7 Tables: Classification accuracies

Tissue Method
Histogram MDA† Stable fit Wasserstein

EPAR 0.794 / 0.870 0.912 (4) / 0.926 0.882 / 0.923 0.882 (4) / 0.909
EWM 0.824 / 0.846 0.853 (5) / 0.898 0.794 / 0.874 0.853 (1) / 0.895
EGM⋆ 0.727 / 0.868 0.970 (5) / 0.959 0.879 / 0.906 0.939 (1) / 0.925
PAR 0.794 / 0.870 0.912 (11) / 0.968 0.853 / 0.912 0.912 (2) / 0.895
WM 0.824 / 0.842 0.882 (5) / 0.912 0.882 / 0.874 0.853 (1) / 0.902
GM⋆ 0.818 / 0.872 0.939 (5) / 0.936 0.879 / 0.895 0.939 (2) / 0.921

Table 4.5: Cross-validated classification accuracies in the H-N contrast. First num-
ber: accuracy, second number: area under the receiver-operator characteristic. The
number of principal or MDS components resulting in maximal cross-validated accu-
racy is given in brackets. ⋆: MLE estimation did not converge for one subject, results
therefore for a slightly smaller dataset. †: a maximum of 15 PCs tried.

Tissue Method
Histogram MDA† Stable fit Wasserstein

EPAR 0.600 / 0.683 0.800 (15) / 0.787 0.600 / 0.697 0.771 (4) / 0.843
EWM 0.600 / 0.687 0.771 (11) / 0.647 0.629 / 0.760 0.743 (4) / 0.767
EGM⋆ 0.647 / 0.571 0.794 (6) / 0.793 0.647 / 0.754 0.794 (5) / 0.829
PAR 0.629 / 0.747 0.829 (8) / 0.817 0.600 / 0.740 0.800 (5) / 0.810
WM 0.514 / 0.620 0.714 (5) / 0.710 0.629 / 0.783 0.743 (6) / 0.770
GM⋆ 0.588 / 0.714 0.765 (6) / 0.757 0.618 / 0.711 0.706 (7) / 0.714

Table 4.6: Cross-validated classification accuracies in the N-O contrast. First num-
ber: accuracy, second number: area under the receiver-operator characteristic. The
number of principal or MDS components resulting in maximal cross-validated accu-
racy is given in brackets. ⋆: MLE estimation did not converge for one subject, results
therefore for a slightly smaller dataset. †: a maximum of 15 PCs tried.
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Tissue Method
Histogram MDA† Stable fit Wasserstein

EPAR 0.590 / 0.705 0.769 (3) / 0.892 0.744 / 0.847 0.821 (1) / 0.913
EWM 0.872 / 0.861 0.795 (2) / 0.842 0.744 / 0.797 0.846 (6) / 0.797
EGM⋆ 0.641 / 0.774 0.795 (2) / 0.826 0.769 / 0.876 0.821 (1) / 0.882
PAR 0.629 / 0.758 0.769 (3) / 0.871 0.821 / 0.882 0.821 (1) / 0.887
WM 0.821 / 0.916 0.795 (2) / 0.850 0.769 / 0.800 0.821 (1) / 0.918
GM⋆ 0.744 / 0.871 0.769 (2) / 0.847 0.769 / 0.850 0.846 (6) / 0.934

Table 4.7: Cross-validated classification accuracies in the H-O contrast. First num-
ber: accuracy, second number: area under the receiver-operator characteristic. The
number of principal or MDS components resulting in maximal cross-validated accu-
racy is given in brackets. ⋆: MLE estimation did not converge for one subject, results
therefore for a slightly smaller dataset. †: a maximum of 15 PCs tried.

Tissue Method
Histogram MDA† Stable fit Wasserstein

EPAR 0.704 / 0.762 0.833 (7) / 0.890 0.796 / 0.865 0.833 (1) / 0.914
EWM 0.796 / 0.862 0.815 (4) / 0.833 0.815 / 0.829 0.833 (1) / 0.896
EGM⋆ 0.736 / 0.814 0.830 (2) / 0.876 0.793 / 0.865 0.849 (1) / 0.906
PAR 0.704 / 0.793 0.852 (7) / 0.881 0.796 / 0.881 0.870 (6) / 0.916
WM 0.778 / 0.881 0.852 (10) / 0.874 0.796 / 0.833 0.833 (1) / 0.902
GM⋆ 0.793 / 0.870 0.830 (5) / 0.923 0.755 / 0.862 0.849 (1) / 0.885

Table 4.8: Cross-validated classification accuracies in the H-S contrast. First number:
accuracy, second number: area under the receiver-operator characteristic. The num-
ber of principal or MDS components resulting in maximal cross-validated accuracy
is given in brackets. ⋆: MLE estimation did not converge for one subject, results
therefore for a slightly smaller dataset. †: 15 PCs used.

4.4 Alzheimer’s disease

Alzheimer’s disease (AD) is one of the most common diseases affecting the elderly

and will pose a large psychological and economical burden to Western society in the

future. It is characterized by an excessive accumulation of amyloid-beta (Aβ) protein

in neuronal synapses, cell bodies, and cerebral arteries in the form of pathological

plaques. This induces inflammatory processes involving glial cells, neurofibrillary

tangles involving tau protein from the cytoskeleton of affected neurons, and vascular

lesions caused by arterial deposits (Figure 4.7). The result is neurodegenerative loss

of neurons and brain atrophy, which leads to increasingly impaired cognitive ability,

severe dementia, and ultimately death.

A few key mechanisms of the genesis of AD have been unraveled. There exists

genetic predispositions with regard to the synthesis of Aβ protein. Certain muta-

tions in the amyloid protein precursor gene (APP) or the presilin (PS1/PS2) genes
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Tissue Method
Histogram MDA† Stable fit Wasserstein

EPAR 0.556 0.667 (10) 0.611 0.722 (4)
EWM 0.574 0.648 (3) 0.630 0.741 (6)
EGM⋆ 0.547 0.679 (2) 0.660 0.717 (4)
PAR 0.574 0.667 (7) 0.593 0.796 (6)
WM 0.574 0.667 (3) 0.630 0.722 (6)
GM⋆ 0.604 0.660 (1) 0.623 0.736 (6)

Table 4.9: Cross-validated classification accuracies in the full contrast. The number of
principal or MDS components resulting in maximal cross-validated accuracy is given
in brackets. ⋆: MLE estimation did not converge for one subject, results therefore for
a slightly smaller dataset. †: a maximum of 15 PCs tried.

account for an estimated 10%-15% of early-onset cases of AD. Although this does

not explain the development of AD in most humans, it has led to the development

of small animal models that exhibit characteristic features of AD. The current state

of these transgenic mouse models of AD has been reviewed in Muskulus, Scheen-

stra, Braakman, Dijkstra, Verduyn-Lunel, Alia, de Groot and Reiber (2009). The im-

portance of these mouse models stems from the fact that they allow to study the

development of Aβ plaques in vivo, in large populations of animals, and over the

course of time. Quantitative MR image analysis has detected significant changes

in T2 distributions of transgenic mice compared to normal controls (see loc. cit. for

references); the T2 parameter generally characterizes the local composition of tissue

(an excellent overview of changes in T2 due to pathologies has been given by Bot-

tomley et al. (1987)). Interestingly, there exist pharmacological possibilities to slow

and reduce the amyloid burden of the brain, so some of the main timely research

questions about AD are the following: Can AD be reliably detected by studying T2

distributions in a MR scanner? When and under which circumstances is this possi-

ble? Can disease burden and the severity of the disease be thereby quantified? Due

to the obvious ethical problems, this kind of research is presently only possible with

trangenic mouse models. Translated to this domain, the main question is then: From

what age on can AD be detected in trangenic mice?

Unfortunately this is a difficult question. Not only is a large number of animals

required for a reliable assessment of this possibility, it is also necessary to submit the

animals to repeated MR scans of their brains. As this poses severe logistic problems,

there are very few studies at present who have actually obtained such data, and

usually these have only considered two distinct points in time (ages of the mice).

Moreover, the analysis of this data has up to now focussed on specific regions in the

brain, where the effects of AD are most pronounced. These include the hippocam-

pus, the thalamus, the corpus callosum and a few other brain areas. In almost all

studies the region of interest (ROI) was small and manually delinated in the brains,
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Figure 4.7: Structural changes characteristic of Alzheimer’s disease.

which introduces a nontrivial source of bias and uncertainty. To overcome this, in

(Falangola et al., 2005) nonlinear image registration was performed to align individ-

ual brain images to a common average brain image. The ROIs were still delineated

manually, but only once on the average mouse brain.

Here we discuss preliminary results that were obtained by registering a complete

three-dimensional MR scan of mice brains to a common brain atlas. This atlas does

not only provide a common coordinate system, but has also been segmented, such

that identification of subregions in the mice brains can now be achieved objectively

and automatically. Since the total dataset, covering up to almost a hundred mice,

measured at more or less regularly spaced points in time, will only be available in a

few years, this section only discusses a limited, initial subset of nine mice, measured

at one time point each.

4.4.1 Materials

Six wildtype (WT) and three transgenic (TG) mice were scanned in a Bruker MR sys-

tem at an age between 16 and 17 months. A proton − density T1 imaging volume

consisted of 256 × 256 × 256 voxels that were used to align the imaging coordinate

system to the Shiva brain atlas. A second T2 imaging sequence was obtained for six

transversal slices, more or less regularly spaced. This sequence resulted in 12 mea-

surements of the T2 relaxation process at 8.5 ms intervals. The resulting 12 images

were fitted voxel-wise to the exponential model

I(t) = α+ γ exp(−t/T2), (4.3)
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minizing the residual least squares by a nonlinear Gauss-Newton iteration (algo-

rithm nls in R). Four different initial conditions were tried if the iteration did not

converge within a prescribed minimal stepsize of 10−5 and finally a few (less than

0.05 percent) of voxels were excluded. Also, voxels whose estimated standard devi-

ation was larger than their T2 value were excluded (again less than 0.05 percent).

4.4.2 Results

The resulting T2 values were evaluated for either the total brain parenchym (PAR) or

only the hippocampus (HC) and Figure 4.8 and Figure 4.9 show the corresponding

histogram estimates for all mice.

Interestingly, the inter-group variability is extremely low for the transgenic mice,

compared to the wildtype which exhibits more than a 25-fold increase in variance.

As all the mice (apart from one) were scanned within a few days of each other, this

phenomenon is unlikely to be caused by drift of the measurement apparatus, and has

to be considered genuine. However, as is clear from the graphs, simple histogram

based measures will not allow to discriminate between the two groups, since there

is too much overlap between peak locations, peak heights and peak widths.

For the distance-based analysis, reconstructions of the mice in MDS space are

shown in Figure 4.10. Although the number of mice is too small to allow for a reli-

able assessment, one general feature is visible. The MDS reconstruction for the HC

dataset (Panel A) is essentially one-dimensional and corresponds roughly to the dif-

ference in peak location between the T2 distributions of the mice. Classification with

such data is difficult if not impossible. On the other hand, the PAR dataset (Panel B)

hints at higher dimensionality, which corresponds to changes in the shape of the T2

distributions (higher moments) instead of the first two moments only. There is not

enough data to elaborate on these findings at the moment, but this will allow for an

interesting future application of distance-based methods.
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Figure 4.8: T2 distributions of sample HC dataset. A: Wildtype controls. B: Transgenic
mice. Curves based on a histogram estimate with 512 bins.
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Figure 4.9: T2 distributions of sample PAR dataset. A: Wildtype controls. B: Trans-
genic mice. Curves based on a histogram estimate with 512 bins.
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Figure 4.10: 2D MDS reconstruction of 1D Wasserstein distances. A: HC dataset (hip-
pocampus). B: PAR dataset (total brain).

Box 10. Alzheimer’s disease

• Alzheimer’s disease can, to some extent, be conveniently studied in standard-
ized, transgenic mouse models.

• The main questions are how to detect the disease (1) reliably and (2) as early
as possible, and how to track its progress and quantify disease load (3). There
exist pharmaceutical treatment options that could improve quality of life of
patients if these problems were solved.

• Obtaining more than one time point should theoretically allow for much more
sensitive detection. The methodological and practical tools for this exist, but
the necessary data is not available yet.

• Is the variability of T2 values decreased in transgenic (APP/PS1) mice, when
large areas of the brain are pooled?



Chapter 5

Deformation morphometry

Abstract

The Rayleigh test is a popular one-sample test of randomness for directional data on the

unit circle. Based on the Rayleigh test, Moore developed a nonparametric test for two-

dimensional vector data that takes vector lengths into account as well, which is general-

ized to arbitrary dimensions. In the important case of three-dimensional data the asymp-

totic distribution is given in closed form as a finite combinatorial sum. This reduces the

computational effort considerably. In particular, when analyzing deformation fields aris-

ing in nonlinear brain registration, the generalized Moore-Rayleigh test offers an efficient

alternative to conventional permutation testing for the initial screening of voxels.

Simulation results for a few multivariate distributions are given and the test is applied to

magnetic resonance images of mice with enlarged ventricles. Compared with the permu-

tation version of Hotelling’s T 2 test its increased power allows for improved localization

of brain regions with significant deformations.

5.1 Overview

This chapter is an excursion into an important method that precedes the application

of optimal transportation distances, namely, the localization of brain regions with

significant deformations. It stands somewhat outside the general scope of this thesis

but has been included for its innovative character and to illustrate the complexity

of actual applications. After localization, parameter distributions in the highlighted

brain regions can then be analyzed by optimal transportation measures as in the

preceding chapter.

After introducing the problem in Section 5.2, the novel statistical test is described

in Section 5.3. Its application in the two-sample case is discussed in Section 5.4,

and illustrated by simulations in Section 5.5. Section 5.6 describes an application in

transgenic mice. Finally, the method is discussed in Section 5.7.

5.2 Introduction

Consider the following illustrating example. In the voxel-based analysis of brain de-

formations, individual brain volumes are mapped to a reference brain image by a
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nonlinear transformation (Kovacevic et al., 2004). This process of image registration

results in a three-dimensional vector field of displacement vectors. The significance

of local deformations between groups of subjects, usually a treatment and a con-

trol group, can be tested by either considering the Jacobian of the deformation field,

or testing the displacement vectors directly (Chung et al., 2001). In the latter case,

if one assumes that variations between subjects are given by a Gaussian random

field, Hotelling’s T 2 statistic can be used to test for significant differences between

groups (Cao and Worsley, 1999). Its value is the squared sample Mahalanobis dis-

tance, estimated from the pooled covariance matrix, and the test assumes normality

of the population of deformation vectors and equal covariances for the two groups.

If these assumptions are not met, the T 2 test is known to fail gracefully, i.e., it will

still be approximately conservative and the loss in power for the alternative will not

be too dramatic for moderate violations of the assumptions. However, it is prefer-

able to analyze deformation fields nonparametrically, as deformations are likely to

be skewed and nonnormal.

Permutation tests, with their minimal assumptions, are the usual method of choice

for this two-sample problem (Chen et al., 2005; Nichols and Holmes, 2007). However,

they also rely on a test statistic that is evaluated for each labelling (“permutation”),

and the null hypothesis is that this statistic is distributed symmetrically around zero.

The usual choice for the statistic is again Hotelling’s T 2, so permutation tests are not

nonparametric, but rather result in adjusted significance probabilities (Davison and

Hinkley, 1997, Chap. 4.5). For example, as shown in Lehmann and Romano (2005,

Chap. 5.9), the adjusted one-dimensional version of the T 2 test, i.e., the permutation

version of the classic t-test, is the uniformly most powerful test for the Gaussian al-

ternatives with fixed variance, but fails to be uniformly most powerful against other

alternatives.

A more serious practical problem is that, even for small sample sizes, the num-

ber of permutations to consider for an exact test is prohibitively large. Especially

so, if the number of voxels, i.e., the number of tests, is on the order of hundreds of

thousands, as common in neuroimaging applications. Therefore, in current analy-

ses one often limits the data to only 10 000 or less random labellings per voxel, at

the expense of increasing the simulation error. Moreover, correcting for multiple

comparisons imposes severe lower bounds on the numbers of labellings needed per

voxel for testing at realistic significance levels, i.e., on the sample size and simulation

time. Particularly for small sample sizes that occur in prospective studies, permu-

tation tests cannot resolve low enough significance probabilities to allow for strong

control of the family-wise error. Even the modern, liberal approach of limiting the

False Discovery Rate (Benjamini and Hochberg, 1995; Schwartzman et al., 2009) does

often not lead to useful results in these datasets. This implies that although permu-

tation tests are elegant and theoretically well understood, they can not be used on a

routine basis (e.g. in a clinical setting) to assess and quantify brain changes.
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For these reasons, in the analysis of magnetic resonance (MR) images classical

hypothesis testing is still unmatched in its efficiency and speed. In this article we de-

scribe a new nonparametric statistical test that allows to efficiently perform a large

number of such tests on vector data. The two-sample version of the test is not prov-

ably conservative, but its advantage is that it can be used for the initial screening of

voxels. It is sensitive enough to work even under the conservative Bonferroni cor-

rection. Voxels where the null hypothesis is rejected can then be analyzed further by

this test under the permutation distribution of the data; alternatively a different test

statistic can be employed.

This problem of testing one or more groups of vectors for distributional differ-

ences does not only arise in neuroimaging, but also in a number of other disciplines

and diverse contexts, e.g. in geostatistics, human movement sciences, astronomy and

biology. In the two-dimensional case, a natural nonparametric test for such problems

has been given by Moore (1980), which we describe next. After generalizing this test

to arbitrary dimensions, in Section 5.3.2 we focus on the three-dimensional case, be-

ing the most important one for applications.

5.3 The Moore-Rayleigh test

Let X = (X1, . . . , XN ) be a finite sample of real k-vector-valued random variables

Xi = (Xi,1, . . . , Xi,k). (n = 1, . . . , N). (5.1)

If we assume that the Xi are independently drawn from a common absolutely con-

tinuous probability distribution with density f : R
k → [0,∞), then the null hypoth-

esis is:

H0 : The probability density f is spherically symmetric.

Consequently, this implies that the density f is spherically decomposable. It fac-

tors into the product of a radial density pr : [0,∞) → [0,∞) and the uniform dis-

tribution on each hypersphere rSk−1 = {x ∈ R
k | ||x|| = r}, such that f(x) =

pr(||x||)/vol(||x||Sk−1). We can then write Xi = RiUi, where Ri ∼ pr and Ui is dis-

tributed uniformly on the k-dimensional unit sphere Sk−1. The latter distribution

can be realized as the projection of a k-dimensional diagonal Gaussian distribution

with equal variance in each coordinate. The sum
∑N

i=1Xi, where the Xi are inde-

pendently distributed according to a common, spherically symmetric distribution,

is easy to interpret. It corresponds to a Rayleigh random flight (Dutka, 1985) with N

steps, whose lengths are distributed according to pr.

Scaling the vector-valued random variables X by the ranks of their lengths, the
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distribution of the resultant vector

SN =
N
∑

i=1

iX(i)

||X(i)||
, (5.2)

where X(i) denotes the i-th largest vector in the sample (with ties being arbitrarily

resolved), is independent of pr; consequently, a test based on SN is nonparametric.

The test statistic of interest here is the asymptotically scaled length of the resultant,

R∗
N =

||SN ||
N3/2

. (5.3)

A large value of R∗
N for a given sample X from an unknown distribution indicates a

deviation from spherical symmetry. This test was introduced by Moore (1980), who

treated the two-dimensional case numerically, and has been used in neuroscience

(Kajikawa and Hackett, 2005; Tukker et al., 2007; Richardson et al., 2008), human

movement science (van Beers et al., 2004) and avian biology (Able and Able, 1997;

Mcnaught and Owens, 20002; Burton, 2006; Chernetsov et al., 2006). In contrast to

the Rayleigh test of uniformity (Mardia and Jupp, 2000, Chap. 10.4.1), where the

Xi are constrained to lie on (alternatively, are projected onto) the unit sphere, in the

Moore-Rayleigh test also the vector length influences the test statistic. This follows

the observation of Gastwirth (1965), that differences in scale between two distribu-

tions will be mostly evident in their (radial) tails, i.e., when moving away from the

mean. The interpretation ofR∗
N is not so easy as in the Rayleigh test, however, where

the test statistic is a measure of spherical variance.

Consider the projections

SN,j =
N
∑

i=1

iX(i),j

||X(i)||
, (j = 1, . . . , k). (5.4)

A direct calculation shows that under the null hypothesis the variance ofX(i),j/||X(i)||
is 1/k, and that

σ2 = var(SN,j) = N(N + 1)(2N + 1)/(6k). (5.5)

As E(SN,j)
3 = 0 and σ2 < ∞, the Lyapunov version of the Central Limit Theorem

implies that the random variables SN,j approach Gaussian N (0, σ2) distributions for

large sample sizesN . Although the random variables ||SN,j || are obviously not inde-

pendent, by the same argument as in Stephens (1962) the corresponding distribution

of ||SN ||2/σ2 asymptotically approaches a χ2
k distribution.

Let αN = N3/2. The exact null distribution of RN = αNR
∗
N in k dimensions,
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k ≥ 2, is given by

pr (RN ≤ αNr; k) = r

[

Γ

(

k

2

)]N−1 ∫ ∞

0

(

rt

2

)
k−2
2

J k
2
(rt)

N
∏

n=1

J k−2
2

(nt)

(nt/2)
k−2
2

dt, (5.6)

where Jl denotes the Bessel function of order l; see (Lord, 1954).

5.3.1 The one-dimensional case

In one dimension, the Moore–Rayleigh statistic for the null hypothesis corresponds

to a symmetric random walk with linearly growing steps,

SN =

N
∑

i=1

γii, where γi = ±1 with equal probability. (5.7)

Proposition 4. The probability mass function pr (SN = r)
def
= p(r,N)/2N is given by

the recurrence

p(r,N) = p(r − n,N − 1) + p(r + n,N − 1) (5.8)

with initial condition p(0, 0) = 1 and p(r, 0) = 0 for r 6= 0.

Rewriting Eq. 5.7 as

∑

{γi=+1}

i =
1

2

(

SN +
1

2
N(N + 1)

)

, (5.9)

where the sum runs over all step sizes i ∈ {1, . . . , N} that have positive sign γi,

shows that the numbers p(r,N) have a well-known combinatorial interpretation.

Proposition 5. The numbers p(r,N) count the number of partitions of 1
2 (r+ 1

2N(N+

1)) with distinct parts less or equal to N .

As before, denote the length of the resultant by RN = ||SN ||. Its probability

function pr(RN = r) is given by

pr(RN = r) =















p(r,N)/2N−1 if r > 0,

p(0, N)/2N if r = 0,

0 otherwise.

(5.10)
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In the sequel, we also need the random signs defined by

ǫN =
N
∏

i=1

γi, (5.11)

conditional on the resultant SN : Let ǫr,N denote the average sign of the partitions of
1
2 (r + 1

2N(N + 1)) with distinct terms less or equal to N , i.e.,

ǫr,N
def
= E(ǫN | SN = r). (5.12)

Anticipating the two-sample Moore-Rayleigh test discussed in Section 5.4, we

note the following:

Remark 3 (Relation to the Wilcoxon signed-rank test). In the Wilcoxon signed-rank

test for two paired samples X and Y of equal size |X| = |Y | = N , the null hypoth-

esis is that the paired differences Zi = Yi − Xi are distributed (independently and

identically) symmetrically around zero (Wilcoxon, 1945). The test statistic is the sum

W+ =
∑N

i=1 iI(Zi > 0), where I(·) is an indicator function. Under the null hypoth-

esis we have that pr(Zi > 0) = pr(Zi < 0) = 1
2 . Assuming that pr(Xi = Yi) = 0,

which is fulfilled with probability 1 for continuous distributions, we can then iden-

tify I(Zi > 0) − I(Zi < 0) with a random sign γi, such that

N
∑

i=1

γii =

N
∑

i=1

iI(Zi > 0) −
N
∑

i=1

(1 − I(Zi > 0))i

= 2W+ − 1

2
N(N + 1).

Therefore, testing for symmetry of theZi under the one-dimensional Moore-Rayleigh

test is equivalent to the signed-rank Wilcoxon two-sample test of X and Y , with

pr(W+ = r) = pr(SN = 2r − 1

2
N(N + 1), N).

This approach easily generalizes to more than one dimension.

Remark 4 (Testing for radial dependence). Assume the density f decomposes spher-

ically, such thatXi = RiUi, withRi ∼ pr and Ui ∼ u, where pr(r) = pr(||Xi|| = r) and

u(x) = pr(Xi/||Xi|| = x). In one dimension, u can only attain the values {−1,+1}
and u(∓1) = pr(Xi ≶ 0). If the mean of f is zero, i.e., E(Xi) = 0, then pr(Xi >

0) = pr(Xi < 0) = 1/2, and this implies that f is (spherically) symmetric. The

Moore-Rayleigh test, under the assumption that Xi = RiUi, therefore tests the null

hypothesis that E(Xi) = 0.

On the other hand, assume that E(Xi) = 0. If the Moore-Rayleigh test finds a

significant departure from uniformity, then this leads to the rejection of the hypoth-
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esis that the density f decomposes in such way, i.e., to accept the alternative that the

common distribution of the random variables Xi is conditional on the length ||Xi||.
In practice, centering X = (X1, . . . , XN ) by the sample mean, the Moore-Rayleigh

test could be used to detect such radial dependence. However, its power would be

quite limited and it seems likely that directly testing for differences in the two tails

{Xi > x} and {Xi < −x} will be more powerful.

5.3.2 The three-dimensional case

Taking derivatives, the distribution function of RN = αNR
∗
N , given in Eq. (5.6), re-

duces to the density

pr (RN = r) =
2r

π

∫ ∞

0

t
sin rt/αN

r

N
∏

n=1

sinnt

nt
dt (5.13)

in the three-dimensional case (k = 3). This formula can alternatively be derived by

using characteristic functions; see Eq. 16 in Dutka (1985). The oscillating integral in

Eq. (5.13) can be evaluated by numerical quadrature, but it is difficult to calculate its

tail accurately. Another approach to evaluate this integral is based on a finite series

representation, following an idea originally due to G. Pólya. Let Nmax = N(N +

1)/2. If we expand sin(nt) = (ent − e−nt)/2i and integrate the oscillating integral

in Eq. (5.13) by parts N − 2 times as in Borwein and Borwein (2001), a simple but

tedious calculation (which we omit) results in the following representation:

Theorem 2. The probability density of R∗
N under the null hypothesis can be evalu-

ated as

pr (R∗
N = r) =

2rN3

N !(N − 2)!

∑

k∈N :
αN r<k≤Nmax

ǫk,N (αNr − k)N−2, (5.14)

where ǫk,N is given by Eq. 5.12.

This is a generalization of Treolar’s representation for the random flight with

equal step sizes (Dvorák, 1972). We see that, interestingly, the density of the three-

dimensional case can be expressed in terms of statistical properties of the one-di-

mensional case. Integrating Eq. 5.14 term-by-term from r to infinity, we have the

following corollary.

Corollary 1. The cumulative distribution function of R∗
N under the null hypothesis

can be evaluated as

pr (R∗
N ≤ r) = 1 − 2

N !N !

∑

k∈N :
αN r<k≤Nmax

ǫk,N (αNr − k)N−1(αNr(1 −N) − k). (5.15)
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Table 5.1: Critical values of Moore-Rayleigh statistic in 3D
Sample size Probability -Log(Probability)

N 0 · 100 0 · 010 0 · 001 4 5 6 9 12 15 18

2 1 · 013 1 · 056 1 · 061
3 0 · 973 1 · 100 1 · 138 1 · 150 1 · 153 1 · 155

4 0 · 948 1 · 116 1 · 189 1 · 222 1 · 237 1 · 244 1 · 250
5 0 · 930 1 · 124 1 · 221 1 · 275 1 · 304 1 · 321 1 · 338 1 · 341 1 · 342
6 0 · 916 1 · 129 1 · 245 1 · 314 1 · 357 1 · 384 1 · 418 1 · 427 1 · 429
7 0 · 905 1 · 132 1 · 262 1 · 344 1 · 398 1 · 435 1 · 488 1 · 505 1 · 510 1 · 511
8 0 · 897 1 · 133 1 · 275 1 · 368 1 · 432 1 · 477 1 · 549 1 · 576 1 · 586 1 · 588
9 0 · 890 1 · 134 1 · 284 1 · 387 1 · 460 1 · 513 1 · 603 1 · 640 1 · 656 1 · 659
10 0 · 885 1 · 134 1 · 292 1 · 402 1 · 483 1 · 543 1 · 649 1 · 698 1 · 720 1 · 726

12 0 · 877 1 · 133 1 · 303 1 · 426 1 · 519 1 · 590 1 · 727 1 · 797 1 · 834 1 · 844
14 0 · 871 1 · 133 1 · 310 1 · 443 1 · 545 1 · 626 1 · 788 1 · 879 1 · 931 1 · 946
16 0 · 866 1 · 132 1 · 316 1 · 455 1 · 565 1 · 654 1 · 838 1 · 947 2 · 013 2 · 033
18 0 · 863 1 · 132 1 · 320 1 · 464 1 · 580 1 · 675 1 · 878 2 · 003 2 · 083 2 · 108
20 0 · 860 1 · 131 1 · 323 1 · 472 1 · 593 1 · 693 1 · 911 2 · 051 2 · 144 2 · 174

30 0 · 851 1 · 129 1 · 331 1 · 493 1 · 629 1 · 746 2 · 016 2 · 209 2 · 350 2 · 399
40 0 · 847 1 · 128 1 · 335 1 · 503 1 · 647 1 · 771 2 · 071 2 · 294 2 · 467 2 · 529
50 0 · 844 1 · 127 1 · 337 1 · 509 1 · 657 1 · 787 2 · 103 2 · 347 2 · 540 2 · 612
60 0 · 843 1 · 126 1 · 338 1 · 513 1 · 664 1 · 797 2 · 125 2 · 382 2 · 590 2 · 668

∞ 0 · 834 1 · 123 1 · 345 1 · 532 1 · 697 1 · 846 2 · 233 2 · 559 2 · 847 3 · 108

In particular, pr(R∗
N > (N + 1)/(2

√
N)) = 0.

Note that because of the representation (5.15) for smaller r successively more and

more terms enter the sum in the calculation of pr (R∗
N > r). The numerical accuracy

is therefore higher for larger r, i.e., in the tail of the distribution.

The representations (5.14) and (5.15) therefore allow the efficient computation

of exact significance probabilities for the test statistic R∗
N for small to moderately

large sample sizes N (e.g., for N . 60 under double precision IEEE 754 arithmetic).

This restriction on the sample size is only due to numerical accuracy; for larger N

approximations of the Gamma function can be used.

Remark 5 (What is tested by the Moore-Rayleigh test?). As in Remark 4, assume

that Xi = RiUi, with Ri ∼ pr and Ui ∼ u, where pr(r) = pr(||Xi|| = r) and u(x) =

pr(Xi/||Xi|| = x) are arbitrary. If E(Xi) = 0, this implies E(Ui) = 0, and suggests

that
∑

i Ui ≈ 0 for a sample. More precisely, an upper bound for the variance of the

test statistic R∗
N is realized by the one-dimensional Moore-Rayleigh null hypothesis,

whose distribution is similar to the null hypothesis of the three-dimensional case

(confer Figure 5.5). Therefore, as in the one-dimensional case, the Moore-Rayleigh

test under the assumption of radial decomposability tests mostly for differences in

location. Note that symmetry of the Ui, i.e., pr(Ui = u) = pr(Ui = −u), implies
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that E[
∑

i Ui] = 0. Thus, under the assumption of decomposability, testing for

spherical symmetry and testing for symmetry are approximately equivalent, i.e., the

Moore-Rayleigh test will not be sensitive to deviations from spherical uniformity if

the underlying distribution is merely symmetric or mean-centered. This is actually

an advantage when the Moore-Rayleigh test is considered as a two-sample test (see

below).

5.3.3 Power estimates

To evaluate the performance of the three-dimensional Moore-Rayleigh test (MR3),

power functions for a number of distributions were obtained by Monte-Carlo sim-

ulation. These show the fraction of rejections of the null hypothesis for a specific

distribution, significance level α, and sample size N . The left panel of Figure 5.1

shows the power function for a family of diagonal Gaussian distributions with unit

variances, shifted away from zero (along the z-axis) a constant distance µ ≥ 0. Each

point power estimate was obtained by 1000 realizations of the distributions and rep-

resents the fraction of significance probabilities (“p-values”) less than the nominal

significance level α. The test was performed on N = 10 randomly drawn sam-

ples, and is compared to Hotelling’s (non-randomized) T 2 one-sample test of loca-

tion (Hotelling, 1931), as implemented in the R package ICSNP (Nordhausen et al.,

2007), and to the spherical uniformity permutation test of Diks and Tong (1999), un-

der 104 resamplings. The test statistic of the latter is an U-estimator of the difference

between two probability distributions of vectors, calculated by a Gaussian kernel

with a bandwidth parameter. The choice of the proper bandwidth is the subject of

ongoing research; we show results for the two bandwiths b1 = 0.25 and b2 = 2.5,

and denote the corresponding tests by “Diks1” and “Diks2”, respectively.

In comparison with the T 2 test, MR3 shows larger power, an effect that is more

pronounced for lower significance levels. It is thus a more sensitive measure of

changes in location. Note that this does not contradict the well-known optimality

of Hotelling’s T 2 test for the family of multivariate Gaussian distributions, since in

the calculation of T 2 the covariance matrix needs to be estimated from the data. In

the special case of equal covariances considered here, the Moore-Rayleigh test can

therefore exhibit larger power. Also note that the test of Diks & Tong can be more

powerful than the MR3 test, but as its results depend strongly on the bandwidth

parameter, it is difficult to apply it routinely.

In Figure 5.2, power functions are shown for a family of diagonal Gaussian distri-

butions where the standard deviation of one axis was varied from σ = 0.1 to σ = 5.0

in steps of 0.1, the other standard deviations were kept at unity. As expected from

Remark 5, the MR3 test performs poorly for this specific violation of spherical sym-

metry. The remaining symmetry in the distribution means that although sample

points are now increasingly less concentrated on one axis, on average their contribu-
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Figure 5.1: Estimated power functions for the family of Gaussian distributions with
covariance matrix the identity and mean shifted a distance µ away from zero. Sample
size N = 10.

tions to the resultant length still mostly cancel each other. Analogously, the T 2 test

has only nominal power for the anisotropic multivariate Gaussian, being a test of lo-

cation only. Note that MR3 shows slightly more power than the nominal significance

levels α for σ 6= 1, as do the Diks1 and Diks2 tests.

To assess the effect of asymmetry of the sample distribution, we employ the

Fisher distribution, also known as the Fisher–Bingham three-parameter distribution.

This is the k = 3 case of the k-dimensional von–Mises Fisher distributions commonly

used in directional statistics (Mardia and Jupp, 2000, Chap. 9.3.2). It is a singular

distribution on the hypersphere Sk−1 whose density f(x), x ∈ R
k, is proportional to

eλξtx, where ξt denotes the transpose of ξ. The mean direction ξ is constrained to be

a unit vector, and λ ≥ 0 is a concentration parameter. Without restricting generality,

we let ξ = ek be the unit vector in the k-th dimension, so f ∼ eλxk only depends on

the last coordinate, and we are left with a one-parameter family of distributions.

Following Ulrich (1984) and Wood (1994), a random variate distributed according

to the von–Mises Fisher distribution is obtained by generating a random variate W

for the last coordinate, by the density proportional to

eλw(1 − w2)(k−3)/2, w ∈ (−1, 1), k ≥ 2,

and a k − 1 dimensional variate V uniformly distributed on the hypersphere Sk−2.

The vector

X = (
√

1 −W 2 · V t,W ) ∈ R
k
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Figure 5.2: Estimated power functions for the family of Gaussian distributions, vary-
ing the standard deviation σ of a single axis. Sample size N = 10. Note the small
range of the power.

then has the desired density. In k = 3 dimensions the former can be achieved by

integrating the distribution function of W directly. Choosing a uniform variate U on

the interval [−1, 1], a random variate W is clearly given by

W =
1

λ
log(2U sinhλ+ e−λ).

We denote the Fisher distribution with concentration parameter λ (and with the

choice ξ = e3) by F3λ. To avoid degeneracies due to its singular character, the F3λ

distribution is multiplied by 1 − Z, where Z ∼ N (0, 0.1). Figure 5.3 shows three ex-

amples of N = 1000 random variates obtained from these “scattered” Fisher distri-

butions for distinct values of the concentration parameter λ, with increasingly larger

deviation from the uniform distribution.

The power of MR3 for the family of scattered Fisher distributions, varying the

concentration parameter, is comparable to the power of the other tests (not shown).

Let us now consider a mixture, where the samples are chosen either (i) from the

uniform distribution on the unit sphere, or (ii) from the scattered Fisher distribution

2F35. The probability 0 ≤ p ≤ 1 for each sample vector to be chosen from the second

distribution is the parameter of this family of mixture distributions, with larger p

indicating stronger deviations in uniformity for the larger vectors. Figure 5.4 depicts

the estimated power for this family under variation of the mixture probability p.

Compared to the T 2 test, the MR3 test is seen to be more sensitive to these specific

departures from uniformity. It should be noted that reversing the situation, e.g., by
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Figure 5.3: Scattered Fisher distribution, visualized by 1000 randomly drawn points
in the unit-cube. Left: Concentration parameter λ = 1. Middle: Concentration pa-
rameter λ = 2.5. Right: Concentration parameter λ = 5.
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Figure 5.4: Estimated power functions for the mixture of the scattered Fisher distribu-
tion 2F35 with the uniform distribution on the sphere S2, varying the mixture prob-
ability p that a sample vector arises from the first distribution. Sample size N = 10.

considering F35/2 instead of 2F35, such that the smaller vectors exhibit deviations

from uniformity, the power of MR3 becomes less than that of the T 2 test (not shown).
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5.4 The two-sample test

The most interesting application of the Moore-Rayleigh test is the two-sample prob-

lem. There, we are given two vector-valued random variables

X = (X1, . . . , XN ) and Y = (Y1, . . . , YN ), (5.16)

and we assume that they are identically and independently distributed with densi-

ties f and g, respectively. The differences Yj −Xi are then distributed according to

the convolution g ∗ (f−), whose density is

pr (Y −X = x) =

∫

pr (Y = u) pr (X = u+ x) dku. (5.17)

Under the null hypothesis that the Xi and Yj come from a common probability den-

sity f , this reduces to the symmetrization of f , with density

pr (Y −X = x) =

∫

pr (X = u) pr (X = u+ x) dku. (5.18)

If the probability density f is spherically symmetric around its mean µ, i.e., uniform on

each hypersphere {x | ||x−µ|| = r}, then Eq. (5.15) gives the significance probability

of a deviation from the null hypothesis. In particular, this applies when f is assumed

to arise from a multivariate normal distribution, justifying the use of the Moore-

Rayleigh statistic in many practical situations.

5.4.1 Testing for symmetry

In general, however, the distribution of h = f ∗ (f−) is merely symmetric, i.e., h(x) =

h(−x) for all x ∈ R
k. This follows from

∫

pr (X = u) pr (X = u+ x) dku =

∫

pr (X = u) pr (X = u− x) dku. (5.19)

The following demonstrates the difference.

Example 1. Consider the symmetric singular distribution Bx
def
= 1

2δx + 1
2δ−x, where

δx is the Dirac measure concentrated at the point x ∈ R
k. The distribution Bx leads

to an embedding of the one-dimensional Moore-Rayleigh null distribution in three

dimensional space. Its realizations take values x and −x with equal probability, and

it is not spherically symmetric. As it is, Bx is neither absolutely continuous, nor can

it arise as the the symmetrization of a distribution. Nevertheless, it is a model for a

distribution that can arise in practice: First, the Dirac measures can be approximated,

e.g., by a series of Gaussian distributions with decreasing variance. Secondly, con-
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Figure 5.5: Comparison of significance probabilities for resultant lengths of spher-
ically symmetric (smooth curve) and one-dimensional symmetric random walk
(piecewise-linear curve) in three dimensions for N = 10 steps. Dotted curve shows
the asymptotic case.

sider the singular distribution Bx that is concentrated on a line {λx | λ ∈ R} ⊆ R
k

through the origin. Applying the Moore-Rayleigh test to Bx is equivalent to calcu-

lating the test statistic from B1, since Bx is invariant under symmetrization and is

projected, before ranking, to the sphere S0 = {−1,+1}.

The distribution B1 is a representative of the class of “fastest growing” random

flights in three dimensions, since any other distribution of increments has less or

equal probability to reach the highest values of the test statistic. On the other hand,

the uniform distribution on the sphere, which represents the null hypothesis of the

Moore-Rayleigh test statistic R∗
N , will attain lower values of R∗

N with higher proba-

bility, as the uniform random walk can do “orthogonal” steps that increase the dis-

tance from the origin faster than in B1 (on the average). To be specific, if the finite

sample X is distributed according to B1, the n-th step of the scaled random walk

either increases or decreases the distance from the origin by n (when crossing the

origin, there is an obvious correction to this). However, if the n-th step were taken

in a direction that is orthogonal to the resultant obtained so far, the distance will

increase from R to
√
R2 + n2 ≈ R + n/(2R), with probability 1 (conditional on the

orthogonality).

Figure 5.5 compares significance probabilities for B1 with those of the uniform
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random flight that represents the null hypothesis of the Moore-Rayleigh test, for

N = 10 sample points. There exists a value of the test statistic where the two curves

cross (at about p = 0.20), and after which the distribution function (significance

probability) of the one-dimensional random walk B1 lies below (above) the one for

the uniform random flight.

The two-sample Moore-Rayleigh test, interpreted as a goodness-of-fit test, is there-

fore liberal, which has escaped Moore (1980) and casts doubt on the applicability of

the test in this setting. The optimal upper bound for a conservative significance

probability would be

G∗
N (r) = sup

ΨN

pr(|SN | ≥ r), (5.20)

where the supremum is taken over the set ΨN of all possible symmetric probability

distributions for N increments. More precisely, these increments are not indepen-

dent but arise from a mixture of independent distributions by the order distribution

(due to the ranking of vector lengths) of their radial projections. Even if one restricts

this to the class where only independent, not necessarily identical symmetric proba-

bility distributions for each step are considered, this is a difficult problem. First steps

in this direction have been made by Kingman (1963), where the three-dimensional

problem is reduced to a similar problem in one dimension by the familiar tangent-

normal decomposition of the sphere. Apart from that, there has not been much

progress in determining the envelope in Eq. 5.20. Even in the one-dimensional case

it is not clear what the “fastest” random flight with linearly bounded increments is.

If a liberal test is admissible for the specific problem at hand, e.g., in exploratory

data analysis, MR3 offers an efficient two-sample test. Moreover, the Remarks and

Figure 5.2 suggest that the significance probabilities are only liberal for relatively

large values of the test statistic. Studies with synthetic data seem to confirm that the

MR3 test fails gracefully, if at all, for distributions expected in biomedical imaging

practice (Scheenstra et al., 2009).

Since the assumed null hypothesis is stronger than mere symmetry, MR3 can

also be used for negative testing, i.e., if the null hypothesis of the uniform random

flight cannot be rejected for a sample of difference vectors, then the modified null hy-

pothesis that g ∗ (f−) is symmetric, not necessarily spherically symmetric, cannot be

rejected. For the null hypothesis of mere symmetry, there does not exist an accessible

sufficient statistic and existing tests are either only asymptotically nonparametric or

require further randomization of the underlying distribution (Aki, 1987; Jupp, 1987;

Diks and Tong, 1999; Henze et al., 2003; Fernández et al., 2008; Ngatchou-Wandji,

2009), so the MR3 test offers a simpler and much more efficient alternative, albeit

with the disadvantage that it is potentially liberal.
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5.4.2 Further issues

For a truly conservative test it is possible to adjust the p-values of the MR3 test by

bootstrapping the distribution of p as in Davison and Hinkley (1997). In practice

this makes use of the exchangeability of the vectors from X and Y , assuming that

they both arise from the same distribution. For each pair Yi − Xi we can therefore

introduce a random sign ǫi ∈ {−1,+1}. The fraction of the test statistics R∗
N (ǫ) un-

der all 2N possibilities of the signs ǫ = (ǫ1, . . . , ǫN ) that result in a larger value than

the one for the trivial signs (all positive) results in an exact p-value; confer Diks and

Tong (1999) for elaboration and also Lehmann and Romano (2005) for general back-

ground on symmetries and invariance in hypothesis testing. The drawback of this

adjustment is that it is not routinely feasible, as it suffers from the same computa-

tional complexity problems that affect conventional permutation tests. However, the

calculation of the Moore-Rayleigh test statistic is much faster than the computation

of Hotelling’s T 2, and in some applications this difference might be crucial.

A different issue with the Moore-Rayleigh test arises in the (usual) case of un-

paired samples. The two sample test we have presented up to now assumes paired

vectors, and this approach reduces the symmetry group of the null hypothesis from

the group of permutations to the much smaller group of reflection symmetry of the

given pairs. The main reason here is simplicity in applications and reproducibility

of the test statistic. If there is no natural pairing, it seems advisable to randomly pair

samples, as e.g. Moore (1980) advocates. However, a drawback is that the test statis-

tic then becomes a random variable, and replications of the test will result in distinct

significance probabilities. This is undesirable, for example, in a clinical context. Boot-

strapping the test, i.e., considering the mean of the test statistic R∗
N obtained during

a large enough number of resamples from the empirical distributions, is a natural

way to obtain more or less replicable significance probabilities, but on the expense of

computational time. It is also not precisely known at present what the convergence

properties of such an estimator are.

A different approach would be to pair samples based on a measure of optimality.

This seems natural enough, but has the undesirable feature that the test might be-

come biased, e.g., too sensitive in case the sample points are matched by the method

of least-squares or the Wasserstein distance. Therefore, as a practical solution in a

context where reproducibility is desired, we propose to pair samples based on their

ranks, such that X(i) is matched with Y(i), i = 1, 2, . . . , N (with ties resolved arbi-

trarily). Under the null hypothesis, the decomposability of the common distribution

of X and Y guarantees the asymptotic unbiasedness of this approach, although for

finite samples a slight bias is expected.
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Figure 5.6: Estimated power for translated (10 standard deviations), then rotated di-
agonal Gaussians with unit variances as a function of relative rotation angle. Sample
size N = 10.

5.5 Simulation results

In this section we show the results of a number of numerical simulations for the two-

sample problem and compare them with Hotelling’s T 2 test and the Diks1 and Diks2

tests. Throughout, we use random matching of samples and N = 10.

Figure 5.6 shows the results for two standard Gaussian distributions that were

first translated in the same direction by ten standard deviations, and then one of

them was rotated against the other (with the origin as the center of rotation), for 1000

realizations. The Moore-Rayleigh test performs well: Its power for the trivial rota-

tion is nominal, and for larger rotation angles higher than the power of the T 2 test.

Similar results are obtained when rotating Fisher distributions (not shown). Note

that the Diks1/Diks2 tests are performed on the group of symmetric sign changes

(of order 210), in contrast to the previous section where the full symmetry group of

all rotations (of infinite order) was used, and do not resolve significance probabil-

ities smaller than 1/1000, i.e., their power is zero for the lower significance levels,

and therefore not indicated.

Figure 5.7 compares the Gaussian distribution with the distribution R · F3λ, R ∼
N (0, 1), when both distributions are first translated and then rotated against each

other, with similar results.

Finally, Figure 5.8 shows adjusted p-values, for 104 permutations and 100 real-

izations each. The Moore-Rayleigh test again shows slightly better power then the

T 2 test. More importantly, there is not much difference with the unadjusted power
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Figure 5.7: Estimated power functions for translated (10 standard deviations), then
rotated diagonal Gaussians with unit variance against the scattered Fisher distribu-
tion (scaled by a unit Gaussian) as a function of relative rotation angle. Sample size
N = 10. Note the small power at angle zero.

functions (Figures 5.6 and 5.7). These results are based on 100 realizations only, to

speed up the considerable amount of computations, which accounts for the visible

fluctuations.

5.6 Application: deformation-based morphometry

As remarked in the introduction, an important field of application of the Moore-

Rayleigh test is the morphometric analysis of MR images.

5.6.1 Synthetic data

The Moore-Rayleigh test was validated on a synthethic 50×50×80 three-dimensional

image domain. Five spherical deformations were added in two distinct regions, in-

troducing characteristic localized changes. The volume in each sphere was mapped

radially, linearly expanding by a factor λ1 = 1.8 from the centerpoint to half radius

distance, and then contracting linearly by λ2 = 2 − λ1, resulting in a one-to-one

transformation of each spherical volume. Although the transformations were not

smooth, interpolation at subpixel level guaranteed that they were indeed local dif-

feomorphisms. Figure 5.9 shows the transformation along a radial direction.

A Gaussian noise process (zero mean, SD = 1.0) was added to the deformed im-
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Figure 5.8: Adjusted estimated power functions. Left: translated (10 standard devi-
ations), then rotated diagonal Gaussians with unit variances as a function of rela-
tive rotation angle. Right: translated (10 standard deviations) then rotated diagonal
Gaussians with unit variance against the scattered Fisher distribuion (scaled by a
unit Gaussian) as a function of relative rotation angle. Sample size N = 10. Results
based on 100 realizations of 104 permutations each.

age, for a total of 15 distinct realizations, thereby simulating natural variation in

brain structure. Panel A in Figure 5.10 shows the average lengths of deformation

vectors in a cental slice of this image set. Two spherical deformations in the lower

part (Region I) with radii 6 voxels (S4, left) and 9 voxels (S5, right) were created at a

distance of 25 voxels. In the upper part (Region II) one sphere of radius 9 voxels (S2)

and two spheres of radius 6 voxels (S1 and S3) were created at successive distances

of 12.5 voxels between their center points, creating a more complex deformation due

to partial overlap in the superposition of deformation fields.

A second group of 15 images was created, with a reduced radius of 6 voxels for

the spheres S2 and S5. Panel B in Figure 5.10 depicts the absolute differences in

deformation vector lengths between the average deformation fields of both groups

in the central slice.

For the evaluation of the statistical tests, ground truth, i.e., voxels for which the

null hypothesis of no group difference should be rejected, was taken to be the total

volume of the two spheres S2 and S5. This approximation allowed the estimation of

precision and recall from the numbers of true positives (TP), false positives (FP, type I
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Figure 5.9: Generation of spherical deformations. The plot shows the behaviour of
the deformation field in a one-dimensional projection along a radial direction. The
volume at normalized distance r/R from the centerpoint of the sphere (radius R) is
mapped radially to r′/R. For r < R/2 the length of the deformation vectors expands
linearly, r′ = λ1r, attaining its maximum at half radius r = R/2. For r > R/2 the
length shrinks linearly by λ2 = 2 − λ1, ensuring continuity at the boundary. The
stippled line shows the case of no deformation (λ1 = 1).

Table 5.2: Precision and recall for synthethic dataset
Test α = 0.05 α = 0.01 α = 0.001 α = 2.5 · 10−7

Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.
MR3 0.07 0.81 0.21 0.63 0.59 0.39 1 0.04
HT2 0.07 0.77 0.21 0.54 0.56 0.28 1 0.01
permuted HT2 0.07 0.77 0.21 0.54 0.57 0.28 0 0
Diks1 0.03 0.38 0.1 0.23 0.35 0.11 0.69 0.04
Diks2 0.07 0.80 0.22 0.59 0.56 0.31 0.77 0.08

error) and false negatives (FN, type II error), where

precision =
TP

TP + FP
, recall =

TP

TP + FN
.

The results are shown in Table 5.2 for different significance levels α. The right-

most levelα = 2.5·10−7 corresponds to 0.05 under Bonferroni correction with 200 000

voxels. The performance of all four tests is comparable, with the Moore-Rayleigh test

exhibiting better recall and precision rates then the other tests. Note that the results

of the permutation version of Hotellings T 2 test are limited by the number of rela-

belling (N = 10 000), such that Bonferroni correction for multiple comparisons did

not result in any significant voxels.
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Figure 5.10: Validation with a synthetic dataset. Upper part: Central slice from the
deformation field of 50 × 50 × 80 voxels (isotropic spacing of 1.00 mm), showing
the five spherical deformations that were added to it (see text for details). The color
indicates the length of the deformation vectors (in units of voxel dimensions). A:
Mean deformation field for the first group. B: Difference between deformation fields
for the two groups (smaller deformations in spheres S2 and S5 in the second group).
Lower part: Negative logarithms of significance probabilities for the statistical tests.
C: Moore-Rayleigh test. D: Hotellings T 2 test.

5.6.2 Experimental data

To demonstrate the Moore-Rayleigh test in a clinical setting, MR images of five mice

with enlarged ventricles (Panel A in Figure 5.11) were compared with images ob-

tained from a group of five control animals (Panel B). The affected mice were selected

from a large set of T2-weighted MR scans used for general mouse phenotyping by

a trained observer, which included transgenically altered mice. The inclusion crite-

rion was the existence of visibly enlarged ventricular spaces. This dataset exhibits
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Figure 5.11: Deformation-field analysis of mouse brains. A: Slice of a MR image of
a mouse with enlarged ventricles (here: especially the left ventricle). B: The same
slice from the average MR image of the control mice with normal ventricles. The
ventricles (main regions of interest) are manually delineated.

characteristic properties of clinical data and was selected on the following grounds:

• The pathology of the diseased mice is clearly visible and allows to validate the

results.
• Relatively large levels of noise occur.
• Small sample size, since in prospective studies a typical dataset of mice consists

of 5–10 animals per group.

All MR scans were normalized for global orientation, size and shape (by an

affine transformation) and resampled to the same coordinate space with equal di-

mensions (160× 132× 255 voxels) and isotropic voxel size (0.06 mm), thereby allow-

ing voxel-wise comparison between different scans. Nonlinear registration was then

performed to obtain deformation fields, utilizing the symmetric demons algorithm

(Thirion, 1998), as implemented in the Insight Toolkit (Yoo, 2004). After normaliza-

tion, the images of the control group were registered to the corresponding group

average under a leave-one-out design. Thereby, to reduce correlations due to the

small sample size, each image was registered to the average obtained from the re-

maining images of the group. The images of the mice with enlarged ventricles were

registered to the average image of all controls (Figure 5.11, Panel B). Spherical sym-

metry of voxel-wise deformation fields (due to intra-group variation) should then

hold for the controls, and under the null hypothesis of no group-wise difference also

for the mice with enlarged ventricles.

Negative logarithms of significance probabilities are shown as statistical para-

metric mappings in Figure 5.12, overlaid on the average image of the normalized
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Figure 5.12: Average MR image of control mice overlaid with significance probabili-
ties obtained by statistical tests. A: The one-sample Moore-Rayleigh test indicates the
loss of spherical symmetry at various places in the control group. B: Hotellings T 2

two-sample test (N = 10 000 relabellings). C: The two-sample 3D Moore-Rayleigh
test. In all images negative logarithms of significance probabilities are shown for
better visualization, and only significant (p < 0.05) voxels are colored.

control brains. Only significant (p < 0.05) voxels are indicated. Note that only one

central slice (2D image) is shown, although the registration is performed in 3D. Fur-

thermore, only voxels inside the brain were analyzed, resulting in about 1.9 million

voxels in total.

Compared with Hotelling’s T 2 permutation test (Figure 5.12, middle frame), the

two-sample Moore-Rayleigh test exhibits lower p-values (Figure 5.12, right frame) of

which a few hundred remain significant even under Bonferroni correction for mul-

tiple testing (p-value lower than 10−6). Note that the T 2 test does not show any

significant voxels after Bonferroni correction, so it cannot be reliably decided which

(if any) voxels exhibit structural changes.

Regions where significant voxels were found correspond well between the two

tests and conform with established knowledge of the pathology of enlarged ven-

tricles. Differences in and around the ventricles (delineated in Figure 5.11) are of

course expected. As the enlarged ventricles cause the surrounding brain tissue to

shift location, they thereby induce secondary deformations (shrinkage to account for

the expansion of the ventricles), which also seem to have been highlighted well by

the tests. In particular, both the MR3 and the T 2 test display more significant voxels

in the left side of the brain, corresponding to the fact that the left ventricles were

slightly larger than the right ventricles in the group with enlarged ventricles.
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However, the distribution of deformations was not spherically symmetric in all

voxels of the control group (Figure 5.11, left frame), as assessed by the one-sample

MR3 test. This indicates systematic variations that possibly arise from nonnormal

differences in cerebrospinal fluid content in control mice. In these voxels, the two-

sample MR3 test could be potentially liberal, and further tests should be considered.

In fact, both tests also detect significant spurious differences at other places of

the brain, some of which probably need to be considered artifacts of image (mis-

) registration, due to varying brain shapes between individual mice and the small

sample size. Since the null hypothesis was not valid in parts of the brains of the

control group, the test results in these regions also have to be considered with care.

This shows the importance, but also the difficulties, of proper validation in a clinical

context. As always in hypothesis testing, results should be carefully interpreted, not

only by statistical significance, but also guided by neuroanatomical insight. Here, if

spurious voxels are excluded on a priori grounds, the Moore-Rayleigh test detects

significant deformations in brain structure with strong control of the family-wise

error rate. Voxels whose null hypothesis has been rejected could then be subjected to

further statistical tests, analyzed with regard to what kind of structural change is the

most probable cause of these deviations, or lead to further experimental procedures,

e.g., targeted biopsies. The nonnormal variation in brain regions of the control mice

is also potentially interesting, since this contrasts with widely held assumptions.

5.7 Discussion

It is possible to test spherical symmetry in three dimensions with high numerical ac-

curacy by using the combinatorial sum representation given in Eq. (5.15). In combi-

nation with Kahan summation (Goldberg, 1991), this representation makes it feasible

to routinely calculate p-values for finite sample sizes that allow to assess statistical

significance. Even for hundreds of thousands of multiple comparisons with a Bon-

ferroni correction, as is common practice in neuroscientific imaging applications, the

proposed approach is effective. Permutation methods, although theoretically pre-

ferred, are difficult to use in this setting due to practical limitations. The standard

approaches to cope with these limitations, based on either saddle-point approxima-

tions to permutation tests (Robinson, 1982) or on permutation tests for linear test

statistics, where the conditional characteristic function can be rewritten as a con-

vergent approximating series (Gill, 2007), are not directly applicable because these

statistics usually do not arise in these practical problems or are too involved in the

multivariate case. An alternative might be the use of optimal (Bayesian) stopping

rules in the resampling process (Besag and Clifford, 1991; Fay et al., 2007). However,

small sample sizes can still seriously restrict the possible range of the significance

probabilities.

In the special case of the two-sample problem, the distribution of the null hy-
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pothesis is conditional on the unknown distribution of the data, and the general-

ized Moore-Rayleigh test is only approximately valid, a feature that all other (non-

randomized) tests of symmetry exhibit. In Section 5.6 we evaluated the properties

of this generalized Moore-Rayleigh test empirically with simulated imaging data of

known ground-truth and by comparison with other nonparametric tests; for a dif-

ferent comparative study see Scheenstra et al. (2009). Even though the test is theo-

retically liberal, it seems to work well in practice, as it is not particulary sensitive to

the difference between symmetry and spherical symmetry. An exact test is further-

more available by the permutation variant of the Moore-Rayleigh test, with slightly

improved power when compared with conventional permutation testing. This can

be used in a second stage after initial screening with the fast, unadjusted Moore-

Rayleigh test. Although such screening could also be realized by the T 2 test, the

MR3 test seems better suited to this problem due to its enhanced power, which al-

lows for strong control of the family-wise error. In contrast, the T 2 test does often

not allow the localization of individual voxels, as demonstrated in the example on

deformation morphometry in brain scans. It should be noted that we have only con-

sidered the conservative Bonferroni correction here, for simplicity, but it is expected

that the MR3 test remains a more sensitive instrument also under modern step-down

multiple comparison procedures (as described in, e.g., Nichols and Holmes (2007)).





Chapter 6

Electrophysiology of the brain

Abstract

The analysis of functional and effective brain connectivity forms an important tool for

unraveling structure–function relationships from neurophysiological data. It has clinical

applications, supports the formulation of hypotheses regarding the role and localization of

functional processes, and is often an initial step in modeling. However, only a few of the

commonly applied connectivity measures respect metric properties: reflexivity, symmetry,

and the triangle inequality. This may hamper interpretation of findings and subsequent

analysis. Connectivity indices obtained by metric measures can be seen as functional dis-

tances, and may be represented in Euclidean space by the methods of multidimensional

scaling. We sketch some classes of measures that do allow for such a reconstruction, in

particular the class of Wasserstein distances, and discuss their merits for interpreting

cortical activity assessed by magnetoencephalography. In an application to magnetoen-

cephalographic recordings during the execution of a bimanual task, the Wasserstein dis-

tances between relative circular variances indicated cortico-muscular synchrony as well

as cross-talk between bilateral primary motor areas in the β-band.

6.1 Introduction

Functional connectivity can be defined as the occurrence of a significant statistical

interdependency between activities of distant neurons or neural populations. In

combination with the constraining anatomy, this definition forms a proper starting

point for unraveling the relationship between structural and functional features of

the brain. Down to the present day, the quest for a comprehensive understanding

of structure-function interaction has attracted a lot of attention (Stephan et al., 2008;

Lee et al., 2003). Structure can be rather complicated but is typically considered

material and fixed, whereas function reflects statistical similarity between dynam-

ical processes in the brain. Related concepts are anatomical and effective connec-

tivity, respectively, where the latter refers to causal relationships between signals

(Friston et al., 1993; Ramnani et al., 2004). A functional connectivity analysis often

precedes the formulation of a causal (or directed) model, yielding numerous appli-

cations. Apart from its fundamental role in determining functionally important neu-

ronal processes, it has important clinical applications (Stam, 2005). The neurophysi-

ological underpinnings, however, are still under debate, partly because of the huge
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variety of connectivity measures employed, rendering methods inscrutable (Pereda

et al., 2005) and questioning the possible contribution of functional connectivity to

an integrative understanding of brain functioning (Horwitz, 2003; Fingelkurts et al.,

2005). To dispel doubts, we outline general properties of functional connectivity

measures and their implications for analysis. We aim for facilitating the selection of

proper measures and, by this, distill convincing arguments for their relevance for an

understanding of brain dynamics.

In a nutshell, the large majority of commonly implemented connectivity mea-

sures do not respect fundamental metric properties. Here, we focus on three im-

portant properties: (i) reflexivity, (ii) symmetry, and (iii) the triangle inequality. If a

connectivity measure disregards one or more of these three properties, its interpre-

tation may be ambivalent when multiple signals are assessed. Put differently, such

measures can be very successful for a pair-wise comparison of signals, i.e., in the

bivariate case, but they may lead to spurious results in multivariate settings (Kus

et al., 2004). On the contrary, if a connectivity measure does respect all properties

(i)-(iii), then it describes a proper functional distance. We argue that this is a necessary

condition for a truly integrative analysis. Of course, genuine multivariate statisti-

cal methods suffice for this purpose, but implementation can be cumbersome and

results might be difficult to interpret. More important, commonly used multivari-

ate methods require explicit assumptions about the data, e.g., signals ought to be

normally distributed to apply principal or independent component analysis, cluster

analysis typically requires an educated guess regarding numbers of cluster, and so

on.

An intermediate form of analysis is the transformation of proper functional dis-

tances into a low-dimensional representation as points in a Euclidean space. This

technique, commonly referred to as multidimensional scaling (MDS), was successfully

applied in anatomical studies (Young et al., 1995; Goodhill et al., 1995) as well as in

the context of functional connectivity (Friston et al., 1996). In general, MDS allows for

visualizing signals in a ‘functional space’, which may facilitate hypothesis-finding

regarding relevant interactions. The MDS representation can also be used for clas-

sification and discrimination, which is particularly interesting from a more clinical

perspective. However, the necessary statistical methodology for proper classification

has been developed only recently (Anderson and Robinson, 2003; Trosset and Priebe,

2008). MDS requires functional distances to work with, that is, all the metric proper-

ties (i)-(iii) need to be respected. As we will show below, the number of connectivity

measures forming proper functional distances is far and few between. Therefore,

we additionally discuss the so-called Wasserstein distances (Villani, 2003), which are

general distances between probability distributions: total variation, i.e., the area be-

tween two probability densities, is a common example. We illustrate the application

of Wasserstein distances using source-localized magnetoencephalographic (MEG)

recordings obtained during bimanual isometric force production.
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6.2 Distance properties

There exists a plethora of connectivity measures to assess statistical similarities of

dynamical processes in the brain (Quiroga et al., 2002; Pereda et al., 2005). Below we

list several explicit examples of commonly used methods. To anticipate the subse-

quent discussion, Table 6.1 provides an overview of commonly applied connectivity

measures and their metric properties. All methods are (usually) bivariate, i.e., offer

a pair-wise link between signals, and they result in a single scalar number, which is

interpreted as either similarity or dissimilarity. The pair-wise ‘distances’ of a set of

N signals or channels are combined in a single N×N connectivity matrix

∆ = {∆ij}1≤i≤N,1≤j≤N . (6.1)

That is, the elements ∆ij are functional connectivities that stem from a fixed, scalar-

valued connectivity measure. In the following we assume that the ∆ij ’s are dis-

similarities, such that small values of ∆ij are interpreted as a functional similarity

between the i-th and j-th signal1.

6.2.1 Metric properties

As mentioned in the Introduction, a connectivity measure has to be reflexive, sym-

metric, and it has to fulfill the triangle inequality in order to represent functional

distances.

(i) If the diagonal elements of the connectivity matrix ∆ vanish, then its underlying

measure is reflexive. That is, reflexivity is the property that

∆ii = 0 (6.2)

holds for all signals i = 1, . . . , N . This is often a trivial property that holds for most

connectivity measures by construction, or can be obtained by some simple transfor-

mation; see Table 6.1 for an overview. If furthermore ∆ij > 0 for all signals i 6= j,

then the measure is strongly reflexive. Although strictly speaking strong reflexivity is

necessary for a metric, the property of reflexivity is enough for most applications.

Technically, reflexive connectivity measures lead to a pseudo-metric, i.e., certain

kinds of interactions might not be distinguished by them, but in the following we

do not emphasize this distinction.

(ii) A connectivity matrix ∆ is symmetric if

∆ij = ∆ji (6.3)

1 Measures that represent similarities, e.g. correlation coefficients, can be turned into dissimilarities by var-

ious transformations.
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holds for all pairs (i, j). In fact, symmetry is often unwanted because it does not

allow for assessing the direction of connectivity, e.g., the flow of information, or

the directionality of dynamic coupling. Instead, symmetric measures determine the

commonality of two signals, a necessary feature to provide a unique distance. It is

important to note that the analysis of symmetric connectivity measures has an ana-

logue for asymmetric measures. To explain this, first note that a general asymmetric

connectivity matrix ∆ can be uniquely decomposed as

∆ = S + A, (6.4)

where S is symmetric and A is anti-symmetric, i.e., Sij = Sji and Aij = −Aji,

respectively. Moreover, the sum-of-squares of ∆ decomposes as

∑

ij

∆2
ij =

∑

ij

S2
ij +

∑

ij

A2
ij . (6.5)

since the cross-product term
∑

ij SijAij vanishes, and the trace of SA is zero, due

to the fact that S and A are orthogonal. Hence, the analysis of an asymmetric con-

nectivity matrix can be split into the analysis of its symmetric part and a slightly

modified analysis for the anti-symmetric part; see Section 6.2.2 for more details.

(iii) The triangle inequality is the property that

∆ij ≤ ∆ik + ∆kj (6.6)

holds for all triples (i, j, k). It formalizes the well-known geometric notion that, given

a (shortest) distance between two points, there can be no further ‘short-cuts’. In the

current context the triangle inequality tells us whether a given connectivity measure

reflects genuine information about the commonality of two signals or not. Put dif-

ferently, violations of the triangle inequality are methodologically very important as

they indicate that the signals might be a mixture of two or more distinct processes or

subsystems2; see Figure 6.1.

The applicability of the triangle inequality may depend on the scale in which connec-

tivity is measured. For example, if the maximal violation of the triangle inequality

in a given connectivity matrix ∆ is ε > 0, then adding ε to all dissimilarities, i.e.,

∆ij 7→ ∆ij + ε, trivially restores the triangle inequality. This process can be inter-

preted as ‘flattening’ of the data, since smaller dissimilarities are affected relatively

more than larger ones. It would be good practice if connectivity studies would con-

sider the triangle inequality and, by the same token, publish numerical values of its

most extreme violation. Likewise, if the triangle inequality holds, then one should

ask which maximal ε can be subtracted from the off-diagonal elements of the con-

2 Violations of the triangle inequality may also imply that the resolution of recording is limited, e.g., the

number of signals used is too small, as they may be caused by the existence of opaque subsystems.
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A B C

A B

A B

A

C1

C2

B1

B2

(a) (b)

Figure 6.1: Violations of metric properties. a) A violation of the triangle inequality
(top) is an indication that one measures functional properties between two distinct
subsystems (bottom). b) An asymmetry (top) may also indicate the existence of two
subsystems with distinct functional roles (bottom). It can be conveniently visualized
by the radius-distance (see text).

nectivity matrix before the inequality fails, as this may provide insight into the ro-

bustness of estimates.

Connectivity measure S R T References

Covariance & Correlation + 0 0
Mutual information + + 0 (Gray, 1990; Cover and Thomas, 1991)

(Kraskov et al., 2004)
Granger causality - - - (Granger, 1969; Geweke, 1982)
Coherence + 0 - (Brillinger, 1981)
Imaginary part of coherency - - - (Nolte et al., 2004, 2008)
Relative circular variance + + - (Lachaux et al., 1999; Mormann et al., 2000)
Synchronization likelihood + + - (Stam and van Dijk, 2002)
Wasserstein distance + + + (Moeckel and Murray, 1997)

(Muskulus and Verduyn-Lunel, 2008b)

Table 6.1: Overview of commonly used measures in connectivity analysis. S: Symme-
try, R: Reflexivity, T: Triangle inequality; ’+’ indicates the measure respects the given
property, ’-’ indicates the opposite, ’0’ indicates that the measure does not respect the
property, but that extensions and/or derived versions of it exist that do.

6.2.2 Embeddability and MDS

The strict metric properties (i)-(iii) are not the only important properties of connec-

tivity measures. For instance, there exists a hierarchy of generalized triangle in-

equalities, which are usually expressed in terms of the so-called Cayley-Menger de-

terminants (Blumenthal, 1953). The hierarchy contains inequalities for quadruples,

quintuples, etc., of points, which need to be fulfilled if they are to lie in a Euclidean
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space of given dimension.

Let M ≤ N be the dimension of a Euclidean space in which the recorded sig-

nals can be represented as points such that their Euclidean distance is equal to the

dissimilarities ∆ij . We ask how this M -dimensional space can be determined. We

consider a N×N connectivity matrix ∆ that fulfills (i)-(iii). In addition, let D2 be the

matrix of squared dissimilarities such that D2
ij = (∆ij)

2 holds. In general, D2 can be

expanded as

D2
ij =

∑

k

(

ξ2ik + ξ2jk − 2ξikξjk

)

, (6.7)

where ξi1, ξi2, . . . , ξiN denote coordinates of the i-th ‘signal’ embedded into a yet

unknown, N -dimensional space that will reduce to M -dimensions. Eq. (6.7) can be

re-written in terms of

D2 = ν1N + 1NνT − 2ξξT , (6.8)

in which ξ is the matrix with elements ξ1...N,1...N , the vector ν = (ν1, ν2, . . . , νN )T

consists of the squared norms of ξi, i.e., νi = ||ξi||2 =
∑

k ξ
2
ik, and 1N is an N×1

vector of ones; superscript T denotes the matrix transpose. Inverting this identity

yields the matrix ξξT of scalar products (Gram matrix) in terms of3

ξξT = −1

2

(

I − 1

N
1N1

T
N

)

D2

(

I − 1

N
1N1

T
N

)

. (6.9)

This matrix is positive semi-definite, i.e., all its eigenvalues are nonnegative. In par-

ticular, the first M eigenvalues of ξξT are positive, and if, as assumed, ∆ represents

distances between N recorded signals in an (M≤N)-dimensional space, all remain-

ing eigenvalues vanish by the spectral theorem. Inversely, if all eigenvalues of ξξT

are positive, then the dissimilarities in ∆ can be identified with distances of points

ξ ∈ R
N (Havel et al., 1983, Th. 3.1). The coordinates of these points can be readily

obtained via singular value decomposition:

ξξT = QΛQT =
(

QΛ
1/2
)(

QΛ
1/2
)T

. (6.10)

We sort the eigenvalues Λ in descending order and combine the first M columns of

the matrix of eigenvectors Q into Q1,...,M , spanning a space R
M . Then we have

ξ = Q1,...,MΛ
1/2
1,...,M , (6.11)

which is theM -dimensional classical (or metric) MDS representation of theN signals

from the connectivity matrix ∆. The space R
M , in which the signals are represented

as points, has been termed functional space by Friston et al. (1996).

3 This operation is typically referred to as double centering and implies that, whereas distances are invariant

under translations, scalar products are not.
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Interestingly, this representation is equivalent to a principal component analysis

(PCA) of the scalar product matrix ξξT ; we note that every real-valued, symmetric

matrix that decomposes into such a scalar product is positive semi-definite. In par-

ticular, if the connectivity matrix is already of this form and has a positive trace (i.e.,

is not reflexive) as does the similarity measure covariance, then one can apply PCA

directly onto ∆ and the functional space R
M is given as a linear transformation of the

original signal space. The general similarity with PCA implies that MDS solutions

are nested: if the embedding dimension M is increased to M̃ > M , then the first M

coordinates of these points in R
M̃ are identical to the M -dimensional reconstruction.

On this account, Gower (1966) proposed the term principal coordinate analysis for

the MDS transformation, nowadays this is more commonly called metric MDS; for

a discussion of non-metric variants of MDS see (Borg and Groenen, 2005). We note

that there is indeed a subtle difference between PCA and metric MDS: the double

centering operation in the latter usually results in the removal of the first (baseline)

principal component (Heiser and Meulman, 1983).

An important advantage of functional space is the possibility of a discriminant

analysis of signals. For the connectivity matrix ∆ this is not recommended because

of the collinearity problem (Næs and Mevik, 2000), although this may explain the

efficiency of PCA in many applications. In particular, covariance matrices should

be subject to linear discriminant analysis with great care. Also, cross-validation has

been a particular problem because the MDS reconstruction depends on all 1
2N(N+

1) dissimilarities in ∆. While this does provide for the robustness of the method,

for cross-validation it forms a challenge since one needs to compare a single signal

with the remaining N − 1 signals in functional space that is calculated only from

their 1
2 (N−1)N dissimilarities. A recently developed iterative algorithm allows to

find the prospective coordinates of the single signal in this space by minimization

of an error criterion (Trosset and Priebe, 2008). A major drawback of metric MDS,

at least for some applications, is the necessity of obtaining all N ×N connectivity

values with equal quality. With respect to this, Spence and Domoney (1974) have

shown that in the case of sufficiently small noise levels, even in the absence of 80%

of (randomly selected) entries of ∆ the MDS reconstruction is almost identical to

the reconstruction that involves all mutual dissimilarities. The important case of

noisy signals, however, remains an area of active research; at present, the approach

of Singer (2008) appears quite promising.

When the connectivity matrix is asymmetric, i.e., ∆ = S+A with A 6= 0, metric

MDS needs to be modified to handle the anti-symmetric part A. From the currently

available methods (Borg and Groenen, 2005), we mention two: in the Gower model,

a special form of singular value decomposition is applied, that is,

A = QRΛQT . (6.12)

The singular values in Λ arise in pairs, and R is a permutation-reflection matrix
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with diagonal anti-symmetric 2×2 blocks containing 1 and −1 off-diagonal element

(Constantine and Gower, 1978). A second, more accessible representation is obtained

in the radius-distance model of Okada and Imaizumi (1987), which visualizes both

the symmetric and anti-symmetric part of ∆. In brief, each signal is represented as

a circle. The symmetric part S is given by the centers of the circles, and the anti-

symmetric part A by the radius distance between their centers: for two signals i

and j, this distance is computed by subtracting the starting radius from the distance

of the respective center points and adding the ending radius; see Figure 6.1 for an

example.

6.2.3 Graph-theoretic analysis

Recently, the graph-theoretic analysis of connectivity matrices has attracted a lot of

attention (Bullmore and Sporns, 2009). It has revealed interesting properties of large-

scale cortico-cortical connectivity and has important applications in a clinical setting,

many of which are reviewed by Stam and Reijneveld (2007). Problems with graph-

theoretic methods are discussed by Ioannides (2007), who also proposed a nested

analysis to integrate functional connectivity obtained for a variety of distinct tasks

and conditions. Common practice is to threshold the connectivity matrices so that a

connectivity above a certain, fixed value is set to unity and neglected otherwise. The

resulting binary connectivity matrices (or adjacency matrices) naturally represent

an undirected connectivity graph. Thresholding, however, may discard substantial

information and to date there is no general agreement on a criterion for threshold

selection. Considering weighted graphs, in which connectivities are interpreted as

edge weights, is hence our preferred approach. For the resulting (weighted or undi-

rected) graphs several statistical measures can be investigated. An example are the

network participation indices of Kötter and Stephan (2003), who also employ a vari-

ant of MDS to derive a two-dimensional visualization of the networks under study.

A more recent approach is the so-called motif analysis, in which the frequency of oc-

currence of small, induced subgraphs (i.e., motifs) is compared with their expected

number in randomly generated graphs (Sporns and Kötter, 2004). With respect to

phase locking, Bialonski and Lehnertz (2006) proposed to consider the eigenvectors

of the phase uniformity matrix. The spectrum of the adjacency matrix was consid-

ered by da Costa and Barbosa (2004) for the analysis of anatomical connectivities;

this measure characterizes the cycle structure of the connectivity graph and can be

employed analogously for functional connectivity matrices.

The first eigenvector of the connectivity matrix offers an elegant interpretation

presuming the matrix fulfills a few additional properties. First, the connectivity val-

ues are interpreted as transition probabilities, e.g., for the flow of information, then

the system of signals can be considered a Markov chain; this implies that the connec-

tivity matrix has to be non-negative and normalized row- or column-wise (possibly
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violating the triangle inequality thereby). Second, the connectivity matrix is (almost

always) a-periodic and irreducible, that is, for all pairs (i, j)) of signals there exists a

linking sequence of indices [i = i1 → i2 → · · · → in = j] with positive connectivi-

ties. In other words, the corresponding connectivity graph is strongly connected and

does not have a decomposition into periodic classes. Then, the first eigenvector is

the unique, invariant eigenvector of the Markov chain, that is, it has unit eigenvalue

and represents a probability distribution that is stable under the transition dynamics

(Brémaud, 1999). It can be interpreted as the equilibrium solution of diffusion on

the connectivity graph. A famous application of such an invariant eigenvector is the

PageRank algorithm which constitutes the core of the internet search engine Google

(Brin and Page, 1998; Bianchini et al., 2005). More details of its implementation for

large networks4 are discussed by Langville and Meyer (2004).

The relevance of the first eigenvector originates from the fact that it describes the

relative importance of a given signal (a node in the connectivity graph) in the total

network. Instead of just considering local information, it is determined by the global

connectivity structure. In an application to cortical signals, it represents an under-

lying distributed background activity or ‘functional rest-state’. To our knowledge,

determining this eigenvector for functional connectivity matrices has not been con-

sidered before, although da Costa and Barbosa (2004) suggest its use for anatomical

connectivites; see Figure 6.4 for an example.

6.3 Connectivity measures

To test for distance properties we list several important methods that have found

widespread use in encephalography; for approaches to functional magnetic reso-

nance imaging (fMRI) we refer to Li et al. (2009). For the sake of brevity, we ab-

stain from discussing the measures’ statistical, practical, or methodological proper-

ties (David et al., 2004). We also do not discuss measures derived from model-driven

analysis, i.e., structural equation modeling, dynamic causal modeling, or psycho-

physiological interactions.

6.3.1 Statistical measures

Covariance quantifies the linear relationship between two signals. Given two real-

valued signals, xi and xj , it is typically defined as the expectation

σij = E

[(

xi − E
[

xi

]

)(

xj − E
[

xj

]

)]

. (6.13)

4 An implementation for MATLAB (The Mathworks, Natick) is provided through the ConTest toolbox,

available from:

http://www.maths.strath.ac.uk/research/groups/numerical_analysis/contest/toolbox.

http://www.maths.strath.ac.uk/research/groups/numerical_analysis/contest/toolbox
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Covariance is not reflexive, in the sense that the variance of two signals should

both represent zero dissimilarity. Normalizing by the individual standard deviations

yields the (Pearson) correlation coefficient ρij , which lies between −1 and +1. As a

negative similarity appears useless, this can be transformed to a reflexive dissimilar-

ity measure ∆
(corr)
ij by letting

∆
(corr)
ij =

√

1 − ρ2
ij . (6.14)

Alternatively, we can use the Pearson absolute dissimilarity

∆
(Pearson)
ij = 1 − |ρij |. (6.15)

Obviously, information about the direction of the connection is lost, as both co-

variance and correlation are symmetric. Since two uncorrelated signals can both cor-

relate strongly with a third, correlations do not respect the triangle inequality. The

dissimilarities ∆(corr), however, do agree with the triangle inequality (Socolovsky,

2002). For discretely sampled signals of length N this is seen by the well-known

representation of correlations as cosines of angles between unit vectors in a N -di-

mensional space, where the measure ∆(corr) corresponds to moduli of sines between

such vectors.

A non-linear, probabilistic generalization of correlation is mutual information

(Shannon and Weaver, 1949; Gray, 1990; Cover and Thomas, 1991),

I(Xi, Xj) =

∫

Xj

∫

Xi

pij(xi, xj) log
pij(xi, yj)

pi(xi)pj(xj)
dxi dxj , (6.16)

in which pij is the density of the joint probability distribution ofXi andXj , and pi

and pj are its respective marginals. By construction, mutual information is symmet-

ric and non-negative. The triangle inequality, however, is not fulfilled. To show this,

mutual information can be identified as the Kullback-Leibler divergence between the

joint probability distribution and the product of its marginals (Kullback and Leibler,

1951), which is known to violate the triangle inequality (Cover and Thomas, 1991).

However, one can readily modify mutual information to achieve metric properties,

when first rephrasing (6.16) in terms of joint and conditional entropies as

I(Xi, Xj) = H(Xi, Xj) −H(Xi|Xj) −H(Xj |Xi), (6.17)

which are defined as
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H(Xi, Xj) = −
∫

Xj

∫

Xi

pij(xi, xj) log pij(xi, xj) dxi dxj ,

H(Xi|Xj) = −
∫

Xj

∫

Xi

pij(xi, xj) log pi;j(xi|xj) dxi dxj . (6.18)

In contrast to mutual information these joint and conditional differential entropies

alone are not very useful as distance measures, since probability densities can be

greater than one point-wise, yielding negative entropies5.

i

H(X ,X )i j

H(X )jH(X )i

jiI(X ,X )
H(X |X )i H(X |X )j j

Figure 6.2: Relationship between mutual information and (conditional) entropies.
More formally, one finds I(Xi, lXj) = H(Xi, Xj)−H(Xi|Xj)−H(Xj |Xi) = H(Xi)−
H(Xi|Xj) = H(Xj) −H(Xj |Xi); after Cover and Thomas (1991).

On the other hand the relative conditional entropies, H(Xi|Xj) + H(Xi|Xj), do

provide a proper distance that fulfills (i-iii) (Cover and Thomas, 1991). Using (6.17)

and normalizing that distance to the interval [0, 1] yields the definition

∆
(m.inf)
ij = 1 − I(Xi, Xj)

H(Xi, Xj)
. (6.19)

Correlation and mutual information are two well-established quantities that es-

timate how much a random variable tells us about another. More recently, another

related measure, namely Granger causality (Granger, 1969), has become quite popu-

lar in neuroscience (Kamiński et al., 2001). For the sake of legibility we do not dwell

on the somewhat lengthy definition. Suffice to say that by fitting a parametric, lin-

ear auto-regressive model to the data under study, it can be observed whether the

additional freedom offered by including xj terms into the model for the i-th signal

xi does decrease the prediction error. For instance, consider two discretely sampled

time series xi(tk) and xj(tk) and build a linear predictor of the current value of xi

5 Yet, there are some interesting links between mutual information and the Kolmogorov-Sinai entropy that

is used in the context of classifying complex dynamics (Matsumoto and Tsuda, 1988; Deco et al., 1997);

however, this discussion is beyond the scope of the current paper.
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from m previous values by means of xi(tn) = [
∑m

k=1 akxi(tn−k)] + ǫn. The vari-

ance of ǫn provides an estimate of the resulting prediction error. Equivalently, one

can build a linear predictor that includes xj , that is, xi(tn) = [
∑m

k=1 ãkxi(tn−k)] +

[
∑m

k=1 bkxj(tn−k)] + εn. Again, the variance of εn measures the prediction error.

If var(εn)/var(ǫn) < 1, then the prediction of xi is improved by incorporating xj .

Hence, xj has a causal influence on xi in the sense of Granger and 1−var(εn)/var(ǫn)

is a measure of its strength. In the frequency domain this is quantified by an abso-

lute off-diagonal value of the transfer matrix of the error. Put differently, it is the

magnitude of the cross-coefficient of the ‘noise’ when fitting this residual part to the

data; see (Dhamala et al., 2008a,b) for non-parametric versions in the context of neu-

roscience. Note that Granger causality is not a reflexive measure, as it takes the value

unity for identical signals.

A profound problem with Granger causality is that a vanishing Granger causal-

ity does not exclude a causal relationship between two signals (Lütkepohl, 2005,

Ch. 2.3.1). This measure is also not symmetric, and it does not fulfill the triangle

inequality (Eichler, 2007). We note that instantaneous Granger causality, for which

only the equal-time value of xj is used in the prediction of xi, is symmetric. How-

ever, the latter is zero if and only if the noise is uncorrelated, implying that in this

case causality equals conventional statistical correlation.

6.3.2 Spectral measures

Since the frequency domain is dual to the time domain, all aforementioned con-

nectivity measures have their spectral counterparts. Neural populations typically

exhibit oscillatory activity with important functional roles reflected in distinct fre-

quency bands (Singer, 1993, 1999; Buzsáki, 2006). A controversial hypothesis is the

idea that neuronal information is represented by rate-coding, that is, that neuronal

activity transmits information by frequency, and not by amplitude (Barlow, 1972;

Gray, 1994; Theunissen and Miller, 1995; Friston, 1997; Eggermont, 1998). Convinc-

ing results on temporal and other kinds of coding did temper claims for the exclu-

siveness of rate-coding (Engel et al., 1992), yet it remains an attractive idea that keeps

receiving support from spectral connectivity measures.

The covariance (6.13) between two signals is a scalar quantity that can be gen-

eralized by introducing finite time lags between the to-be-compared signals. We

consider the correlation function of two signals that depend continuously on time,

which yields the definition

cij(τ ) = E [xi(t+ τ )xj(t)] . (6.20)

Note that the correlation function is often normalized either via the auto-correlation

at zero lag, cii(τ = 0), or via the (product of) corresponding standard deviation(s).

The correlation theorem shows that the Fourier transform of the cross-covariance can



6.3. Connectivity measures 151

be identified with the cross-spectrum, i.e., the inner product between the individual

Fourier transforms of xi and xj :

fij(ω) = E
[

F
[

xi(t)
]

F∗
[

xj(t)
]]

= E

[

1

2π

∫∫

xi(t1)xj(t2)e
−iω(t1−t2) dt1 dt2

]

. (6.21)

It can be considered the complex-valued analogue of the coefficient of variation. If

the signals are identical, that is, if we consider the auto-correlation function cii(τ ),

this yields the power spectral density

fii(ω) = E
∣

∣F
[

xj(t)
]∣

∣

2
= E

[

1

2π

∫∫

xi(t1)xi(t2)e
−iω(t1−t2) dt1 dt2

]

, (6.22)

an identity known as Wiener-Khintchine theorem.6

Normalizing the cross-spectrum fij leads to the measure coherency (Brillinger,

1981),

Rij(ω) =
fij(ω)

(fii(ω)fjj(ω))
1/2

. (6.23)

A trivial modification, (6.23) → (1−Rij), leads to a reflexive, symmetric measure.

The complex-valued coherency contains a frequency-dependent amplitude (=con-

ventional (squared) coherence, i.e., |Rij |2) and a phase spectrum. Alternatively, the

cross-spectrum can be decomposed into real and imaginary parts, often denoted to

as co- and quad-spectrum, respectively. The former is symmetric, the latter is anti-

symmetric, and therefore the imaginary part of coherency (i.e., imRij) appears well-

suited for the study of directional influences (Nolte et al., 2004, 2008). Note that the

quad-spectrum does not contribute to the mean spectral power but only modulates

the power spectral density, though in practice numerical limitations in estimating

the Fourier transforms may render this separation less strict. Since identical signals

result in zero |imRij |, this is also not a reflexive measure.

It is important to note that all the above is strictly speaking only valid for (weakly)

stationary signals without discrete frequency components. For non-stationary sig-

nals, these definitions have to be modified, as the covariances become explicitly time-

dependent. In consequence, the cross-spectrum will also depend on time, but many

results can be easily generalized, requiring only slight modifications. An interesting

approach in that regard are correlations between Wavelet coefficients (Quyen et al.,

2001; Achard and Bullmore, 2007). Various further issues particularly tailored for

applications in neuroscience have been discussed in (Nunez et al., 1997).

Granger causality has indeed been defined in the spectral domain by Granger

(1969), who considered it a generalization of coherence and proposed for this pur-

6 Computing the Fourier transform might be problematic because dependent on the explicit form of xi

the integral
R

xi(t)e
−iωt dt may not exist. A similar problem can also arise for the cross-spectrum of

long-range dependent signals, but we cannot consider these interesting issues here.
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pose the term causality coherence. This idea was extended to the multivariate case by

Geweke (1982). Moreover, it was thereby shown that Granger causality decomposes

into an anti-symmetric and a symmetric part, where the latter is the instantaneous

Granger causality mentioned above in Section 6.3.1. Similar to the imaginary part

of coherency, the study of this anti-symmetric part can provide insight into causal

relationships; with all the aforementioned limitations, of course.

6.3.3 Non-linear measures

In contrast to the stochastic approach of Section 6.3.2, the non-linear analysis of

functional connectivity generally considers the brain a dynamical system. Again,

the oscillatory character of neural activity plays an important role as it is closely re-

lated to the mathematical notion of recurrent behavior. It is thus no coincidence that

most non-linear connectivity measures are spectral-like measures (Quyen and Bra-

gin, 2007), in particular phase relations are relevant (Sauseng and Klimesch, 2008).

Non-linear time series analysis (Schreiber, 1999; Kantz and Schreiber, 2004) is, how-

ever, a broader discipline. Its starting point is the reconstruction by delay-vector

embedding (Takens, 1981; Stark, 2000), with which one tries to reconstruct the de-

terministic aspect of the dynamics from its temporal differences x(t+τ ) − x(t), in-

stead of its autocorrelations. The former can be interpreted as finite differences in a

Taylor expansion of the flow (vector-field) of the dynamics, as Packard et al. (1980)

suggested. Since the Fourier transform of derivatives corresponds to powers, this

is topologically equivalent to an approximation by a power series. There is a vast

amount of studies on statistical measures derived from this reconstruction, mostly

within the physics community. As stated before, Stam (2005) reviewed many of these

in the context of their clinical applications. A measure specifically designed to quan-

tify non-linear interdependences of EEG signals based on prediction errors has been

described by Breakspear and Terry (2002). More recently, measures derived from

recurrence plots have become popular (Webber, Jr. and Zbilut, 1994; Marwan et al.,

2007). Synchronization likelihood is a well-known example for a measure that quan-

tifies recurrences in a quite general way (Stam and van Dijk, 2002). Most of these

measures are (or can be trivially modified to be) reflexive and symmetric.

Phase relationships are immediately interpretable (Kreuz et al., 2007), as they are

based on the notion of conventional synchronization (Boccaletti et al., 2002). The

phase uniformity is defined as the length of the resultant vector of the instantaneous

phases of signals that dependent continuously on time, or, alternatively, of discretely

sampled data (Mardia and Jupp, 2000) and has variously been referred to as mean

phase coherence (Mormann et al., 2000) or phase locking value or index (Lachaux

et al., 1999; Sazonov et al., 2009). It is usually applied to phase differences (Boonstra
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et al., 2006; Houweling et al., 2008), for which it reads,

∆
(univ)
ij =

1

T

∣

∣

∣

∣

∫

T

ei(φi(t)−φj(t)) dt

∣

∣

∣

∣

or ∆
(univ)
ij =

1

N

∣

∣

∣

∣

∣

N
∑

k=1

ei(φi(tk)−φj(tk))

∣

∣

∣

∣

∣

. (6.24)

The value 1 − ∆
(univ)
ij is known as phase dispersion or (relative) circular variance

(Batschelet, 1981; Mardia and Jupp, 2000). Its distribution under a uniform probabil-

ity density is used in the Rayleigh test. The uniformity is a symmetric measure, but

note that the resultant (mean phase) is reflected, and like conventional uniformity

it does not fulfill the triangle inequality; the reasoning is equivalent to the violation

of the inequality for the afore-discussed covariance. Variants of phase uniformity

are the phase entropy of Tass et al. (1998), the phase lag index (Stam et al., 2007),

and the bi-phase locking value (Darvas et al., 2009). The latter is asymmetric. The

multivariate case has been discussed in (Hutt et al., 2003).

6.3.4 Wasserstein distances

Since most of the afore-listed connectivity measures are not metric, we finally de-

scribe a very general class of connectivity measures, Wasserstein distances, that do

respect all properties (i)-(iii). Apart from being true distances, these measures have

remarkable properties that will be briefly sketched.

Wasserstein distances are general distances between probability distributions and

can be defined for any probability distribution given on a metric space. Consider two

probability measures pi and pj that assign probabilities pi[Ui] ≥ 0 and pj [Uj ] ≥ 0 to

suitable subsets Ui × Uj ⊆ Xi ×Xj ⊆ R
2m of some multivariate space. These mea-

sures can be absolutely continuous, i.e., represent probability densities, singular, or

even fractal.

The Wasserstein distance ∆
(Wass;q)
ij of order q ≥ 1 between pi and pj is given

by the solution of an optimal transportation problem in the sense of Kantorovich

(Villani, 2003). It measures the amount of work, or distance times probability mass

transported, that is needed to transform pi into pj , weighted according to q. For-

mally, it is given by the functional

∆
(Wass;q)
ij =

(

inf
Π

∫

Xi×Xj

||xi − xj ||q dπ(xi, xj)

)1/q

(6.25)

that is optimized over all (joint) probability measures π ∈ Π with prescribed marginals

pi and pj :

pi(Ui) =

∫

Xj

dπ[Ui, xj ] and pj(Uj) =

∫

Xi

dπ[xi, Uj ]. (6.26)
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In the usually encountered case of discrete mass distributions, this definition re-

duces to a convex optimization problem known as the transportation or transship-

ment problem. Then, the distributions pi and pj can be considered weighted point

sets

pi =

n1
∑

k=1

αkδxk
, and pj =

n2
∑

l=1

βlδyl
, (6.27)

in which the supplies αk ∈ (0, 1] and the demands βl ∈ (0, 1] are such that
∑

k αk =
∑

l βl = 1. Any measure in Π can then be represented as a non-negative matrix G

that fulfills so-called source and sink conditions

∑

l

Gkl = αk, k = 1, 2, . . . , n1, and
∑

k

Gkl = βl, l = 1, 2, . . . , n2. (6.28)

These are in fact discrete analogs of the conditions on the marginals in Eq. 6.26. Fi-

nally, the Wasserstein distance ∆
(Wass;q)
ij is given by the solution of the transportation

problem

∆
(Wass;q)
ij = min

(

∑

kl

Gkl||xl − yl||q
)1/q

(6.29)

over all matrices G. It can be explicitly solved in polynomial time (of complexity

about N3) by a network simplex algorithm (Balakrishnan, 1995; Schrijver, 1998); see

Löbel (1996) for a proper implementation.

Remarkably, ∆
(Wass;q)
ij is a true distance in the space of all probability measures

on Xi and Xj , i.e., it is (strongly) reflexive and symmetric by construction, but the

triangle inequality is non-trivial to establish (Villani, 2003). Note that the metric dis-

tance d(x, y) = ||x− y|| can be replaced by an arbitrary distance function. Although

most commonly Euclidean distance is used, when specializing to the discrete dis-

tance (d0(x, y) = 1 if and only if x 6= y) the corresponding q = 1 Wasserstein distance

is (one-half of) total variation, i.e., the integrated absolute difference between two

probability distributions. The orders q = 1 (Rubinstein-Kantorovich distance) and

q = 2 (quadratic Wasserstein distance) are most often used; the latter has further

important properties, e.g., it is possible to interpolate between signals in functional

space reconstructed from this distance (Villani, 2003, Ch. 5).

Wasserstein distances have a plenitude of applications in statistics, image regis-

tration (Haker et al., 2004), inverse modeling (Frisch et al., 2002), and classification

where they are known as the Earth Mover’s distance (Rubner et al., 2000). They

have also been used to define a distance between (non-linear) time series (Moeckel

and Murray, 1997), known as the transportation distance. This distance assumes an

underlying dynamical system for each time series and employs the aforementioned

delay-vector embedding procedure (Takens, 1981) to map each scalar time series into
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the same k-dimensional reconstruction space Ω = R
k. The time average

pi =
1

n

n
∑

k=1

δxi,k
(6.30)

of the indicator function of the points xi,k ∈ Xi visited by the i-th dynamical system

is used as the (empirical) probability measure; here δx is the Dirac measure con-

centrated at the point x. Measuring the similarity of these time averages, which

form invariant measures in the limit of infinite time series, is considered in detail

in (Muskulus and Verduyn-Lunel, submitted). It has been applied to sensor MEG

signals collected during listening to auditory stimulation (Muskulus and Verduyn-

Lunel, 2008b), which revealed evidence of hemispheric specialization even in rather

simple task circumstances; see below.

However, the mathematical elegance of this measure has its price: when com-

pared with conventional distances, like the ones implemented in spectral analyses,

the Wasserstein distances are computationally much more demanding. In fact, for

time series longer than a few thousand samples at present one needs to sample

smaller subseries and compute the mean Wasserstein distances via bootstrapping

techniques (Davison and Hinkley, 1997). Notably, in a different context these dis-

tances have already shown superior classification abilities, namely in the analysis

of lung diseases (Muskulus and Verduyn-Lunel, 2008a). We believe they can form

a major characteristic in quantifying neurophysiological signals and may hence be

particularly important to qualify data in neuroscience.

6.4 Example: MEG data during motor performance

To discuss the impact of (the violation of) metric properties (i)-(iii) for the analysis of

neurophysiological signals, we illustrate the above techniques with functional con-

nectivity data obtained from MEG recordings during execution of a bimanual task.

An in-depth analysis of the experiment can be found in (Houweling et al., 2008). In

brief, subjects performed a so-called 3:2 polyrhythm in which right and left index

finger simultaneously produced isometric forces at frequencies of 1.2 Hz and 0.8 Hz,

respectively. Brain activity was measured with a 151 channel whole-head MEG (CTF

Systems, Vancouver) and bipolar electromyogram (EMG) was assessed from bilat-

eral extensor and flexor digitori with a reference at the left wrist. The MEG signals

were mapped to source space using synthetic aperture magnetometry (SAM) beam-

formers (Vrba and Robinson, 2001). Here we restricted ourselves to the discussion

of two SAM sources located in primary motor areas that showed maximal power

contrast in the β-frequency band. We further included the bilateral EMGs as we are

generally interested in inter-hemispheric and cortico-muscular interactions. All sig-

nals were filtered in the lower β-frequency band using a 4-th order bi-directional
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Butterworth band-pass filter (20–25 Hz), prior to computation of the instantaneous

phases φi(t) of the analytic signals (computed via the Hilbert transform).

Since force production was rhythmic, we defined motor events as instances of

maximal increases in left or right force and evaluated two time points, 100 ms be-

fore and 250 ms after each of these events, as they coincided with maximal β-power

changes; cf. Fig. 7 in (Houweling et al., 2008). Duration of recordings was 30 min

(excluding short rest periods and task initiation), implying about 1600 events on the

left and about 2000 events on the right side over which measures were estimated. In

fact, the design yielded two asymmetric (4·2× 4·2) connectivity matrices for the left

and right hand events, respectively. Their elements were either defined via relative

circular phases over events or via the Wasserstein distances between the correspond-

ing phase distribution (estimated over events). As said here the data merely serve

to illustrate procedure, so that we used data from a single subject, for which we will

discuss MDS results in a two-dimensional embedding. The statistical evaluation of

results will be addressed elsewhere.

The relative circular variance values at all 24 off-diagonal combinations of the

four signals, M1left, M1right, EMGleft, and EMGleft, and two time-points, tpre and

tpost, for both types of motor events (left and right forces) are depicted in Figure 6.3.

The most clear-cut difference of variances is found between left and right M1s and

between M1s and their contralateral EMG, the latter primarily in the contrast be-

tween (tpre, tpre)-(tpost, tpost).

Obviously, the pair-wise comparison forms a challenge, but when represented

by MDS more structure comes to the fore; see Figure 6.4. In fact, the MDS recon-

struction provides a reasonable representation, as ‘functionally similar’ signals are

located close to each other. Obviously, the two M1s are functionally similar as the

corresponding circle-centers are close. Considering the equal time points, all four

signals are connected by U-shape forms; see the dashed lines in Figure 6.4 link-

ing EMGright-M1left-M1right-EMGleft. Both time points displayed these U-shapes,

but for post-event times especially the distances between M1s are increased. Re-

call that we study the relative phases of the β-band. That is, an increase in func-

tional distance relates to an increased relative circular variance, or in other words,

β-desynchronization, which is well-known in the rhythmic isometric force produc-

tion (Boonstra et al., 2006; Houweling et al., 2008).

Importantly, the triangle inequality was violated (ǫ = 0.009) for the phases from

the left event, rendering the interpretation of the centers in the right panel of Fig-

ure 6.4 questionable. By the same token, however, this may explain why the left

panel provides a much clearer picture. To complement this information, Figure 6.4

also depicts the reconstructed invariant eigenvector (scaled to unit length), for which

the functional connectivities are re-interpreted as transition probabilities. For this

sake the eigenvector was not computed using the relative circular variance but for

the uniformity matrix ∆
(univ), interpreted as transition probabilities after normal-
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Figure 6.3: Circular variance of experimental data for all combinations of signals (see
text). MC: Motor cortex. EMG: Electromyograph. T1: 100 ms before motor event.
T2: 250 ms after motor event.

izing its row sums; the diagonal elements were set to zero, ∆
(univ)
ii = 0, to focus on

interactions between signals (or times) rather than incorporating the fact that a signal

interacts with itself at the same time. Clearly, the two M1s can be identified as ‘func-

tional centers’ as the radii of the circle are comparatively large. For the right motor

event, the radius around EMGright is larger after the event, i.e., at tpost, showing its

synchrony after maximal force (trivially at tpre the EMG was less important). Even

more pronounced is this effect visible for the left motor events, as the EMGleft has a

significant contribution to the invariant eigenvector. Interestingly, the contribution

before maximal force matched largely that after the motor event.

As mentioned above, we repeated the entire procedure using the (quadratic)

Wasserstein distances from the phase distributions instead of relative circular vari-

ances. That is, we constructed the connectivity matrix given in (6.25) using the same

samples as described above. Distances between phases are geodesic, i.e., ||ϕ1−ϕ2|| =

min(|ϕ1 −ϕ2|, 2π−|ϕ1 −ϕ2|), and the Wasserstein distances quantify differences be-

tween the distributions of phases over events. To accelerate computations, we boot-

strapped the distances, sampling 512 phases randomly a hundred times. From the

mean of these distances the MDS representation, i.e., the circle centers in Figure 6.5,

was derived, where links between elements are highlighted equivalent to Figure 6.4.

Interestingly, the Wasserstein distances revealed a markedly different pattern

than the circular variances. In particular, the two types of events yielded differ-
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Figure 6.4: MDS results for the circular variances of Fig. 6.3; the four signals at two
distinct time steps before and after the left/right motor events are presented as
points (circle centers) in a two-dimensional functional space (Friston et al., 1996).
The circles around the points indicate the invariant eigenvector for the uniformity
(i.e., the radius of a circle is the value of the eigenvector’s corresponding compo-
nent); recall the sketch of Page Ranking in Section 6.2.3. E: EMG, M: Motor cortex, L:
Left, R: Right, 1: 100 ms before motor event, 2: 250 ms after motor event; see text for
further details.

ent result: the Wasserstein distances unraveled a difference in the phase dynamics

between events at which the right force was produced, and the events in which the

left force was produced, possibly reflecting differences in functional integration due

to handedness (the subject was right-handed). For the latter, we again observed an

(almost) U-shaped pattern for equal times. For the right-hand side events, how-

ever, the arrangement of the equivalent functional relationships was quite different

and formed an X-like shape (recall that we linked EMGright-M1left-M1right-EMGleft).

That is, for the right force events the M1s were closer to the ipsilateral EMGs than the

contralateral EMGs. As before, this X-shape was present for both time points. This

indicates indirect ipsilateral phase synchronization, most probably via a cross-talk

between bilateral M1s.

The invariant eigenvector, computed from (1− δij)−∆
(Wass;2)
ij after normalizing

the row-sums, is again shown via circles, normalized to length 1/8, consistent with

the smaller scale in Figure 6.5. It is almost equally distributed along all signals,

which indicates that the magnitude of the Wasserstein distances was more or less

comparable for all signals. Therefore, this eigenvector does not supply additional

information regarding functional integration in this simple example.
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Figure 6.5: The MDS representation of the quadratic Wasserstein distances. E: EMG,
M: Motor cortex, L: Left, R: Right, 1: 100 ms before motor event, 2: 250 ms after
motor event. The components of the invariant eigenvectors are again given by the
size of the surrounding circles; compare with Figure 6.4.

6.5 Example: Auditory stimulus processing‡

As an illustrative example for the application of Wasserstein distances to electro-

physiological time series, we present results obtained from baseline measurements

(resting state) in the experiment by Houweling et al. (2008). An auditory stimulus

was presented to the right ear (EARTone 3A, CABOT Safety Corporation) at a pitch

of 440Hz, frequency of 1.2Hz, and with a duration of 50ms. Magnetoencephalo-

graphic time series were recorded at 1.25kHz sampling frequency over a 20s inter-

val. Downsampling to 250Hz yielded 5000 time points. The left panel of Fig. 6.6

shows a MDS representation of the sensors’ Euclidean distances, and the right panel

a representation of their averaged distances, when the sensors were grouped in 14

subsets. The latter has been done for visualization purposes, mainly.

For simplicity, only data for a single subject are discussed here. The remaining

subjects showed essentially the same features. The MEG time series were normalized

and centred, and attractors reconstructed with a lag q = 10 and embedding dimen-

sion k = 5. For each pair of sensors the Wasserstein distances were bootstrapped

three times with 500 sample points each. Grouping the sensors into the 24 groups

‡ The contents of this section were originally published in:

Muskulus M, Verduyn-Lunel S — Reconstruction of functional brain networks by Wasserstein distances

in a listening task. In: Kakigi R, Yokosawa K, Kurik S (eds): Biomagnetism: Interdisciplinary Research

and Exploration. Hokkaido University Press. Sapporo, Japan (2008), pp. 59-61.
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Figure 6.6: Left panel: MDS reconstruction of distances of the 148 sensors considered.
Right panel: MDS reconstruction of aggregated distances of the 24 sensor groups. L:
left, R: right, F: frontal, C: cranial, T: temporal, Z: central, P: parietal, O: occipital.

shown in the right panel of Fig. 6.6, the corresponding distances were aggregated

into a 24-by-24 matrix of average distances between sensor groups. The left panel of

Figure 6.7 shows a two-dimensional MDS representation of these distances.

These distances represent the difference in the dynamics of the MEG time series.

In the listening task under study, the dynamics of auditory processing should be sim-

ilar. Indeed, the RT group, where the auditory cortex is located, has a small distance

from the LF group, where speech processing takes place (indicated by an arrow in

Figure 6.7) (Kandel et al., 2000). This is independent evidence for hemispheric special-

ization: even in the absence of linguistic information, the relevant cognitive areals in

the left hemisphere are involved in the processing of auditory signals; a fact that had

been previously established and discussed in (Helen et al., 2006).

6.6 Conclusion

We have discussed commonly used functional connectivity measures with respect

to their metric properties. Most measures do not fulfill the triangle inequality. This

is particularly unfortunate since only proper (pseudo-) metric measures allow for

interpreting connectivities as functional distances. For instance, if the triangle in-
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equality is not fulfilled, this may hint at the existence of further subsystems that may

remain hidden for further analysis. Moreover, this may compromise the analysis by

causing spurious results; the Page Ranking algorithm may resolve these under spe-

cific conditions, presuming non-trivial similarity measures are employed, but it is

preferable to use measures that can be directly interpreted.

If the central properties, symmetry, reflexivity, and the triangular inequality are

fulfilled, then MDS can be used to map these distances into a functional space.

That representation allows for visualizing the interrelationships between signals and

should be considered a very valuable tool for the formulation of hypotheses regard-

ing functional relationships between neurophysiological processes. It also allows for

the application of discriminant analysis, and further analysis of functional connec-

tivities by morphometric methods (Small, 1996).

As very few functional connectivity measures are metric, we suggest the use

of Wasserstein distances. These distances allow for the general assessment of the

coupling strength between two signals, either by considering them dynamical sys-

tems, or by quantifying differences in probability distributions, e.g., of their instan-

taneous phases. For the latter case, the example of MEG data served to illustrates

their strength when combined with MDS. A one-step analysis unraveled cortico-

muscular synchrony as well as cross-talk between bilateral primary motor areas in

the β-band. For the application directly in the time domain, i.e., when considering
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the brain a dynamical system, validation of this approach with simulated time series

from a forward model will be presented elsewhere.



Epilogue

The question is not what you look at, but what you see.

Henry David Thoreau

Distances & Measurements

The concept of distance is basic to the human mind. We often do not qualitatively

compare the objects of our thoughts, but prefer to explicitly express our ideas about

how similar or dissimilar we judge them to be. Even with regard to psychological

states, we like to distinguish different degrees of involvement, excitement, attach-

ment, etc. The urge to classify and order the phenomena in the world seems to be

a basic human need. Aristotle, the great ancient classificator, constructed extensive

systems of thought in which phenomena were categorized and assigned to disjoint

classes with distinct properties. Although the application of the “Aristotelean knife”

(Robert Pirsig) has led to many unnatural and problematic classifications in hind-

sight, it was nevertheless extremely fruitful in that it imposed order on the world,

enabling a large and still ongoing scholarly activity.

The next important step in the scientific enterprise was the shift from a purely

mental exercise to actual experimentation. Instead of reasoning about possible causes

and relations in the natural world, researchers were actively asking questions and

trying to construct theories that were consistent with the facts obtained. Abstracting

from the individual reasearcher and his situation, science was founded on the no-

tion of universality: Patterns observed under a given experimental situation should

be reproducible in a different location and time, even by a different scientist. The

basic tool that allows for such an objective approach is the notion of a measurement.

Thereby, the objects of our inquiry are related in a prescribed way to standardized
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models, allowing the scientist to extract universal information. This information is

conveniently represented in the strict language of mathematics, which is universal

by its underlying logical foundation.

The different levels of measurement have been defined by Stanley Smith Stevens

in an influential article (Stevens, 1946). Nominal measurements correspond to Aris-

totle’s legacy of classification: Objects and their properties are assigned and distin-

guished by labels. Mathematically, this is the domain of set theory. On the ordinal

level, objects are ordered, corresponding to a totally (or linearly) ordered set. Next,

interval measurements allow for quantitative statements. Properties measured are

mapped to numbers, and the notion of distance surfaces. An example is the Cel-

sius scale for temperature, where one degree Celsius is defined as one hundredth

of the difference in temperature between water at the melting and the boiling point,

respectively. Remarkably, measurements on an interval scale are relative, i.e., only

distances are well-defined, and there does not exist a designated origin7. Mathemat-

ically, such measurements correspond to affine spaces. Finally, ratio measurements

are expressed on a scale that possesses a non-arbitrary zero value.

A great deal of early science was involved with the search for the most elemen-

tary properties by which we can compare the objects in our world. This has led to the

development of systems of measurement, sets of units specifying anything which can

be measured. The international system of units (SI) identifies seven distinct kinds of

physical quantities that can be measured: length, mass, time, electric current, tem-

perature, luminous intensity and amount of substance. Notwithstanding its great

success in the commercial and scientific domain, it can be argued whether this is a

complete or natural list.

Looking back

Here we were concerned with more abstract quantities. The objects considered in

this thesis are complex systems that can not be easily reduced to one or more funda-

mental properties: the respiratory system, the brain, dynamical systems. Even if it

were possible to project the state of such a complex entity to a single number, the

great loss in information incurred does not make this an attractive proposal. There-

fore, instead of extracting a single property from such a complex system, we have

considered ways in which we can compare systems quantitatively with each other. Al-

though this did also result in a single numerical quantity, namely, a distance between

each pair of systems under consideration, the totality of all such distances contains a

much greater amount of information. This simple fact was the starting point for the

7 Although it is commonly said that water freezes at 0 degree Celsius, the Celsius scale was not intended

to be used for such absolute statements. Rather, the correct way would be to say that “water freezes at a

temperature difference of 0 degrees from the temperature where water freezes”.
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methods developed and applied in the rest of this thesis. It is not obvious, and spe-

cial methods were needed to extract this information from the measured distances.

The central questions considered in this thesis were the following:

• How can we define a useful distance for complex systems?

• What kind of information is obtained from such a distance and how can we

analyze it?

• What does this tell us about the original systems?

These questions are increasingly diffult to answer. It is not too difficult to define

interesting “distances” between complex systems, although a few pitfalls need to be

avoided. In particular, in order to allow for sensible comparisons between more than

two distinct systems, a “distance” measure needs to be a true distance (in the math-

ematical sense), i.e., it needs to exhibit metric properties that allow for a consistent

and natural interpretation in such a multivariate setting. This seriously restricts the

class of possible “distance” measures, and involves an important principle: Being

a true distance allows for a natural representation of complex systems as points in

an abstract functional space, which is a very powerful way to visualize and analyze

differences and commonalities between complex systems. For general “distance”

measures such a representation is usually not possible. Indeed, it is well known that

bivariate measures (such as “distances”) can, and generally do, lead to spurious or

even false results when applied in a multivariate setting (Kus et al., 2004). This prob-

lem is completely avoided by using a true distance. Of course there is a price to pay

for this convenience: It might not be easy to find a suitable, true distance for the

systems we want to study. And even if we obtain such a measure, it is not clear that

it then also captures the relevant information about a system. Fortunately, the class

of optimal transportation distances, are general enough to be both applicable in most

settings, and in such a way that they capture interesting information.

The geometrical and statistical analysis of distances is also a rather well-developed

topic, so we mostly did connect results scattered in the literature and closed a few

gaps. However, what is actually measured in such an interval-scale approach is a

completely different matter. The first two questions were addressed in a phenomeno-

logical setting: it is not necessary to know exactly what causes differences in complex

systems, if one is primarily interested in the existence of such differences. For exam-

ple, in the application to the respiratory system, we were interested in distinguishing

healthy breathing from breathing with a diseased lung, which is a simple supervised

classification task — albeit one of considerable interest. Since such classification was

possible, we might now ask why this is the case. Then the question of how to reverse-

engineer the information obtained from abstract distances becomes important. This

road is mostly unexplored so far.
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The future

The examples in this thesis demonstrate that the combination of optimal transporta-

tion distances, reconstruction of these distances by multidimensional scaling, and

canonical discriminant analysis of the resulting coordinates is a powerful and ver-

satile approach to the classification and study of complex systems. This thesis is

finished, but many paths remain still to be explored. Let me mention a few here that

have not been discussed in the earlier chapters.

• On the practical side: The calculation of the Wasserstein distances is still too

complex (i.e., slow) to handle large datasets (with more than a few hundred

to thousand sample points per subject). Bootstrapping smaller subsets helps a

long way in reducing the computational complexity, but algorithmic improve-

ments would be preferable. A number of interesting approximation algorithms

have been developed in recent years, and implementing these as actually us-

able software would be desirable.

• How can classification based on nonmetric multidimensional scaling be cross-

validated? Since nonmetric reconstructions are usually obtained by an iterative

procedure, this is not as simple as it sounds. Optimally matching the resulting

point configurations (de Leeuw and Meulman, 1986) might be one possibility

to proceed.

• To avoid the quadratic dependence on sample size when computing all pair-

wise distances between N samples, is it possible to reconstruct Euclidean con-

figurations locally, i.e., by only using the distances of the closest k ≪ N points?
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Appendix A

Distances

Life is like a landscape. You live in the midst of it but can

describe it only from the vantage point of distance.

Charles Lindbergh

In this appendix we collect and discuss background information about distances

and their statistical analysis. Section A.1 reviews the mathematical foundation and

culminates in the characterization of the conditions under which a reconstruction of

distances by points in an Euclidean space is possible. Section A.2 discusses how

to obtain such reconstructions in practice and introduces various diagnostic mea-

sures that help to assess their quality. Section A.3 discusses the statistical analysis of

distances and describes linear discriminant analysis in the reconstructed functional

space, leave-one-out crossvalidation and permutation tests for group effects.

A.1 Distance geometry

The content of this section is developed in more detail in the standard monograph

of Blumenthal (1953) and the article of Havel et al. (1983).

A.1.1 Distance spaces

An abstract space is a set of elements S, called points, that are endowed with a topology.

The latter embodies a relation of nearness that results from defining certain subsets

as open. A topology on S is then a collection T of all open subsets of S, such that the

empty set ∅ and S are in T , the union of any collection of sets in T is also in T , and

the intersection of any finite collection of sets in T is also in T .

The main use of a topology is to allow for the definition of limits of sequences of

elements. A sequence (p1, p2, . . . ) of elements pi ∈ S has a limit p ∈ S if and only if

for each integer n ∈ N there exists an open set Un ∈ T such that p ∈ Un and pm ∈ Un,

for all m ≥ n, which is written as limi→∞ pi = p.

Abstract spaces are too general in practice, since they do not need to have unique

limits. For example, endowing a space S with the trivial topology T = {∅, S}, every

point p ∈ S is the limit of every sequence. Therefore, we will only consider the

subset of abstract spaces that are also Hausdorff spaces. These have the following

additional property (restriction): If p 6= q for two points p, q ∈ S, then there exist



170 A. Distances

open sets Up, Uq ∈ T such that p ∈ Up, q ∈ Uq and Up ∩ Uq = ∅. Since Hausdorff

spaces separate their points, they are also called separated spaces.

Although the above notions are necessary for the study of functions on S, in

particular, to define the concept of continuity, as a basis for making measurements in

a space S additional structure is needed. This will again be axiomatically prescribed.

Definition 6. A distance space is an abstract set S together with a distance d : S×S →
D from an abstract distance set D.

We write d(p, q) ∈ D for the value of the distance between two points p, q ∈ S.

The most important case are numerical distances:

Definition 7. A distance space is called semimetric if (i) D ⊆ R+, (ii) d(p, q) = d(q, p),

and (iii) d(p, q) = 0 if and only if p = q.

Here R+ = {x ∈ R|x ≥ 0} is the set of all non-negative real numbers. We can

express the last two conditions in Definition 7 by saying that distances in a distance

space are symmetric and positive definite, or simply by saying that they are semimetric.

Definition 8. The distance d : S × S → D is continuous at p, q ∈ S, if for any two

sequences (pn)n≥0 and (qn)n≥0 with limits limn→∞ pn = p and limn→∞ qn = q, we

have that limn→∞ d(pn, qn) = d(p, q).

Continuous distances impose a certain regularity on distance spaces:

Theorem 3 (Blumenthal (1953)). A distance space with a continuous distance is

Hausdorff.

Although d(p, q) = 0 if and only if p = q, there nevertheless still exists a potential

anomaly in that two distinct points of a semimetric space may be joined by an arc of

zero length:

Example 2 (Blumenthal). Let S = [0, 1] be the points of the unit interval and define

the distance d(x, y) = (x − y)2 for all points x, y ∈ S. Topologically, this space is

equivalent to the space obtained by replacing d by the Euclidean distance |x− y|, so

its character as a continuous line segment is unchanged, i.e., S is an arc.

Consider the sequence of polygons Pn with vertices

0, 1/2n, 2/2n, . . . , (2n − 1)/2n, 1.

Each pair of consecutive vertices has distance 1/22n and since there are 2n such pairs,

the “length” of Pn is 1/2n. In the limit that n → ∞, the length of S approaches

zero.

This anomaly results from the great freedom offered by the distance function,

whose values are independent of each other, in the sense that the distance between
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any pair of points does not depend on the distance between any other pair. Consider-

ing the simplest case of only three points, with three mutual distances, the following

property is suggested from a closer look at Euclidean space:

Postulate 1 (Triangle inequality). If p, q, r are any three points of a semimetric space,

then

d(p, q) ≤ d(p, r) + d(r, q). (A.1)

Definition 9. A semimetric space in which the triangle inequality holds is called a

metric space. The distance function of a metric space is called a metric.

Remark 6. The triangle inequality can be motivated differently. Let (a, b), (c, d) be

two pairs of ordered points in a semimetric space, and define d(a, c) + d(b, d) as the

distance of the pairs. When is this distance uniformly continuous? By this we mean

that for each ǫ > 0 there exists a number δ(ǫ) > 0 such that for all pairs (a, b), (c, d)

the property d(a, c) + d(b, d) < δ(ǫ) implies |d(a, b) − d(c, d)| < ǫ.

The easiest way to satisfy this requirement is if |d(a, b)− d(c, d)| ≤ d(a, c) + d(b, d),

since then δ(ǫ) may be taken to be equal to ǫ. But if this holds, then consideration of

the pair (a, b), (c, c) shows that this implies the triangle inequality, d(a, b) ≤ d(a, c) +

d(c, b).

On the other hand, if the triangle inequality holds, then

|d(a, b) − d(c, d)| ≤ |d(a, b) − d(b, c)| + |d(b, c) − d(c, d)| ≤ d(a, c) + d(b, d),

where the first inequality arises from the triangle inequality of the modulus function,

|a+ b| ≤ |a| + |b|.
Note that uniform continuity of a semimetric does not imply the triangle inequal-

ity in general.

Example 3 (The n-dimensional Euclidean spaceEn). The points ofEn are all ordered

n-tuples (x1, x2, . . . , xn) of real numbers. The distance is defined for each pair of

elements x = (x1, . . . , xn) and y = (y1, . . . , yn) by

d(x, y) =

(

n
∑

i=1

(xi − yi)
2

)1/2

.

The triangle inequality follows from the Cauchy-Schwartz inequality.

Example 4 (The n-dimensional spherical space Sn). The points of Sn are all ordered

(n+ 1)-tuples x = (x1, x2, . . . , xn+1) with ||x||2 =
∑n+1

i=1 x
2
i = 1. Spherical distance is

defined for each pair of elements x, y to be the smallest nonnegative number d(x, y)

such that

cos(d(x, y)) =

n+1
∑

i=1

xiyi.
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This is an example of a geodesic (shortest-arc) distance.

Example 5 (The Hausdorff metric). A metric space M is bounded provided there ex-

ists a constant K > 0 such that d(x, y) < K for all elements x, y ∈ M . Let X be the

set of all closed, non-empty subsets of a bounded metric space M . Define

d(A,B) = sup
a∈A

(

inf
b∈B

d(a, b)

)

.

The function d is not a metric distance since it is not symmetric in general. Moreover,

d(A,B) = 0 implies infb∈B d(a, b) = 0 for all a ∈ A, such that a ∈ clB = B. ThusB ⊆
A, but in general d(A,B) = 0 does not imply that A = B. Both these shortcomings

are fixed by symmetrizing d, and the resulting metric is called the Hausdorff metric:

dH(A,B) = max[d(A,B), d(B,A)].

To prove the triangle inequality, note that if d(A,B) < ρ, then infb∈B d(a, b) < ρ for

all elements a ∈ A, so there exists a ∈ A, b ∈ B such that d(a, b) < ρ. Let now A,B,C

be three distinct elements of S and put d(A,B) = ρ and d(B,C) = σ. For each ǫ > 0

we have that d(B,C) < σ + ǫ, and there exists b ∈ B, c ∈ C such that d(b, c) < σ + ǫ.

Analogously, from d(A,B) < ρ+ ǫ there exists a ∈ A such that d(a, b) < ρ+ ǫ. Since

M is metric,

d(a, c) ≤ d(a, b) + d(b, c) < ρ+ σ + 2ǫ.

From this it follows that d(A,C) ≤ ρ + σ = d(A,B) + d(B,C). Similarly, it follows

that d(C,A) ≤ d(C,B) + d(B,A). Together, the two relations

dH(A,B) + dH(B,C) ≥ d(A,C)

dH(A,B) + dH(B,C) ≥ d(C,A)

imply that dH(A,B) + dH(B,C) ≥ dH(A,C), i.e., the triangle inequality in S.

A.1.2 Congruence and embeddability

Topology was originally defined as the study of invariants of homeomorphisms,

i.e., continuous functions with continuous inverses. Since homeomorphisms form

a group, topology fits the definition of a geometry in the way of Felix Klein, as the

study of invariants under a selected group of transformations.

The subgroup of homeomorphisms for which the distance of two points is an

invariant is the group of congruences, and the resulting geometry is referred to as

distance geometry (or metric topology).

Definition 10. If p, q ∈ S and p′, q′ ∈ S′ for two metric spaces S, S′ (with distances

d, d′), then p, q are congruent to p′, q′ if and only if d(p, q) = d′(p′, q′). Two subsets
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P,Q of the same or different metric spaces are congruent provided there exists a

map f : P → Q such that each pair of points from P is mapped onto a congruent

point-pair of Q.

The relation of congruence is symmetric, reflexive and transitive, and therefore

constitutes an equivalence relation.

We now consider the subset problem: What are necessary and sufficient conditions

that an arbitrary distance space must satisfy in order that it may be congruent with a

subset of a member of a prescribed class of spaces? In particular we will be interested

in isometric embeddings of a finite set of points into Euclidean space En.

Definition 11. A set S is congruently embeddable (embeddable, for short) in a semi-

metric space T if S is congruent to a subset of T . A set S is irreducibly embeddable in

En if it is embeddable in En, but not in any nontrivial subspace.

Definition 12. The Gram matrix of a set of vectors {xi | 0 ≤ i ≤ N} from an inner-

product space is the matrix G of inner-products Gij = 〈xi, xj〉. The metric matrix of

a finite set of N points from a semimetric space, with respect to a reference point

(indexed as the 0-th point), is the (N ×N) matrix M with entries

Mij =
1

2
(d2

0i + d2
0j − d2

ij), (A.2)

where dij = d(xi, xj) is the value of the semimetric for the points indexed by i and

j.

In Euclidean space, as a consequence of the law of cosines

d(xi, xj)
2 = d(x0, xi)

2 + d(x0, xj)
2 − 2〈xi, xj〉 (A.3)

in the plane containing each triple x0, xi, xj of points, the metric matrix corresponds

to the matrix of scalar products relative to the reference point x0, with entries Mij =

〈xi − x0, xj − x0〉. It is also clear that the Gram matrix is positive semidefinite; in

fact, that each positive semidefinite matrix can be realized as the Gram matrix of a

set of vectors. This characterization carries over to the metric matrix, which solves

the subset problem for Euclidean spaces:

Theorem 4 (Havel et al. (1983)). A configuration ofN+1 points in a semimetric space

is irreducibly embeddable in En, for some n ≤ N , if and only if the corresponding

metric matrix from any point is positive semidefinite of rank n. The eigenvalues

of this matrix are then the (second) moments of the distribution of points along the

n principal coordinate axes, and the eigenvectors, scaled by the square-roots of the

corresponding eigenvalues, are the principal coordinate axes of the Euclidean con-

figuration.
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Proof. If the points are irreducibly embeddable in En, let (x0, . . . , xN ) (where xi ∈
En) be any family of vectors that represent them. The vectors xi are then necessar-

ily linearly independent. The metric matrix (with respect to the 0-th point, without

loss of generality) is equal to the Gram matrix of the family (x1 − x0, . . . , xN − x0)

in En, thus positive semidefinite and of rank n (since linear independence does not

change under translation). The statement about the principal axes and the eigenval-

ues follows from the well-known identification of covariances with scalar products

(Rodgers and Nicewander, 1988), such that the eigendecomposition of the Gram ma-

trix defines the principal axes.

Conversely, if the (N×N) metric matrixM (with respect to the 0-th point, without

loss of generality) is positive semidefinite of rank n, it can be diagonalized by an

orthogonal transformation Y :

Λ = Y tMY. (A.4)

The matrix Λ contains n positive eigenvalues and N − n zeros on the diagonal (or-

dered by decreasing size, without loss of generality), and scaling the eigenvectors by

their roots, a matrix X = Λ1/2Y is obtained such that M = XtX . The columns of X

are the coordinates of the N original points in En, centered on the 0-th point (at the

origin). It is clear that the eigenvectors define the principal axes of X .

This theorem solves the embedding problem for a finite set of points. The refer-

ence point is identified with the origin of the Euclidean space, and the coordinates

of the points are uniquely reconstructed up to symmetries of the eigenspaces (re-

flections for eigenvalues with multiplicity one, subspace rotations for eigenvalues

with larger multiplicities). In practice, these remaining degrees of freedom are fixed

by the details of the numerical method used to diagonalize the metric matrix. It is

also customary to choose the center of mass as reference point. A simple calculation

shows how to obtain the corresponding metric matrix.

Theorem 5 (Havel et al. (1983)). The distance to the center of mass of each point i of

a configuration of N points in a Euclidean space is given in terms of the remaining

distances by

d2
0i =

1

N

N
∑

j=1

d2
ij −

1

N2

N
∑

k>j

d2
jk. (A.5)

Let 1N = (1, 1, . . . , 1)t be the (N × 1)-vector consisting of ones. Define the cen-

tering operator J = I − 1
N 1N1t

N . A short calculation shows that the corresponding

metric matrix is obtained by its action on the matrix of squared distances D2 (with

entries D2
ij = d2

ij) of a given family of N points,

M = −1

2
JD2J t. (A.6)
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This operation is usually called double-centering. In Section A.2 it will be used to de-

rive representations of reduced dimensionality n ≪ N from a given set of distances

between N points.

For completeness, we end this section with an important result that characterizes

embeddability of a space in terms of finite subsets.

Definition 13. A semimetric space T has congruence order k with respect to a class

S of spaces provided each space S ∈ S is embeddable in T whenever any k-subset

{x0, . . . , xk−1 | xi ∈ S} has that property.

Theorem 6 (Havel et al. (1983)). The Euclidean space En has congruence order n+3

with respect to the class of all semimetric spaces.

In fact, an even stronger property holds:

Theorem 7. A semimetric space S is irreducibly embeddable in En if S contains a

(n+ 1)-set of points irreducibly embeddable in En such that every (n+ 3)-subset of

S containing it is embeddable in En.

A.2 Multidimensional scaling

The previous section discussed when points with given distances can be realized by

an embedding in some Euclidean space. In practice, we are rarely presented with

this ideal situation and distances are usually contaminated by noise and discretized,

and we cannot expect to find zero eigenvalues numerically. Moreover, it is often a

priori unclear whether a set of measured distances admits a Euclidean representation

at all. If this were impossible, negative eigenvalues will occur in the diagonalization

of the metric matrix. Since these can also arise by numerical instabilities and errors

in the distances, it can be difficult to decide whether a Euclidean representation is

warranted.

The techniques of multidimensional scaling therefore focus on the reduction of di-

mension, and diagnostic measures are used to quantify the goodness of reconstruc-

tion.

Similar to principal component analysis, the reduction of dimension is achieved

by restricting to the first n ≤ N principal axes in Theorem 4. We need to distinguish

between the distances actually measured between all N systems, represented by a

(N × N) matrix of squared distances D2, and the Euclidean distances of a point

configuration reconstructed to represent them, represented by a (N × N) matrix of

squared distances ∆2. Recall that the Frobenius norm of a matrix A is the root sum-

of-squares,

||A|| =





∑

ij

|Aij |2




1/2

. (A.7)
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Box 11. Why reconstruct distances in Euclidean space?

The alternative would be to consider reconstructions in more general metric spaces,
e.g., spaces endowed with a Minkowski norm, or to consider nonmetric reconstruc-
tions, where the order relations between the distances are preserved as much as pos-
sible. In fact, there are good reasons why we only consider reconstructions of points
in Euclidean space here:

• The connection between Euclidean norm and scalar products:
Since Euclidean norm is a quadratic form, we can transform distances into
scalar products. These we can consider values of a kernel function, and pattern
analysis by kernel methods becomes possible.

• The efficiency of metric multidimensional scaling:
Metric solutions are easy to calculate by linear algebra.

• The intuitiveness of Euclidean space:
Euclidean space is simply the space with which we are most familiar with.

Of course, Euclidean distance has additional beneficial properties, e.g., invariance
under rotations.

It induces a distance d(A,B) = ||A− B|| between two matrices.

Definition 14. The (raw) stress of a reconstructed configuration is

σr(D
2,∆2) =

1

2
||D2 − ∆2||2 =

1

2

∑

ij

(

D2
ij − ∆2

ij

)2
. (A.8)

In the specific context of classical multidimensional scaling raw stress it is also

known as the strain of a configuration.

Theorem 8 (Gower (1966),Havel et al. (1983)). The (N × N) symmetric matrix of

rank n that best approximates any given (N ×N) symmetric matrix of higher rank,

in the sense of minimizing the Frobenius distance, is obtained by setting all but the

n eigenvalues of largest magnitude to zero (and transforming back).

Recall the eigendecomposition Y ΛY t = M (A.4), where Λ is a diagonal matrix of

eigenvalues sorted by decreasing value, and Y is an orthogonal matrix whose rows

contain the respective eigenvectors. Let Λn be the diagonal (n× n) matrix that con-

tains only the largest n ≤ N eigenvalues of Λ, and Yn be the matrix consisting of the

first k columns of Y . Then the (N×n) coordinate matrix of classical (or metric) multidi-

mensional scaling is given by Xn = YnΛ
1/2
n . Note that we have assumed here that the

magnitude of negative eigenvalues is smaller than the magnitude of the n-th largest

(positive) eigenvalue, i.e., we have assumed that errors and misrepresentations of

distances are relatively small.
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This representation of distances in Euclidean space minimizes the strain and

leads to a nested solution: The coordinates in Xn−1 are the same as the first n − 1

coordinates of Xn (up to symmetries of the eigenspaces). It is called the functional or

behavior representation of the distances ∆.

A.2.1 Diagnostic measures and distortions

The raw stress (A.8) has the disadvantage that it depends on the global scale of the

distances. The following “badness-of-fit” measure is a scale-invariant diagnostic that

quantifies the fraction of the sum-of-squares misrepresentation error that is not ac-

counted for by the distances.

Definition 15 (Borg and Groenen (2005)). The normalized stress of a reconstructed

configuration is

σn(D2,∆2) =

∑

ij

(

D2
ij − ∆2

ij

)2

∑

ij D
2
ij

. (A.9)

The value of 1−σn(D2,∆2) is the fraction of distances explained in the Euclidean

configuration, i.e., a coefficient of determination. Being a global statistic, σn is sensitive

to outliers, i.e., points with an unusually large misrepresentation error. These can

be identified by assessing the local misrepresentation error, and the following two

diagnostic measures accomplish this.

Definition 16. The Shepard diagram of a reconstructed configuration is the diagram

obtained by plotting the N(N − 1)/2 distances ∆ij of the Euclidean configuration

against the measured distances Dij . The (normalized) maximal misrepresentation error

is given by

σmax =
maxij

(

D2
ij − ∆2

ij

)2

1
N2

∑

ij D
2
ij

. (A.10)

Definition 17. The (normalized) stress per point of the i-th point in a reconstructed

configuration, consisting of N points, is given by

σi
n(D2,∆2) =

1
N

∑

j

(

D2
ij − ∆2

ij

)2

∑

ij D
2
ij

. (A.11)

Whereas the Shepard diagram visualizes the goodness-of-fit of all distances and

can be useful to detect anisotropic distortions in the representation, the stress per

point allows to detect suspect points or outliers that should be studied more closely.

Raw stress per point, defined as in (A.11) but without the normalization in the de-

nominator, can be conveniently visualized in a reconstructed configuration by plot-

ting circles around each point, with area equal to the average stress of each point.
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Note that the definitions have been given for symmetric distance matrices; in the

case of (small) asymmetries these need to be changed accordingly.

We conclude this overview of the most important diagnostic measures with two

examples.

Example 6. Figure A.1 shows three two-dimensional reconstructions of N = 50

points randomly distributed along the unit circle. In the left panel the configura-

tion was obtained by classical multidimensional scaling when the distance matrix

was calculated from Euclidean distances. Circles were used to depict the values of

raw stress per point. The reconstruction is almost perfect, with misrepresentation er-

rors on the order of the numerical accuracy, i.e., with σmax ≈ 10−34. This is reflected

in the Shepard diagram (left panel of Figure A.2), which shows an almost diagonal

line.

When the distance matrix is calculated from geodetic distances (Example 4), mis-

representation errors are introduced. The corresponding configuration is shown

in the middle panel of Figure A.1. Stress per point is distributed relatively evenly

among all points, with the largest errors accruing where the least points were present,

and accounts for about 2 percent of the sum-of-square error (σn ≈ 0.02). The Shepard

diagram (middle panel of Figure A.2) shows that most distances are slightly overrep-

resented, whereas a few of the largest distances are underestimated. Note that both

eigenvalues were positive (not shown). Changing the reconstruction dimension does

also not allow for much leeway in improving the reconstruction. In one dimension

the misrepresentation error is very large (σn ≈ 0.30), whereas for larger dimensions

it is also slightly larger than in two dimensions (left panel of Figure A.3, solid curve).

For dimensions above about N/2, the first negative eigenvalue is encountered.

The right panels of Figure A.1 and Figure A.2 show results for a reconstruction

from Euclidean distances that were contaminated with noise (normal, with unit vari-

ance). The misrepresentation error is again distributed relatively evenly, but the

shape of the configuration has seriously deteriorated due to the large amount of

noise. Its influence can be seen in the Shepard diagram, which shows that errors

in the distances are distributed randomly. The dependence on reconstruction di-

mension (Figure A.3, grey curve) is not qualitatively changed, only shifted to larger

errors.

Example 7. A different example is provided by the reconstruction of a torus, shown

in Figure A.4. Since the line element of the standard torus, embedded as a two-

dimensional surface in three dimensions, can only be evaluated numerically, we re-

sort to the simpler representation of the torus as the quotient of the plane under the

identification (x, y) ∼ (x+2π, y) ∼ (x, y+2π). The torus T 2 ≃ S1×S1 is then identi-

fied by a square with opposite boundaries identified. This is a natural representation
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Figure A.1: Reconstruction of the one-dimensional circle S1 by classical multidimen-
sional scaling from N = 50 random samples. A: S1 with the induced Euclidean
metric. B: S1 with its intrinsic, geodesic metric. C: S1 with the induced metric, but
Gaussian noise (unit variance) added to the distances. Radius of circles indicates
(raw) stress-per-point.
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Figure A.2: Shepard diagrams for the reconstructions in Fig. A.1, depicting distances
in the reconstructed configuration (vertical axis) against original distances (horizon-
tal axis). A: S1 with induced Euclidean metric. B: S1 with intrinsic, geodesic metric.
C: S1 with induced metric under Gaussian noise.

for two simultaneously measured phases, with geodetic distance

(

(min(|y1 − x1|, 2π − |y1 − x1|))2 + (min(|y2 − x2|, 2π − |y2 − x2|))2
)1/2

(A.12)

between two points (x1, x2), (y1, y2) ∈ T 2. The left panel of Figure A.4 shows the

reconstructed configuration for Euclidean distances, the middle panel the config-

uration for the geodesic distance, and the right panel was obtained for Euclidean
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distances under random noise (normal, unit variance).

The two-dimensional configuration of the geodesic distances approximates a squa-

re, with points in its interior exhibiting the largest misrepresentation error. Glob-

ally, about 15 percent of the distances cannot be accounted for in this representa-

tion (σn ≈ 0.15), which drops to a mere 2 percent if the samples are reconstructed

in four dimensions. The systemic distortions in the two-dimensional case can be

clearly seen in the Shepard diagram (middle panel of Figure A.5), whereas a four-

dimensional reconstruction closely approaches the original distances (right panel).

The right panel of Figure A.3 shows the normalized stress against the reconstruction

dimension (solid curve). The minimal stress is achieved for about four dimensions,

and then rises again slightly due to numerical errors.

Reconstruction from the Euclidean distances under noise leads to similar changes

as in Example 6. The misrepresentation error shows the same qualitative behavior

with respect to the reconstruction dimensionality, only shifted to a higher level (right

panel in Figure A.3, grey curve).
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Figure A.3: Normalized stress for different reconstruction dimensions for distances
without (dark) and under Gaussian noise (gray). A: S1 with intrinsic, geodesic met-
ric. B: T 2 with intrinsic, geodesic metric. The configurations were reconstructed
from N = 50 random points each.

These examples show that stress diagrams as in Figure A.3 can be used to decide

which dimension is optimal for the reconstruction from a given distance matrix, and

whether misrepresentation errors might be caused by random noise or by systematic

distortions due to an intrinsically different geometry. Whereas the effects of noise

cannot be reduced by increasing the reconstruction dimension, this is possible (to a

great extent) for non-Euclidean distances.
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Figure A.4: Reconstruction of the two-dimensional torus T 2 by classical multidimen-
sional scaling from N = 50 random samples. A: T 2 with the induced Euclidean
metric. B: T 2 with its intrinsic, geodesic metric. C: T 2 with induced metric, but
Gaussian noise (unit variance) added to the distances. Radius of circles indicates
(raw) stress-per-point.
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Figure A.5: Shepard diagrams for reconstruction of the torus T 2. A: T 2 with the
Euclidean metric in 2D. B: T 2 with its intrinsic metric in 2D. C: T 2 with its intrinsic
metric in 4D.

A.2.2 Violations of metric properties and bootstrapping

Different from the effect of non-Euclidean geometries, the influence of noise in mea-

sured distances can and usually does destroy the metric properties, for sufficiently

large noise levels. Such violations of metric properties are also interesting concep-

tually. Many bivariate measures commonly used (e.g., in electrophysiology, see Sec-

tion 6.3) do not respect metric properties, and it is instructive to consider what effect

this does have on dissimilarity matrices, where we use the word dissimilarity to de-

note a bivariate measure that does not necessarily fulfill metric properties. Moreover,
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these violations occur when the distances are resampled (see below) to reduce bias

in measurements, or to improve the speed of computations.

Reflexivity

Reflexivity is the property that the self-distances d(x, x) are zero. Conceptually, this

embodies the notion of identity, and measures that do not result in reflexive dissim-

ilarities are problematic. The reason is, of course, that such dissimilarities cannot be

interpreted in terms of points, but would need to be realized as extended objects —

if this is consistently possible at all. Therefore, reflexivity should not be destroyed

by even the effect of measurement noise, but since the numerical calculation of dis-

tances can introduce round-off errors, reflexivity can be violated in practice. The

usual solution is to simply force the diagonal terms of dissimilarity matrices to zero,

but there is a situation in which self-distances naturally occur and contain valuable

information.

Up to now we have been assuming implicitly that measurements made on sys-

tems are ideal, in the sense that the system’s behavior is captured in its totality. In

practice this is barely the case, however, since measurements are finite and should

always be considered approximations of a system. If we consider generalized mea-

surements (Section 1.1) that result in probability measures, these measures are em-

pirical and might differ from the true probability measure that would be obtained

under ideal conditions. The variability inherent in these probability measures can be

estimated, however, by bootstrapping the empirical measures. Thereby, a random

sample (with replacement) is drawn from the measure under consideration, usually

of the same size as the original observations on which that measure is based, and in-

terpreted as another (empirical) probability measure. Repeating this process a num-

ber of times, a set of probability measures is obtained that represent the variability

of the unknown, underlying probability measure. Although this is not an unbiased

method, since it takes an empirical realization of a probability measure as its point

of departure, such bootstrapping obtains an approximation of the original measure

that is valid to a great extent, i.e., with largely reduced statistical error (Efron, 1981;

Davison and Hinkley, 1997).

A second advantage of resampling the measurements is that one can choose a

smaller sample size. Although this invariably increases the variance, and a larger

number of bootstrap replications is needed to obtain the same reduction in bias, it

may speed up computations enormously. We will therefore routinely use this de-

vice for the involved calculations of the optimal transportation distances (confer Sec-

tions 2.5,3.6.3,6.4). In practice, it will result in not a single distance between two sys-

tems, but rather in a set of bootstrap replicates of numerical distances. We will then

take the mean of these as an estimate of the “true” distance between two systems.

A special case occurs with the self-distances d(x, x), however, since distances can

only be nonnegative. The magnitude of the self-distances under resampling is there-
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fore an indication of the numerical resolution of our distance measure. Systems that

are closer than the average self-distance cannot be resolved properly and appear to

be distinct in actual calculations, and distances between two distinct systems should

be considered to be influenced by statistical errors of the same order. This state of

affairs can also not be remedied by subtracting a constant from all distances, since

this might destroy the triangle inequality (see below). It is important to keep this

qualification in mind.

Symmetry

Violations of symmetry, where d(x, y) 6= d(y, x) can arise by noise or resampling

error (see above), but might also indicate directionality effects. These again lead

to representations of systems as extended objects (confer Figure 6.1 in Chapter 6),

which is undesirable for further analysis. In the first case, the accepted method is

to simply average out the asymmetries. Given a dissimilarity matrix D, it can be

decomposed into a symmetric part S = 1
2 (D +Dt) and an antisymmetric part A =

1
2 (D −Dt), such that

D = A+ S. (A.13)

The symmetric part S is then used as an estimate of the underlying true distances.

However, if the antisymmetric part A is not of negligible size relative to S, this hints

at the influence of directionality. General dissimilarity measures (see Section 6.3

for examples) might measure the flow of information between two systems, or the

strength of influence one system exerts upon another, which are genuinely asym-

metric effects. Due to the decomposition (A.13), however, it is possible to treat the

symmetric and antisymmetric part independently. This problem is therefore allevi-

ated to a great extent. Treatment of the antisymmetric part is further discussed in

Section 6.2.2, for completeness.

Triangle inequality

The triangle inequality is basic to a representation in Euclidean space. As before, vi-

olations of this property hint at directionality effects and suggest that systems might

need to be represented by extended objects (Figure 6.1). It is the most common viola-

tion for many dissimilarity measures, since reflexivity and symmetry are often easy

to accomplish, whereas the triangle inequality is a nontrivial geometric constraint.

Violations of the triangle inequality are therefore important conceptually, since they

suggest that a geometric representation might be unsuitable. If the triangle inequal-

ity is not fulfilled, it is not possible to compare more than two systems in a sensible

(multivariate) way without introducing additional, spurious effects that are undesir-

able. However, adding a constant c > 0 to all distances (from a finite set), the triangle
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Box 12. How to publish distance matrices?

When publishing research results obtained from or with (measured) distance matri-
ces, the following information should ideally be also given:

• Was the triangle inequality fulfilled? If not, how large was the maximal viola-
tion?

• Were all eigenvalues nonnegative? If not, how large was the negative eigen-
value of largest magnitude? How many positive and negative eigenvalues
were there?

• Were all diagonal entries zero? If not, how large was the largest diagonal ele-
ment?

inequality can always be enforced, since for large enough c the equation

d(x, y) ≤ d(x, z) + d(z, y) + c, (A.14)

will be fulfilled.

Bootrapping the distances can break the triangle inequality, and to ensure multi-

variate comparability we will use the smallest possible constant in (A.14) to fix this,

if needed. Of course such violations of the triangle inequality need to be reported.

A.3 Statistical inference

Although multidimensional scaling has a long history, statistical inference about re-

constructed point configurations is seldomly encountered in the literature (but see

(Anderson and Robinson, 2003)). In this section we will therefore advocate and de-

scribe the main methods of statistical analysis used in the rest of this thesis. The start-

ing point for most methods considered here is the reconstructed point configuration

of N systems, i.e., their representation as N vectors in a Euclidean space En, where

n ≤ N . We call this the behavior or functional space of the systems. This representation

allows for the use of multivariate analysis methods. We are particularly interested in

the task of classifying distinct groups of systems. More precisely, we will consider su-

pervised classification, in which the true group assignments of all points are assumed

to be known perfectly. Let there be g ∈ N distinct groups G1, . . . , Gg, and let the true

group label of a point x ∈ En be given by an indicator variable z = (z1, . . . , zg), such

that zi = 1 if x ∈ Gi and zi = 0 if x /∈ Gi. Let (x1, . . . , xN ) denote the points from En

representing the N systems under study. Denote by λ = (λ1, . . . , λN ) the labelling,

such that gi = k if and only if zk = 1 for the point xi.
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A.3.1 Multiple response permutation testing

The first question about the representation (x1, . . . , xN ) of N systems from a priori

known g groups is whether this representation does carry information on the group

structure, and to what extent.

To assess this, we employ a permutation hypothesis test. Under the null hypothe-

sis of no difference with regard to group association, the labelling λ can be permuted

randomly. As a test statistic, we will use the weighted mean of within-group means

of pairwise distances among groups. Let (N1, . . . , Ng) be the sizes of the g groups,

then this is given by

δλ =

g
∑

k=1

Nk/
∑

lNl

Nk(Nk − 1)/2

∑

i<j
λi=λj=k

Dij , (A.15)

conditional on the group labelling λ and the pairwise distances Dij . Under the null

hypothesis the test statistic δ will be invariant under permutations πλ of the group

labelling, and the significance probability of this test is the fraction of values of δπλ

obtained that are smaller than the value δλ for the original labelling λ:

p =
#{δπλ < δλ}

m+ 1
, (A.16)

where m is the number of permutations. Considering all distinct
(

N !
N1!N2!···Ng!

)

per-

mutations will be often infeasible, so the value of p is estimated by considering

a large enough number of random permutations (typically on the order of 105 or

larger). This test is called a multiple response permutation procedure (MRPP).

Similar as in analysis of variance, the chance-corrected within-group agreement

A = 1 − δλ
Eδπλ

, (A.17)

where Eδπλ is approximated by the mean of δ under all permutations π considered,

is a coefficient of determination that quantifies how much of the group structure is

“explained” by the distances.

It is important to stress the difference between these two diagnostic measures.

Whereas a small p-value indicates that the structure of the distances is significantly

dependent on the group association, it might still be the case (and often will be in

practice) that the size of this effect, as measured by A, is rather small. To this extent,

the value of A indicates the signal-to-noise ratio of the distances.

The MRPP test is calculated from the distance information only, and can there-

fore be performed for both the original distance matrix D, and additionally for the

distance matrix ∆ of the reconstructed points (x1, . . . , xN ) that is subject to misrep-
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Figure A.6: Example: MRPP test in the Pima dataset. A: Distance matrix between all
subjects (N1 = 28 with no diabetes, N2 = 12 with diabetes; separated by dark lines).
B: Distribution of MRPP statistic δ for the distances in (A). C: Distribution of δ for
the distances of the reconstructed two-dimensional configuration. D: Reconstructed
configuration (dark circles: diabetes, open circles: no diabetes).

resentation errors. Both of these tests are of value in practice. The first shows the

extent to which measured distances capture the group structure, the second shows

how much of this is still preserved under reconstruction. Thereby, it can be judged

whether a Euclidean representation is adequate.

Example 8. Let us illustrate the MRPP test with the Pima dataset from the R pack-

age MASS (Venables and Ripley, 1999). This dataset contains information collected

by the US National Institute of Diabetes and Digestive and Kidney Diseases on di-

abetes in women of Pima Indian heritage. We will use five variables from the first

40 entries of the training data Pima.tr: plasma glucose concentration, blood pres-

sure, body-mass-index, diabetes pedigree function, and age. The outcome (diabetes

or not) is known, with N1 = 28 subjects showing no symptoms of diabetes, and

N2 = 12 being diagnosed with diabetes. Distances between subjects were calculated

by first centering and scaling the predictor variables to unit variance, and then tak-

ing Euclidean distance in the five-dimensional space. Figure A.6 shows the distance

matrix, the reconstructed point configuration in two-dimensions, and the distribu-

tion of the MRPP statistic δ for both sets of distances. Interestingly, the within-group

agreement A of the reconstructed configuration is twice as large as for the original

distances, indicating that dimension reduction can improve the classificatory con-

trast.

A.3.2 Discriminant analysis

In the distance-based approach, discrimination of systems is achieved from their rep-

resentation in Euclidean space En. We advocate the use of robust and conceptually
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simple analysis methods, and have therefore chosen canonical discriminant analysis

as our method of choice for the classification of systems. Canonical discriminant

functions are linear combinations of variables that best separate the mean vectors of

two or more groups of multivariate observations relative to the within-group vari-

ance. They are variously known as canonical variates or discriminant coordinates in

the literature and generalize the linear discriminant analysis of Fisher (1936) (for the

case of g = 2 groups). For this reason, the term linear discriminant analysis (LDA) is

also used for the analysis described here.

Let B0 be the covariance matrix of the group-wise distributions,

B0 =
1

g − 1

g
∑

i=1

(µi − µ̄)(µi − µ̄)t, (A.18)

where µ̄ = 1
g

∑g
i=1 µi is the pooled mean1. In practice this will be approximated by

the sample between-groups covariance matrix on g − 1 degrees of freedoms,

B =
1

g − 1

g
∑

i=1

Ni(x̄i − x̄)(x̄i − x̄)t, (A.19)

where x̄i is the sample mean of the i-th group, and x̄ = 1
g

∑g
i=1 x̄i = 1

N

∑N
i=1 xi is

the mean over the whole sample. The matrix B0 (and therefore also B) is of rank

b0 ≤ g − 1, where b0 = g − 1 if and only if the group-means µ1, . . . , µg are linearly

independent.

Let Σ0 be the within-group covariance matrix. The main assumption here is that

this is equal for each group (homoscedasticity assumption), and it is estimated by the

pooled within-group sample covariance matrix. Let X = [x1 · · ·xN ]t be the (N × n)

matrix of coordinates and let M be the (g × n) matrix of group means. Define the

(N × g) matrix of group indicators Z by Zij = 1 if xi ∈ Gi, and Zij = 0 otherwise.

Then

Σ =
1

N − g
(X − ZM)t(X − ZM) and B =

1

g − 1
(ZM − 1N x̄

t)t(ZM − 1N x̄
t)

(A.20)

are the two sample covariance matrices in matrix notation.

There exist r = min(n, g − 1) canonical variates (discriminant “scores”), and for

the coordinates in X these are defined by

S = XA, (A.21)

where A = [a1 · · · ar] is a (n × r) scaling matrix, such that a1 maximizes the ratio

1 Using coordinates derived from double centering clearly µ̄ = 0, but we prefer to exhibit the general case

here.
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(generalized Rayleigh quotient)
at
1Ba1

at
1Σa1

. (A.22)

The scaling acts on the right, since the coordinates X are in row-order. For k =

2, . . . , r, the variate ak maximizes the ratio (A.22) subject to the orthogonality con-

straint at
kΣ0ah = 0 (for h = 1, . . . , k−1). To compute A, choose a preliminary scaling

XA1 of the variables such that they have the identity as their within-group correla-

tion matrix. This is achieved by taking the principal components with respect to Σ,

normalized by their variance. On the rescaled variables XA1, the maximization of

(A.22) reduces to the maximization of aTBa under the constraint ||a|| = 1. The latter

is solved by taking a to be the (normalized) eigenvector of B corresponding to the

largest eigenvalue. The eigenvectors corresponding to the next g − 2 largest eigen-

values supply the other g−2 canonical variates, which are orthogonal as required. In

practive we use the lda function in the standard R package MASS (Venables and Rip-

ley, 1999, Ch. 11.4), which employs singular value decomposition (SVD) to find the

eigenvectors. Note that this code, as is standard in multivariate analysis, rescales the

different coordinates in the reconstruction space En to unit variance prior to calcula-

tion of the canonical variates. This is one reason why cross-validation (Section A.3.3)

is so important: This standardization allows coordinates which contribute very little

to the distances (between systems) to influence the discrimination on equal terms

with coordinates that contribute much more to the distances. For small sample sizes

N the discrimination could then be based on fitting the “noise” in the distances,

rather than the “signal”.

The allocation of a vector x to a group Gi can be achieved in a number of ways.

The simplest way is to choose the group to which the point x has smallest distance.

However, this distance should consider the statistical properties of the underlying

group conditional distribution, i.e., its spread around its center point. It is therefore

common to measure the distance between a vector x and the i-th group, with mean

µi and covariance matrix Σ, by their Mahalanobis distance,

(

(x− µi)
tΣ−1(x− µi)

)1/2
. (A.23)

If we assume that the distribution of the i-th class is multivariate normal with

mean µi and covariance matrix Σ, then this corresponds to maximum a posteriori clas-

sification, up to the prior distribution. In detail, the Bayes rule that minimizes the

overall misclassification error (under equal misallocation costs) is given by

r(x) = i if πifi(x) ≥ πjfj(x) (j = 1, . . . , g; j 6= i), (A.24)

where π = (π1, . . . , πg) is the prior distribution of groups and fi is the group-condi-

tional probability density of the i-th group. The prior distribution is in practice ap-
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proximated by the relative group sizes, and fi(x) = (2π)−n/2|Σ|−1/2 exp(−1
2 (x −

µi)
tΣ−1(x−µi)). It is more convenient to work in terms of the log-likelihood, which

is given by

Li = −1

2
(x− µi)

tΣ−1(x− µi) + log |Σ| + log πi. (A.25)

Subtracting the constant terms, this simplifies to the maximalization of

Li = xtΣ−1µi −
1

2
µt

iΣ
−1µi + log πi. (A.26)

In the coordinate system defined by the canonical covariates, the within-group vari-

ance is trivial, such that on these variables the Mahalanobis distance is just ||x−µi||.
The log-likelihood further simplifies to

Li = xtµi −
1

2
||µi||2 + log πi. (A.27)

The a posteriori probabilities of group membership are then given by

exp(−(xtµi − minj x
tµj))

∑

k exp(−(xtµk − minj xtµj))
. (A.28)

Let us summarize. The canonical variates are defined in terms of seoond-order

statistical properties (means and covariances) between and within groups of (nor-

malized) coordinates. The main assumption is that the covariances for each group

are equal (homoscedasticity assumption). In particular, it is not needed to assume

that the group conditional distributions are multivariate normal. Under this assump-

tion, however, the allocation rule (A.24) is optimal, if the total misallocation error is

to be minimized. The reasons we routinely employ this normal based classification

are summarized in Box 13.

A.3.3 Cross-validation and diagnostic measures in classification

For small to medium sized datasets encountered here, cross-validation of classifica-

tion accuracies is achieved by a leave-one-out method. This proceeds in the follow-

ing steps:

1. For the k-th sample point (k = 1, . . . , N ) we remove its distance information

from the set of original distancesDij , leading to a new (N−1)-by-(N−1) matrix

of squared distances D2
(k).

2. We reconstruct a Euclidean configuration X
(k)
n in n dimensions by metric mul-

tidimensional scaling of D2
(k).
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Box 13. Why use the homoscedastic normal-based allocation rule?

• Why parametric classification: Although non-parametric alternatives exist,
these are much more involved and cannot be routinely used for small sample
sizes.

• Why homoscedasticity: Estimation of multivariate covariance matrices is dif-
ficult for small sample sizes. The assumption of homoscedasticity allows to
only estimate one covariance matrix in place of many, thereby improving the
stability of the estimate.

• Why normal based allocation: The multivariate normal model is flexible and
computationally efficient, and it is relatively robust. Even if the true distribu-
tion is not normal, its approximation by a normal distribution (second-order
approximation) is often close, if the distribution has finite second moments
and is not too irregular otherwise.

3. We train the classifier on X
(k)
n , i.e., we estimate the group means and covari-

ance matrix from X
(k)
n .

4. We estimate the coordinates x′ of the i-th sample point in the coordinate system

defined by X
(k)
n by minimizing an error criterion (Trosset and Priebe, 2008).

5. We predict the group membership of the coordinates x′ by the normal-based

rule. Additionally, we store the discriminant scores of x′.

6. The above is repeated for all N points. The total number of correct predictions

results in the cross-validated accuracy.

The accuracy estimates obtained thereby are almost unbiased. The only param-

eter needed is the reconstruction dimension n ≤ N . We will usually determine this

by considering each possible choice of 1 ≤ n ≤ N ′ up to some maximum dimension

N ′ ≤ N and choosing the dimension n′ that maximizes the cross-validated classifi-

cation accuracy. Note that this introduces a certain selection bias into the accuracies,

but this cannot be avoided for small datasets, and should in fact be negligible.

The cross-validated discriminant scores obtained by the above method provide

us with additional diagnostic information. Note however, that these scores are bi-

ased due to the different scaling invoked at each step. The main problem here is, that

the geometric orientation of the discriminant functions can and will often be different

for the distinct X
(k)
n . For two groups, the sign of the discriminant scores can change,

but this problem can be largely avoided: Since the original group membership is

known, discriminant scores with the wrong sign can be corrected. Thereby, only a

slight bias occurs, as the origin of the coordinate system of the X
(k)
n depends on the
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points. The discriminant scores will therefore be slightly inaccurate and should be

considered with care. As often in statistics, outliers in the data can lead to unex-

pected results, and it at this point where this could potentially happen.

In a classification task with two groups the classification is achieved by fixing

a numerical threshold and predicting all scores to the left of it as negatives, and all

scores to the right as positives. Varying the classification threshold, the number of

correctly predicted negatives and positives will change. This can be conveniently

visualized in a receiver-operator-characteristic, which allows to derive additional diag-

nostic measures (Hanley and McNeil, 1982).

Let TP denote the number of correctly predicted positives, let FP denote the

number of incorrectly predicted positives, and likewise TN and FN for the negatives.

The true positive rate (TPR) and the false positive rate (FPR) are defined by

TPR =
TP

TP + FN
, and FPR =

FP

FP + TN
, (A.29)

respectively. Note that TP + FN is the number of positives (known a priori) in the

dataset, and FP+TN the number of negatives. In the context of a diagnostic test the

true positive rate TPR is interpreted as the sensitivity, and 1 − FPR is interpreted as

the specificity. The receiver-operator-characteristic depicts the relationship between

TPR and FPR.

Example 9. For the Pima dataset of Example 8, classification results are shown in

Figure A.7. Receiver-operator characteristics of both the original data (A) and its op-

timal Euclidean reconstruction (D) are given. The accuracies (both resubstiution and

cross-validated) for the reconstruction indicate that resubstitution accuracies tend

to overestimate the classification success (B, in gray) for larger reconstruction di-

mensions. The cross-validated accuracies (B, in black) result in a realistic picture,

never rising above the accuracy 0.85 of the original data. Interestingly, for the opti-

mal reconstruction in two dimensions (maximal accuracy), the cross-validated accu-

racy is almost identical to the resubstitution accuracy, as are the receiver-operator-

characteristics (D). Again, this indicates that the distance-based classification can

improve classification.

A.3.4 Combining classifiers

In some cases of interest there exists more than one type of measurements of a given

family of systems and we will briefly discuss two situations here: (i) if more than one

distance matrix is available, and (ii) if more than one classification rule is available.

The first case can arise naturally in the framework of optimal transportation dis-

tances (Chapter B), since these distances form a parametric family. Similar to the

Minkowski distances ||x − y||p = (
∑

i |xi − yi|p)1/p, different distances (for distinct

values of p ≥ 1) stress slightly different aspects of the underlying geometry.
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Figure A.7: Classification in the Pima dataset. A: Receiver-operator-characteristic for
discriminating negatives (no diabetes) from positives (diabetes). Dark line: resubsti-
tution accuracies. Light line: cross-validated accuracies. The optimal normal-based
classification boundary is indicated (stippled lines), leading to the accuracies indi-
cated (above plot). B: Accuracies (grey: resubstitution, dark: cross-validated) against
reconstruction dimensions. C: Cross-validated discriminant scores for the optimal
two-dimensional reconstruction. D: Corresponding receiver-operator-characteristic.

We encounter a different instance of this problem in Chapter 3, where two distinct

time series are available for each subject. There, we will simply normalize both time

series to zero mean and unit variance, and combine them into a vector-valued time

series. This eventually leads to a multivariate probability distribution from which a

single distance matrix is computed.

We recommend to combine distinct measurements into a single distance for prac-

tical reasons. Note that squared dissimilarities are additive in the reconstructed Eu-

clidean space, and in the context of multidimensional scaling so-called three-way scal-

ing exploits this property, allowing to weight the contributions of distinct distance

matrices (Arabie et al., 1987). Since these methods are computationally involved,

they will not be considered further here.

For the second situation, there exists a large literature on voting procedures that

allow to combine distinct classifiers, and even optimal training rules for this meta-

decision problem (Tax et al., 2000).



Appendix B

Optimal transportation distances

Science is what we understand well enough to explain to a

computer. Art is verythings else we do.

Donald Knuth

I
n Section B.1 the general, probabilistic setting is introduced with which we work

in the following. Section B.2 introduces the optimal transportation problem which

is used to define a distance in Section B.3.

B.1 The setting

Recall the setting introduced in Section 1.1: A complex system S is measured by a

measuring device D. The system S is an element of an abstract space of systems

S, and a measuring device is a function that maps S ∈ S into a space of measure-

ments M . Since we are interested in quantitative measurements, the space M will

be a metric space (M,d), equipped with a distance d. For example, we could take

(M,d) to be some Euclidean space En or, more generally, a manifold with distance

induced by geodesics (shortest paths). However, to account for random influences

in the measurement process, we will more generally consider spaces of probability

measures on M .

Let (M,d) be a metric space. For simplicity of exposition, let us also assume that

M is complete, path-connected and has continuous distance function, such that it

is Hausdorff in the induced topology. A curve on M is a continuous function γ :

[0, 1] → M . It is a curve from x to y if γ(0) = x and γ(1) = y. The arc length of γ is

defined by

Lγ = sup
0=t0<t1<···<tn=1

n−1
∑

i=0

d(γ(ti), γ(ti+1)), (B.1)

where the supremum is taken over all possible partitions of [0, 1], for all n ∈ N. Note

that Lγ can be infinite; the curve γ is then called non-rectifiable.

Let us define a new metric dI onM , by letting the value of dI(x, y) be the infimum

of the lengths of all paths from x to y. This is called the induced intrinsic metric of

M . If dI(x, y) = d(x, y) for all points x, y ∈ M , then (M,d) is a length space and d

is called intrinsic. Euclidean space En and Riemannian manifolds are examples of
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length spaces. Since M is path-connected, it is a convex metric space, i.e., for any two

points x, y ∈M there exists a point z ∈M between x and y in the intrinsic metric.

Let µ be a probability measure on M with σ-algebra B. We will assume µ to be

a Radon measure, i.e., a tight locally-finite measure on the Borel σ-algebra of M ,

and denote the space of all such measures by P(M). Most of the time, however, we

will be working in the much simpler setting of a discrete probability space: Let µ

be a singular measure on M that is finitely presentable, i.e., such that there exists a

representation

µ =
n
∑

i=1

aiδxi
, (B.2)

where δxi
is the Dirac measure at point xi ∈M , and the norming constraint

∑n
i=1 ai =

1 is fulfilled. We further assume that xi 6= xj if i 6= j, which makes the representation

(B.2) unique (up to permutation of indices). Denote the space of all such measures by

PF(M). Measures in PF correspond to the notion of a weighted point set from the lit-

erature on classification. In our setting they represent a finite amount of information

obtained from a complex system.

In particular, let a probability measure µ0 ∈ P(M) represent the possible mea-

surements on a system S. Each elementary measurement corresponds to a point ofM ,

and if the state of the system S is repeatedly measured, we obtain a finite sequence

X1, X2, . . . , Xn of iid random variables (with respect to the measure µ0) taking val-

ues in M . These give rise to an empirical measure

µn[A] =
1

n

n
∑

i=1

δXi
[A], A ∈ B. (B.3)

The measure µn is itself a random variable, but fixing the outcomes, i.e., considering

a realization (x1, x2, . . . , xn) ∈Mn, a measure µ ∈ PF(M) is obtained,

µ =
n
∑

i=1

1

n
δxi
, (B.4)

which we call a realization of the measure µ0. Denote the space of all probability

measures (B.4) for fixed n ∈ N and µ0 ∈ P(M) by Pn(µ0).

B.2 Discrete optimal transportation

In this secion we will motivate the notion of distance with which we will be con-

cerned in the rest of the thesis. The starting point is the question of how to define a

useful distance for the measures in PF .

Example 10 (Total variation). The distance in variation between two measures µ and
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ν is

dTV(µ, ν) = sup
A∈B

|µ[A] − ν[A]|. (B.5)

It is obviously reflexive and symmetric. For the triangle inequality, let ǫ > 0 and

consider A ∈ B such that dTV(µ, ν) < |µ[A] − ν[A]| + ǫ. Then

dTV(µ, ν) < |µ[A] − ρ[A]| + |ρ[A] − ν[A]| + ǫ

< sup
A∈M

|µ[A] − ρ[A]| + sup
A∈M

|ρ[A] − ν[A]| + 2ǫ. (B.6)

Since this holds for all ǫ, the triangle inequality is established. Total variation dis-

tance metrizes the strong topology on the space of measures, and can be interpreted

easily: If two measures µ and ν have total variation p = dTV(µ, ν), then for any set

A ∈ F the probability assigned to it by µ and ν differs by at most p. For two measures

µ, ν ∈ PF concentrated on a countable set x1, x2, . . . , it simplifies to

dTV(µ, ν) =
∑

i

|µ[xi] − ν[xi]|. (B.7)

Unfortunately, total variation needs further effort to be usable in practice. Consider

an absolutely continuous µ0 ∈ P(M) with density f : M → [0, 1]. For two realiza-

tions µ, ν ∈ Pn(µ0) we have that pr(suppµ∩supp ν 6= ∅) = 0, so dTV(µ, ν) = 0 almost

surely. In practice, therefore, we will need to use some kind of density estimation to

achieve a non-trivial value dTV(µ, ν); confer (Schmid and Schmidt, 2006).

Example 11. The Hausdorff metric is a distance of subsets of a metric space (Exam-

ple 5). It can be turned into a distance for probability measures by “forgetting” the

probabilistic weights, i.e.,

dHD(µ, ν)
def
= dH(supp f, supp g), (B.8)

If M is a normed vector space, then a subset A ⊂ M and its translation x + A =

{x+ a | a ∈ A} have Hausdorff distance dH(A, x+ A) = ||x||, which seems natural.

However, Hausdorff distance is unstable against outliers. For example, consider the

family of measures defined by P0 = δ0 and Pn = 1
nδn + (1− 1

n )δ0 for all n > 0. Then

dHD(P0, Pn) = n.

Example 12 (Symmetric pullback distance). Let f : Mn → N be the projection of an

ordered n-tuple fromM into a single point of a metric space (N, d′). Call f symmetric

if its value does not depend on the order of its arguments, i.e., if f(x1, . . . , xn) =

f(xσ(1), . . . , xσ(n)) for all permutations σ from the symmetric group Σ(n) on n ele-

ments. Then

df (X,Y )
def
= d′(f(X), f(Y )) (B.9)



196 B. Optimal transportation distances

defines a distance between n-element subsets X,Y ⊂ M (the symmetric pullback of

the distance in N ).

In particular, if M has the structure of a vector space, then each function f :

Mn → N can be symmetrized, yielding a symmetric function

fσ(x1, . . . , xn)
def
=

1

n!

∑

σ∈Σ(n)

f(xσ(1), . . . , xσ(n)). (B.10)

For the projection to the first factor,

f : Mn →M, (x1, . . . , xn) 7→ x1, (B.11)

this yields the centroid

fσ(x1, . . . , xn) =
1

n

n
∑

i=1

xi (B.12)

with centroid distance df (X,Y ) = d(X̄, Ȳ ). This construction generalizes in the

obvious way to finite probability measures µ, ν ∈ Pn(µ0).

Note however, that the symmetric pullback distance is pseudo-metric: There usu-

ally exist many n-subsetsX,Y ofM with the same pullback distance, i.e., df (X,Y ) =

0 does not imply that X = Y .

All the above distances have various shortcomings that are not exhibited by the

following distance. Let µ, ν be two probability measures on M and consider a cost

function c : M ×M → R+. The value c(x, y) represents the cost to transport one

unit of (probability) mass from location x ∈ M to some location y ∈ M . We will

model the process of transforming measure µ into ν, relocating probability mass, by

a probability measure π on M ×M . Informally, dπ(x, y) measures the amount of

mass transferred from location x to y. To be admissible, the transference plan π has

to fulfill the conditions

π[A×M ] = µ[A], π[M ×B] = ν[B] (B.13)

for all measurable subsets A,B ⊆ M . We say that π has marginals µ and ν if (B.13)

holds, and denote by Π(µ, ν) the set of all admissible transference plans.

Kantorovich’s optimal transportation problem is to minimize the functional

I[π] =

∫

M×M

c(x, y) dπ(x, y) for π ∈ Π(µ, ν) (B.14)

over all transference plans Π(µ, ν).
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The optimal transportation cost between µ and ν is the value

Tc(µ, ν) = inf
π∈Π(µ,ν)

I[π], (B.15)

and transference plans π ∈ Π(µ, ν) that realize this optimum are called optimal trans-

ference plans.

Since (B.14) is a convex optimalization problem it admits a dual formulation.

Assume that the cost function c is lower semi-continuous, and define

J(ϕ, ψ) =

∫

M

ϕ dµ+

∫

M

ψ dν (B.16)

for all integrable functions (ϕ, ψ) ∈ L = L1( dµ) × L1( dν). Let Φc be the set of all

measurable functions (ϕ, ψ) ∈ L such that

ϕ(x) + ψ(y) ≤ c(x, y) (B.17)

for dµ-almost all x ∈M and dν-almost all y ∈M . Then (Villani, 2003, Th. 1.3)

inf
Π(µ,ν)

I[π] = sup
Φc

J(ϕ, ψ). (B.18)

For measures µ, ν ∈ PF with representations

µ =
m
∑

i=1

aiδxi
and ν =

n
∑

j=1

bjδyj
(B.19)

any measure in Π(µ, ν) can be represented as a bistochastic m×nmatrix π = (πij)i,j ,

where the source and sink conditions

m
∑

i=1

πij = bj , j = 1, 2, . . . , n and
n
∑

j=1

πij = ai, i = 1, 2, . . . ,m, (B.20)

are the discrete analog of (B.13), and the problem is to minimize the objective func-

tion
∑

ij

πijcij , (B.21)

where cij = c(xi, yj) is the cost matrix.

Its dual formulation is to maximize

∑

i

ϕiai +
∑

j

ψjbj (B.22)

under the constraint ϕi + ψj ≤ cij .
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Example 13 (Discrete distance). Consider the special cost c(x, y) = 1x6=y , i.e., the

distance induced by the discrete topology. Then the total transportation cost is

Tc(µ, ν) = dTV(µ, ν). (B.23)

The Kantorovich problem (B.14) is actually a relaxed version of Monge’s trans-

portation problem. In the latter, it is further required that no mass be split, so the

transference plan π has the special form

dπ(x, y) = dµ(x)δ[y = T (x)] (B.24)

for some measurable map T : M → M . The associated total transportation cost is

then

I[π] =

∫

M

c(x, T (x)) dµ(x), (B.25)

and the condition (B.13) on the marginals translates as

ν[B] = µ[T−1(B)] for all measurable B ⊆M. (B.26)

If this condition is satisfied, we call ν the push-forward of µ by T , denoted by ν =

T#µ. For measures µ, ν ∈ PF , the optimal transference plans in Kantorovich’s prob-

lem (transportation problem) coincide with solutions to Monge’s problem.

A further relaxation is obtained when the cost c(x, y) is a distance. The dual (B.18)

of the Kantorovich problem then takes the following form:

Theorem 9 (Kantorovich-Rubinstein (Villani, 2003)[ch. 1.2). ] Let X = Y be a Polish

space1, and let c be lower semi-continuous. Then:

Tc(µ, ν) = sup

{∫

X

ϕ d(µ− ν); where

ϕ ∈ L1(d|µ− ν|) and sup
x6=y

|ϕ(x) − ϕ(y)|
c(x, y)

≤ 1

}

(B.27)

The Kantorovich-Rubinstein theorem implies that Td(µ + σ, ν + σ) = Td(µ, ν),

i.e., the invariance of the Kantorovich-Rubinstein distance under subtraction of mass

(Villani, 2003, Corollary 1.16). In other words, the total cost only depends on the

difference µ − ν. The Kantorovich problem is then equivalent to the Kantorovich-

Rubinstein transshipment problem: Minimize I[π] for all product measures π : M ×
M → R+, such that

π[A×M ] − π[M ×A] = (µ− ν)[A]

1 A topological space is a Polish space if it is homeomorphic to a complete metric space that has a countable

dense subset. This is a general class of spaces that are convenient to work with. Many spaces of practical

interest fall into this category.
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for all measureable sets A ⊆ B(M). This transshipment problem is a strongly re-

laxed version of the optimal transportation problem. For example, if p > 1 then the

transshipment problem with cost c(x, y) = ||x − y||p has optimal cost zero (Villani,

2003). For this reason, the general transshipment problem is not investigated her.e

Example 14 (Assignment and transportation problem). The discrete Kantorovich

problem (B.19-B.21) is also known as the (Hitchcock) transportation problem in the

literature on combinatorial optimization (Korte and Vygen, 2007). The special case

where m = n in the representation (B.19) is the assignment problem. Interestingly, as

a consequence of the Birkhoff theorem, the latter is solved by a permutation σ map-

ping each source ai to a unique sink bσ(i) (i = 1, . . . , n); confer (Bapat and Raghavan,

1997).

B.3 Optimal transportation distances

Let (M,d) be a metric space and consider the cost function c(x, y) = d(x, y)p, if p > 0

and c(x, y) = 1x6=y if p = 0. Recall that Tc(µ, ν) denotes the cost of an optimal

transference plan between µ and ν.

Definition 18 (Wasserstein distances). Let p ≥ 0. The Wasserstein distance of order p is

Wp(µ, ν) = Tdp(µ, ν)1/p if p ∈ [1,∞), and Wp(µ, ν) = Tdp(µ, ν) if p ∈ [0, 1).

Denote by Pp the space of probability measures with finite moments of order p,

i.e., such that
∫

d(x0, x)
p dµ(x) <∞

for some x0 ∈M . The following is proved in (Villani, 2003, Th. 7.3):

Theorem 10. The Wasserstein distance Wp, p ≥ 0, is a metric on Pp.

The Wasserstein distances Wp are ordered: p ≥ q ≥ 1 implies, by Hölder’s in-

equality, thatWp ≥Wq. On a normed space, the Wasserstein distances are minorized

by the distance in means, such that

Wp(µ, ν) ≥
∣

∣

∣

∣

∣

∣

∣

∣

∫

X

x d(µ− ν)

∣

∣

∣

∣

∣

∣

∣

∣

p

(B.28)

and behave well under rescaling:

Wp(αµ, αν) = |α|Wp(µ, ν),

where αµ indicates the measure mα#µ, obtained by push-forward of multiplication

by α. If p = 2 we have the additional subadditivity property

W2(α1µ1 + α2µ2, α1ν1 + α2ν2) ≤
(

α2
1W2(µ1, ν1)

2 + α2
2W2(µ2, ν2)

2
)1/2

.





Appendix C

The dts software package

C.1 Implementation and installation

The methods of distance-based analysis can only be used in practice if there exists

a reliable computational code. We have therefore implemented a number of algo-

rithms as a software package for the statistical computing environment R (R Devel-

opment Core Team, 2008).

The main computational routine td solves discrete transportation or assignment

problems in R
n for a variety of ground distances and Wasserstein orders. Distances

can be wrapped for phase distributions. One-dimensional problems are efficiently

solved by monotone arrangement. All other problems are either solved by a ded-

icated minimum-cost flow solver or by a general linear programming solver. The

first possibility is offered by the MCF code (Löbel, 1996) which is freely available

for academic users1. Due to license issues, this code was not incorporated into the

dts package, but compiles into the library if it is present. The second possibility is

offered by the lpSolve package, which needs to be separately installed2.

The package dts is available as a source-code distribution under the terms of the

Creative Commons Attribution-Noncommerical-Share Alike 3.0 Unported License3.

We will discuss its installation for a general UNIX system here. To install dts when

MCF is present, let MCF_ROOT be the directory containing the MCF files. Issuing the

command

R CMD INSTALL dts.tar.gz --configure-vars='MCF_ROOT=${MCF_ROOT}$'

configures and installs dts from the source package dts.tar.gz. If MCF is not

present, the package can be installed in the usual way, but for computations the

package lpSolve is needed, and they will be slower. In this case, installation can be

performed by executing

R CMD INSTALL dts.tar.gz

on the command line. Note that administrative rights might be needed for a

global installation.

Further packages that are required to use all features of dts are MASS (for multi-

1 URL: http://www.zib.de/Optimization/Software/Mcf
2 URL: http://cran.r-project.org/web/packages/lpSolve/index.html
3 URL: http://creativecommons.org/licenses/by-nc-sa/3.0/

http://www.zib.de/Optimization/Software/Mcf
http://cran.r-project.org/web/packages/lpSolve/index.html
http://creativecommons.org/licenses/by-nc-sa/3.0/
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dimensional scaling), vegan (for MRPP permutation testing), odesolve (for integra-

tion of differential equations) and ROCR (for receiver-operator curves).

C.2 Reference

The following is a complete description of all functions available in the dts package,

version 1.0-04.

cmdscale.add Out-of-sample classical multidimensional scaling

Description

Obtain the coordinates of an additional point in classical multidimensional scaling.

Usage

cmdscale.add(x, m, k = 2, points = NULL, verbose = FALSE, ntries = 10,

max.iter = 100)

Arguments

x Vector of distances between the additional point and all previous points.

m Distance matrix of all previous points.

k Dimension of Euclidean space in which to represent the points.

points Reconstructed coordinates of previous points (optional).

verbose Logical value to indicate whether details of the computation should be shown.

ntries Number of times the solution is attempted.

max.iter Maximal number of iterations in the minimalization problem.

Details

The out-of-sample problem consists in approximating the coordinates of an additional point in a

representation of n previous points obtained by multidimensional scaling, from its distances with

all previous points. In the case of classical multidimensional scaling considered here, the problem

can be solved by minimizing a nonlinear error functional (Trosset and Priebe, 2008). The R function

optim is called a number ntries of times to perform a simplex search (Nelder and Mead, 1965), and

the coordinates that result in the minimal error are returned. For the previous points, coordinates

in points are used if given; otherwise these are calculated by multidimensional scaling from the

distances in m. Since the coordinates in multidimensional scaling are unique up to a rotation, this is

useful to ensure that the out-of-sample point lies in an already established coordinate system.

4 The version number follows the major/minor convention, where the first number indicates significant

(major) changes, the second number minor changes (with even numbers indicating stable releases and

odd numbers indicating developmental versions), and the last number is used to indicate consecutive

bug fixes.
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Value

A list containing the following components:

points A matrix whose rows contain the coordinates of all points (including the out-

of-sample point)

eig A vector of the largest k eigenvalues (see cmdscale in package MASS)

y A vector containing the coordinates of the out-of-sample point

points0 A matrix whose rows contain the coordinates of all previous points (excluding

the out-of-sample point)

Note

This function uses the cmdscale code from the package MASS to obtain the representation of the

original points.

Examples

library(MooreRayleigh) # rsphere

x <- rsphere(10) # uniform sample on the sphere

x0 <- rsphere(1) # one additional point

m.all <- as.matrix(dist(rbind(x,x0))) # all mutual Euclidean distances

attributes(m.all)$dimnames <- NULL

m <- m.all[1:10,1:10]

m0 <- m.all[11,1:10]

library(MASS)

par(mfrow=c(1,2))

mds <- cmdscale(m.all,k=2,eig=TRUE)$points # project to the plane

eqscplot(mds[,1],mds[,2],xlab="x",ylab="y",

tol=0.3,main="MDS")

points(mds[11,1],mds[11,2],pch=4) # mark additional point

mds.add <- cmdscale.add(m0,m,k=2,points=mds[1:10,])$points

eqscplot(mds.add[,1],mds.add[,2],xlab="x",ylab="y",

tol=0.3,main="Out-of-sample MDS")

points(mds.add[11,1],mds.add[11,2],pch=4) # mark additional point

cat(paste("Distance between MDS and out-of-sample MDS =",

round(sqrt(sum(mds.add[11,]-mds[11,])^2),4),"\n"))

ldadist.cv Cross-validated linear discriminant analysis of distances matrices

Description

Linear discriminant analysis for distance matrices.

Usage

ldadist.cv(x, classes, pc = NULL, search = FALSE, verbose = TRUE)



204 ldadist.cv

Arguments

x A square matrix of mutual distances between n data items.

classes A factor specifying the class membership of each data item.

pc The number of components to use in the reconstruction. Can be empty if

search is TRUE.

search A logical value indicating whether to search for the optimal number of com-

ponents (see details).

verbose A logical value indicating whether to show details when search is TRUE.

Details

Linear discriminant analysis is performed on coordinates obtained by classical multidimensional

scaling. This assumes the data to be represented by points in an n-dimensional Euclidean space.

The class membership is estimated, and the fraction of correct classifications defines the accuracy. To

reliably estimate this, leave-one-out crossvalidation is implemented by the out-of-sample method. In

detail, for each data item its distance information is removed from x, the coordinates of the remaining

points are calculated by classical multidimensional scaling, and the coordinates of the present point

are approximated from its distances to the remaining points (see cmdscale.add). The classification

of the single point is obtained by predict.lda from the MASS package, with the remaining points

as training data for the linear discriminant function (using lda from the MASS package).

The number of components n can be specified (parameter pc). If search is TRUE, the number of

components is searched that results in the best accuracy. In this case, the parameter pc is the maximal

number of components to use. If pc is not given, the value n-4 is used (the points usually become

collinear for larger numbers of components).

Value

A list containing the following components:

predict, cv.predict

A vector containing the predicted class membership.

posterior, cv.posterior

A vector containing the maximum a posteriori classification probabilities for

the estimated class membership.

pc, cv.pc The number of components used in the representation by multidimensional

scaling.

tab, cv.tab A two-by-k summary table of the classification, where k is the number of dis-

tinct classes.
accuracy, cv.accuracy

A single number containg the (average) classification accuracy.

correct, cv.correct

A vector containing ones (correct) and zeros (false) for the classification of each

item.

acc, cv.acc A vector containg the (average) classification accuracies for each number of

components evaluated. Equal to accuracy (cv.accuracy) if search is

FALSE.

If search is TRUE, the values are returned for the number of components with the highest accuracy

among all searched.
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Note

If the number of components is determined by searching, the resulting accuracies are slightly over-

estimated and have to be interpreted with care. For large sample sizes this bias can be avoided by

an additional stage of crossvalidation, but this has not been implemented.

Also note that the number of components should at most be equal to the number of samples from

the smallest class.

Examples

ndim <- 6

# generate 20 normal variates in "ndim" dimensions

x <- matrix(rnorm(20*ndim),ncol=ndim)

# translate the second half

x[11:20,] <- x[11:20,] + c(0,0,0,rnorm(ndim-3,mean=1))

m <- as.matrix(dist(x))

attributes(m)$dimnames <- NULL

grouping <- as.factor(c(rep(1,10),rep(2,10)))

res <- ldadist.cv(m,grouping,search=TRUE,pc=ndim-1,verbose=TRUE)

mfdfa Multifractal detrended fluctuation analysis

Description

Multifractal detrended fluctuation analysis.

Usage

MFDFA(x, detrend = "poly1", q = c(1, 2), sum.order = 0,

scale.max = trunc(length(x)/4), scale.min = 16, scale.ratio = 2,

verbose = FALSE)

Arguments

x Time series

detrend Detrending method. Can be either ‘bridge’ for bridge regression or ‘polyN’

for polynomial detrending, where N > 0 indicates the order to use.

q A numerical vector that indicates which scaling exponents to extract. Standard

detrended fluctuation analysis corresponds to q = 2.

sum.order Number of integrations (positive order) or differentiations (negative order) to

perform before the analysis.

scale.max Maximal scale to consider.

scale.min Minimal scale to consider.

scale.ratio Ratio between successive scales.

verbose A logical value that indicates whether to show details of the computation.
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Details

Deviations of a time series Xi (i = 1, . . . , N ) from its mean X̄ are first integrated,

Yi =
N

X

j=1

(Xi − X̄),

leading to an unbounded profile. For a given scale s > 0, the profile Yi is then divided into Ns =

int(N/s) nonoverlapping segments of length s. Since the length N of the time series is usually not a

multiple of the scale s, a short part at the end of the profile may remain. In order not to disregard this

part, the procedure is repeated starting from the opposite end, leading to a total of 2Ns segments,

denoted by Yk;j (k = 1, . . . , 2Ns; j = 1, . . . , s). For each segment a trend Zk;j (usually linear or

quadratic, corresponding to detrend="poly1" or detrend="poly2") is individually estimated

by least-squares and subtracted. The fluctuation function for a given order q ≥ 0 is given by

Fq(s) =

0

B

@

1

2Ns

X

k

0

@

1

s

X

j

(Yk;j − Zk;j)
2

1

A

q/2
1

C

A

1/q

.

This procedure is repeated for a number of scales s and exponents q. The scaling behavior is then

assessed by weighted least-squares fitting a line to the scaling function Fq(s) with respect to scale s

in a double logarithmic plot, such that log Fq(s) ∝ α log s, with weights proportional to the index

of scale (e.g., the third scale is weighted 2/3 relative to the second scale), to compensate for the

reduction in data points on which the estimation of the corresponding Fq(s) is based. If the residual

error of the fit R2 is large enough, the estimate α ≥ 0 is the q-scaling exponent of x for each value of

q.

Exponents for q = 0 can also be evaluated, but need special treatment, with the scaling function

given by

F0(s) = exp

0

@

1

4Ns

X

k

ln

0

@

1

s

X

j

(Yk;j − Zk;j)
2

1

A

1

A .

Note that only nonnegative exponents can be evaluted. However, additional integrations (or finite

differences) can be performed before the analysis, indicated by sum.order. Since each integration

increases the exponent by one, the estimated exponent α is corrected by subtracting sum.order-1

from it at the end. This allows to also resolve negative exponents.

Value

A list containing the following components:

h A vector containing the estimated scaling exponents.

r.squared The residual errors of the linear fits of the scaling relationship.

scale A vector that contains the scales that were considered.

rmse A matrix that contains the residual errors for each exponent at each scale.

q A vector that indicates which scaling exponents were extracted.

Note

This implementation is based heavily on the DFA code in the fractal package of W. Constantine and D.

Percival (unpublished), correcting an error in the detrending and adding functionality for calculation

of multifractal exponents.
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Examples

x <- rnorm(2000

foo <- mfdfa(x,q=seq(0,10),detrend="poly2",verbose=TRUE)

plot(res$r.squared,ylim=c(0,1),type="b",xlim="") # goodness-of-fit

lines(res$h,type="b",pch=2) # scaling exponents

legend("bottomleft",pch=c(1,2),legend=c("goodness-of-fit","exponents"))

abline(h=1/2) # theoretical value

mle.pl Maximum likelihood estimation for power laws

Description

Usage

mle.pl(x, min.tail = 50, cut = 0, verbose = FALSE, nboot = NULL)

plot.pl(x, ...)

print.pl(x)

test.pl(x, min.tail = 50, cut = 0, verbose = FALSE, nboot = 2500)

Arguments

x A numerical vector of positive measurements.

min.tail Minimum number of measurements to use in the estimation.

cut Proportion of measurements to throw away (see details).

verbose A logical value that indicates whether to show details of the estimation proce-

dure.

... Additional arguments for plotting.

nboot Number of bootstrap replicates to use.

Details

Maximum likelihood estimation is implemented in function mle.pl to fit the Pareto distribution

(see powerlaw) to the samples in x. The lower-cut off point xmin is determined by the method of

Clauset et al. (2009): The n samples in x are sorted and each of the smallest n-min.tail samples is

considered as a candidate for the lower cut-off point xmin. For each such candidate the Pareto distri-

bution is fitted, resulting in an estimate of the power-law exponent α, and the Kolmogorov-Smirnov

statistic KS quantifies the maximal difference between the fitted distribution and the empirical dis-

tribution function (for samples from x greater or equal to xmin). Finally, the value of xmin that

minimizes KS is chosen and the corresponding parameter values are returned.

It is recommended to keep at least about 50–100 samples for the estimation, which can be adjusted

by the parameter min.tail. To speed up the computation, a fraction cut of the smallest samples

can be discarded before the estimation.

To quantify estimation uncertainty, a number nboot of bootstrap replicates can be optionally speci-

fied. Each replicate is generated by resampling with replacement from x and estimating the param-

eters xmin and α by the above procedure.
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Function print.pl provides a summary of the estimation results and plot.pl a diagnostic plot.

Function test.pl performs the simple test of the power-law hypothesis described in Clauset et al.

(2009)[Section 4.1]. First the parameters xmin and α are estimated as above. Then a number nboot

of bootstrap samples are generated where samples are independently drawn either from the fitted

power-law model for the tail, or sampled with replacement from the samples of x smaller than

xmin. The probability to choose a sample from the tail is given by its (relative) length. For each of

these replicates the estimation procedure in mle.pl is repeated, resulting in a set of nboot values

of the KS statistic (for the best fit of the Pareto distribution). The significance probability for the

nullhypothesis of power-law behaviour is given by the fraction of these that are larger than the KS

statistic for the fit of the original data x. If this is large enough (Clauset et al. (2009) recommend a

value of 0.10 for a conservative test), the general alternative is rejected and the power-law hypothesis

is accepted.

Value

Function mle.pl returns a list with class “pl” containing the following components:

x The original data.

xmin.all,n.all All values of xmin considered in the estimation procedure and the length of the

remaining tail for which the maximum-likelihood estimation of the exponent

α was performed.

alpha.all,D.all Values of α and the KS statistic corresponding to the cut-off points in xmin.all.

ntail The length of the tail for the optimal parameter choice.

xmin, alpha, D Values of the parameters and the KS statistic for the optimal parameter choice.

nboot The number of bootstrap replicates used to quantify estimation error.

alpha.boot,xmin.boot

If nboot is given, these contain the parameter estimates for each bootstrap

replicate.

Function test.pl returns a list with class “htest” containing the following components:

statistic value of the test statistic for the data in x

p.value the significance probability for the test

alternative a character string describing the alternative hypothesis (‘not symmetric’)

method a character string describing the type of test

data.name a character string giving the names of the data

nboot the number of bootstrap replicates used for the test

xmin.boot,alpha.boot,D.boot

the values of the estimated parameters and the KS statistic for each replicate

xmin,alpha,D the values of the estimated parameters for the original data in x

x the original data

Examples

x <- ppl(1000,2,10) # generate synthetic power-law data

pl <- mle.pl(x,cut=0.2,verbose=TRUE,nboot=100)

pl # summary output

plot(pl) # diagnostic plot

foo <- test.pl(x,cut=0.2,nboot=100,verbose=TRUE)

foo # should reject the alternative
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powerlaw The power-law distribution

Description

Density, distribution function and random generation for the Pareto distribution, i.e., the power-law

distribution with lower cut-off point.

Usage

dpl(x, alpha, xmin)

ppl(q, alpha, xmin)

rpl(n, alpha, xmin)

Arguments

x, q Vector of quantiles.

n Number of observations. If length(n) > 1, the length is taken to be the

required number.

alpha Exponent α ≥ 1 of the power-law.

xmin Lower cut-off point xmin ≥ 0.

Details

The density of the power-law distribution is proportional to x−α with exponent α ≥ 1. Since this is

not integrable for x → 0, it is customary to restrict the power-law distribution to values of x greater

than a (lower) cut-off point xmin > 0. This is called the Pareto distribution, and its density is given

by

f(x) = (α − 1)xα−1
min x−α.

Its two parameters α and xmin are usually called the shape and scale parameters.

Value

dpl gives the density, ppl gives the distribution function, and rpl generates random variates by

the transformation method.

Examples

x <- seq(0,100,0.1)

# power-law leads to a straight line in a double logarithmic plot

plot(log10(x),log10(1-ppl(x,3,1)),ylab=expression(log10(1-F(x))))

abline(v=log10(1),lty=2) # cut-off point
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samp.en Sample entropy and cross-entropy

Description

Calculate sample entropy (SampEn) and cross-sample entropy to estimate the rate of information

production in dynamical systems.

Usage

samp.en(x, y = NULL, r = NULL, r.ratio = NULL, edim = 2, tlag = 1,

normalize = TRUE, size = NULL, verbose = FALSE)

Arguments

x A numerical vector containing the time series for which sample entropy is

calculated.

y Optional vector containing a second time series.

r The threshold when to consider two vectors as being neighbours (see details).

If not given, use r.ratio times the standard deviation of x. If r.ratio is

also not given, use a value of 0.2 for it.

r.ratio If r is not given, use r.ratio times the standard deviation of x as the thresh-

old.

edim,tlag Embedding dimension and time lag to use.

normalize A logical value indicating whether to center and normalize the time series to

zero mean and unit standard deviation.

size If present, draw randomly size vectors with replacement from the delay vec-

tor embedding for the calculation.

verbose A logical value that indicates whether to show details of the calculation.

Details

Calculates the sample entropy (SampEn) introduced by Richman and Moorman (2000) from the time

series in x. If additional y is given, calculates their cross-sample entropy (Cross-SampEn). Both time

series are delay embedded with time lag tlag in edim and edim+1 dimensions (see rdelay). To

ensure an equal number of delay vectors in both embeddings, a few vectors at the end of the former

are discarded. Then the number of pairs of delay vectors that lie within a distance r of each other

is counted for both these delay embeddings, resulting in two counts B (in dimension edim) and A

(in dimension edim+1). For computational efficiency the maximum distance is used, and in contrast

to the approximate entrop (ApEn) of Pincus (1991) self-matches are not counted. If y is given, the

distances are calculated between all pairs of delay vectors where one arises from the embedding of

x and the other from the corresponding one for y. Sample entropy is then defined as the negative

(natural) logarithm of A/B and is a finite approximation of the Kolmogorov-Sinai entropy (obtained

in an appropriate limit of infinite data and vanishing threshold r).
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Value

A list containing the following components:

s Sample entropy.

B The number of close neighbours in an edim-dimensional embedding.

A The number of close neighbours in an edim+1-dimensional embedding.

Examples

x <- seq(0,100,0.2)

y1 <- rnorm(length(x)) # a random sample

samp.en(y1) # large sample entropy

y2 <- sin(x*2*pi/10) # a deterministic process

samp.en(y2) # low sample entropy

samp.en(y1,y2) # large cross-sample entropy

td Wasserstein distances for finite distributions of points

Description

Calculates Wasserstein distance between two sets of multi-dimensional vectors.

Usage

td(x, y, wx = NULL, wy = NULL, dist = "l2", order = 2,

cost.scale = NULL, phases = FALSE, verbosity = 0)

td.1d(x,y, wx = NULL, wy = NULL, dist = "l2", order = 2,

phases = FALSE, verbosity = 0)

td.lpSolve(x, y, wx = NULL, wy = NULL, dist = "l2", order = 2,

cost.scale = NULL, phases = FALSE, verbosity = 0)

Arguments

x Multi-dimensional point data as a matrix with individual points represented

by columns. Can also be numerical vector (for one-dimensional problems).

y Multi-dimensional point data as a matrix with individual points represented

by columns. Can also be a numerical vector (for one-dimensional problems).

wx Optional weights for x. Should sum to 1.

wy Optional weights for y. Should sum to 1.

dist Choose one from “l1”, “l2”, “max”, or a numerical value ≥ 1 for a Minkowski

(Lp) distance.

order The order of the Wasserstein distance. Defaults to quadratic Wasserstein dis-

tance.

cost.scale Optional scaling factor for weights. Only needed for multidimensional data.

phases Logical value that indicates whether to wrap distances (for phase distribu-

tions) or not.

verbosity Verbosity level of output. Higher values result in more diagnostic output.
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Details

The Wasserstein distance between to k-dimensional point sets x and y is the cost associated with an

optimal transportion problem. Both x and y are interpreted as discrete probability measures on a

Euclidean space Rk , and their Wasserstein distance is the minimal total cost when transforming one

measure into the other. Each unit of probability mass transported incurs a cost equal to the distance

it is moved.

The distance used is in principle arbitrary; however, at present only the most common distances

are implemented: ‘l1’ is the L1 (Manhattan) distance, ‘l2’ is L2 (Euclidean) distance and ‘max’ is

supremum distance. Additionally, the ‘order’ can be given. Explicitly, the Wasserstein distance of

order p is Wp(x, y) = inf
`R

d(x − y)p dπ[x, y]
´1/p

, where the infimum is taken over all probability

measures (transportation plans) π[x, y] such that π[A, Rk] = x[A] and π[Rk, B] = y[B] for all

subsets A, B ⊆ Rk . The quadratic Wasserstein distance (default) has very interesting theoretical

properties, in particular, it is possible to interpolate measures. More commonly used, however, is

the Wasserstein distance of order 1, also known as the Kantorovich-Rubinstein distance.

In the discrete case considered here, the calculation of the Wasserstein distance is equivalent to

solving a so-called (discrete) transportation problem: Let x and y be discrete probability measures,

x =
P

i aiδxi
and y =

P

j bjδxk
, where δx is the Dirac measure at the point x ∈ Rk . These can be

interpreted as weighted point sets. The supplies ai ∈ (0, 1] and the demands bj ∈ (0, 1] need to be

normalized, such that
P

i ai = 1 and
P

j bj = 1. Each transportation plan can then be represented

as a nonnegative matrix fij that fulfills the source and sink conditions
P

j fij = ai and
P

i fij = bj

for all i and j. The Wasserstein distance of order p is then

Wp(x, y) = min

0

@

X

ij

fijd(xi − yj)
p

1

A

1/p

.

In the one-dimensional case, the problem is solved by monotone arrangement, i.e., by sorting the

points of both samples and iteratively matching the largest value of x to its nearest neighbour from

y. In the multivariate case, this routine will use the minimum-cost flow solver MCF (Loebel, 1996),
if available. Alternatively, the much slower lpSolve package is used. In both these cases internally

integer arithmetic is used, so the distances and weights will be scaled to the nearest integer in a

suitable range (see discretize.factor).

Value

The Wasserstein distance of the data.

Note

The computational complexity is high, theoretically on the order of O(n5) where n = max{|x|, |y|},

although in practice often an almost quadratic complexity can be observed. Problems with more

than 1000 data points will therefore need to be approximated by resampling smaller point sets a

number of times (bootstrapping), or binning the points.

Examples

data1 <- c(1,2)

data2 <- c(1,2,3)

td(data1,data2)

data1 <- matrix(c(1,1,0,1,0.5,0.5),nrow=2)
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data2 <- matrix(c(1,1,0,0,0.3,0.3),nrow=2)

tdp(data1,data2) # will be 7/15

data1 <- c(1,2)

data2 <- c(1,2,3)

weights1 <- c(0.9,0.1)

weights2 <- c(0.4,0.5,0.1)

td(data1,data2,weights1,weights2) # will be 0.6

stress Diagnostics of misrepresentation error

Description

Diagnostic measures of misrepresentation error in multidimensional scaling

Usage

stress(x, mds.dim)

Arguments

x Distance matrix

mds.dim Reconstruction dimension.

Details

The misrepresentation error of metric multidimensional scaling is evaluated. Given a n-by-n distance

matrix Dij , raw stress is the total residual square error of the Euclidean distances ∆ij of metric

multidimensional scaling in mds.dim dimensions,

σ =
X

ij

(Dij − ∆ij)
2.

The average of the residual square error with respect to the i-th point,

σ(i) =
1

n

n
X

j=1

(Dij − ∆ij)
2

is called stress-per-point and a useful measure of the local misrepresentation error. To compare these

measures between distinct metric spaces, normalized stress is σ1 = σ/
P

ij ∆2
ij , and normalized

stress-per-point is σ
(i)
1 = nσi/

P

ij ∆2
ij .

Value

A list containing the following components:

stress Raw total stress

spp A vector containg stress-per-point for each row of x

stress1 Normalized total stress

spp1 A vector containg normalized stress-per-point for each row of x
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Examples

library(MASS)

library(MooreRayleigh) # rsphere

x <- rsphere(10)

d <- as.matrix(dist(x))

attributes(d)$dimnames <- NULL

cmd <- cmdscale(d,k=2,eig=TRUE)

plot(cmd$points[,1],cmd$points[,2])

str <- stress(d,2)

symbols(cmd$points[,1],cmd$points[,2],

circles=(1/pi*sqrt(str$spp)),inches=FALSE,add=TRUE)

td.interp Interpolate two distributions along an optimal transport ray

Description

Calculates Wasserstein distance between two sets of multi-dimensional vectors and shifts both dis-

tributions a fraction along the optimal transport rays.

Usage

td.interp(x, y, frac, dist = "l2", order = 2, cost.scale = NULL,

verbosity = 0)

Arguments

x Multi-dimensional point data as a matrix with individual points represented

by columns. Can also be numerical vector (for one-dimensional problems).

y Multi-dimensional point data as a matrix with individual points represented

by columns. Can also be a numerical vector (for one-dimensional problems).

frac Fraction of distance to move points on the optimal rays.

dist Choose one from “l1”, “l2”, “max”, or a numerical value ≥ 1 for a Minkowski

(Lp) distance.

order The order of the Wasserstein distance. Defaults to quadratic Wasserstein dis-

tance.

cost.scale Optional scaling factor for weights. Only needed for multidimensional data.

verbosity Verbosity level of output. Higher values result in more diagnostic output.

Details

The calculation of the optimal transport is the same as for the function td. The optimal transport

mapping is used to shift each point of x and y a fraction frac/2 into the direction of its partner

(along an optimal transport ray) under the optimal matching.
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Value

A list containing the following components:

td The optimal transportation distance between x and y

x The shifted data points of the original x

y The shifted data points of the original y

Note

The state of this function is experimental. Currently, the interpolation is only available with the MCF

solver and for equal-sized point sets (trivial weights).

Examples

library(MooreRayleigh)

x <- rsphere(10,2) # 10 points on the unit circle

y <- matrix(rep(0,20),ncol=2)

foo <- td.interp(x,y,frac=0.5)

plot(x)

points(y,pch=19)

points(foo$x,col="blue")

points(foo$y,col="blue",pch=19)

ts.delay Delay vector embedding of scalar time series

Description

Delay vector embedding of scalar time series

Usage

ts.delay(x, edim, tlag = 1, ofs = 0)

Arguments

x A numerical vector (scalar time series).

edim Embedding dimension to use.

tlag Distance between indices of adjacent components of delay vectors. Defaults to

1.

ofs Number of data points to skip from the beginning of x. Defaults to 0.

Details

The delay representation of a numerical vector (x1, . . . , xn) with time lag k and offset l in embed-

ding dimension d is the vector-valued series y = (y1, y2, . . . ) given by:

y1 = (xl, xl+k, . . . , xl+k(d−1))
t,

y2 = (xl+1, xl+k+1, . . . , xl+k(d−1)+1)t,

. . .
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Value

A matrix whose columns contain the delay vectors.

Examples

x <- seq(1,9)

ts.delay(x,3)

ts.delay(x,3,3)



Appendix D

The MooreRayleigh software package

D.1 Implementation and installation

The Moore-Rayleigh test is a nonparametric test for the spherical symmetry of a sam-

ple of vectors under a general alternative. It is introduced and described in Chap-

ter 5. The R package MooreRayleigh has been developed to perform the test in prac-

tice and is released under the GNU Public License Version 3.01. The Moore-Rayleigh

test has been implemented in R code, the related permutation tests of Diks and Tong

(1999) have been implemented in C++ code for speed. Installation is straightforward

by invoking

R CMD INSTALL MooreRayleigh.tar.gz

at the command line.

D.2 Reference

The following is a complete description of all functions available in the MooreRayleigh

package, version 1.2-02.

bisect Numerical bisection to find the root of a function

Description

Iteratively bisects an interval to find the root of a continuous function. The initial points are assumed

to bracket the root. Only the first zero found is returned.

Usage

bisect(x1, x2, f, max.iter = 38, tol = NULL)

1 URL: http://www.gnu.org/licenses/lgpl.html
2 The version number follows the major/minor convention, where the first number indicates significant

(major) changes, the second number minor changes (with even numbers indicating stable releases and

odd numbers indicating developmental versions), and the last number is used to indicate consecutive

bug fixes.

http://www.gnu.org/licenses/lgpl.html
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Arguments

x1 One endpoint of the interval.

x2 The other endpoint of the interval.

f A continuous function with a root between x1 and x2.

max.iter Maximum number of bisections to try.

tol Accuracy of the root. Defaults to (x1+x2)/2.0*.Machine$double.eps.

Details

An initial bracketing is given if f(x1)*f(x2) >= 0.0. The interval is halved every step after

evaluating f at the midpoint.

Value

The argument for which f is zero, up to an accuracy of tol.

Examples

f <- function(x) { x }

bisect(-1,1,f) # returns zero

bisect(2,4,sin) # approximates pi

diks.test Monte Carlo testing for symmetry of multivariate samples

Description

Test a multivariate sample for spherical or reflection symmetry.

Usage

diksS.test(x, bw = 0.25, n.mc = 1e3, center = FALSE, return.perms = FALSE)

diksU.test(x, bw = 0.25, n.mc = 1e3, center = FALSE, return.perms = FALSE)

Arguments

x Numerical vector or matrix. If a matrix, each row is expected to contain the

coordinates of a sample. A vector will be interpreted as a matrix with a single

column.

bw Bandwidth to use in the distance calculation.

n.mc Number of Monte Carlo samples to use.

center Center x by subtracting the column means before testing.

return.perms Numerical value to indicate whether the values of the test statistic are to be

returned for all Monte Carlo realizations.
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Details

The hypothesis tests of Diks and Tong (1999) are permutation tests. The test statistic T is based on

an U-estimator for the squared distance between two multivariate distributions. In terms of a finite

sample Xi ∈ R
k (i = 1, 2, . . . , n) it is given by

T (X1, . . . , Xn) =
2

n(n − 1)

X

i,j

K(xi − xj),

where K is the kernel function K(X −Y ) = exp(−||X −Y ||2/(4d2)) that depends on a bandwidth

parameter d (given by the parameter bw of the function). Under the nullhypothesis the common

distribution of the Xi is invariant under the action of the respective symmetry group. This can be

either spherical symmetry (diksU.test) or reflection symmetry (diksS.test). For each Monte

Carlo sample an element of this group is chosen randomly, acts on the sample (X1, . . . , Xn), and

the corresponding value of T is recorded. The significance probability of the test is the fraction of

such “permutations” with a value of T less than or equal to the one for the original sample.

Value

A list with class “htest” containing the following components:

statistic value of the test statistic for the original data x.

p.value the significance probability for the test.

alternative a character string describing the alternative hypothesis (‘not symmetric’).

method a character string describing the type of test.

data.name a character string giving the names of the data.

n.mc the number of Monte Carlo samples used.

bw the bandwidth parameter used.

centered a logical value describing whether the columns of x were centered.

statistic.mc depending on the value of return.perms either NULL or a vector containing

the values of the test statistic for all Monte Carlo samples.

Examples

x <- rsphere(100) # 100 samples from the unit sphere in 3D

diksU.test(x, n.mc = 1e4) # should accept the nullhypothesis

y <- F3(100) # 100 samples from the Fisher distribution

diksU.test(x, n.mc = 1e4) # should reject the nullhypothesis

x[,1:2] <- 0 # project to a uniform distribution on a line

diksU.test(z, n.mc = 1e4) # should reject the null hypothesis

diksS.test(z, n.mc = 1e4) # should accept the null hypothesis
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F3 Fisher distribution

Description

Generate random variates from the Fisher distribution, also known as the three-dimensional von-

Mises distribution.

Usage

F3(n = 1, lambda = 1)

Arguments

n Number of samples requested.

lambda Concentration parameter. Must be nonnegative.

Details

The Fisher distribution is a singular distribution on the sphere S2 ⊂ R
3. Its density f(x) is propor-

tional to exp(λ〈x, ξ〉), where ξ ∈ R
3 is the mean direction, and λ ≥ 0 is a concentration parameter.

In this implementation ξ = (0, 0, 1)t is fixed as the unit z-vector, and random variates are generated

according to the method of Ulrich (1984) and Wood (1994).

Value

A vector if just one numerical sample is requested, otherwise a matrix with one column for each

sample.

Examples

m <- F3(500, lambda = 5) # 500 x 3 matrix

library(lattice) # load package lattice for 3D plotting

cloud(z ~ x*y, data=data.frame(x=m[,1],y=m[,2],z=m[,3])) # point cloud

lrw Properties of random walk with linearly increasing steps

Description

Calculate the distribution of a symmetric, unbiased one-dimensional random walk with linearly

increasing steps.

Usage

lrw(N, both.sides = FALSE, nonzero = TRUE)

dlrw(x, N, both.sides = FALSE, scaled = FALSE)

plrw(q, N, both.sides = FALSE, scaled = FALSE)

qlrw(p, N, both.sides = FALSE, scaled = FALSE)

rlrw(n, N, both.sides = FALSE, scaled = FALSE)
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Arguments

x, q Vector of quantiles

p Vector of probabilities

n Number of observations. If length(n) > 1, the length is taken to be the

required number.

N Number of steps taken by the walk.

both.sides Logical value indicating whether the distribution is given for both sides of the

coordinate system.

nonzero Logical value indicating whether only sites with nonzero probability should

be returned.

scaled Logical value indicating whether the argument should be scaled by N3/2.

Details

A random walk with N steps is considered. At the n-th step, the position of the walker either in-

creases or decreases by n, with equal probability. The probability distribution of this walk is obtained

by iterated convolution. Since it is symmetric, only the positive sites (with nonnegative probability)

are returned by default.

Value

Function lrw returns various properties of the distribution of this walk:

pr A vector with the probabilities for the walker to be at a certain site after N steps.

counts A vector with the counts of how many possibilities there are for the walker to

reach a certain site after N steps.

signs A vector with the average sign for each site. For each possible distinct walk

to finish at a specific site, the sign is the product of the signs of the individual

steps taken by the walker.

pr.signs Equal to pr * signs.

dst A vector with the sites.

dlrw gives the density, plrw gives the distribution function, qlrw gives the quantile function, and

rlwr generates random variates.

Examples

lrw(N=3,both.sides=TRUE,nonzero=FALSE)

x <- seq(0,100,0.1)

plot(x,dlrw(x,N=10),cex=0.5,pch=20) # probability funct. after 10 steps

plot(x,plrw(x,N=10),cex=0.5,pch=20) # distribution funct. after 10 steps

sum(dlrw(seq(1,55),N=10)) # sums to one
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mr Asymptotic Moore-Rayleigh distribution

Description

Density, distribution function, quantile function and random generation for the asymptotic form

of the Moore-Rayleigh distribution, i.e., for the length of the resultant of a random flight with N

linearly growing steps, scaled by N3/2, in the limit of N → ∞.

Usage

dmr(x, k = 3)

pmr(q, k = 3)

qmr(p, k = 3)

rmr(n, k = 3)

Arguments

x,q A vector of quantiles.

p A vector of probabilities.

n The number of variates requested. If length(n) > 1 use the length as the

required number.

k The dimensionality (>= 2).

Value

dmr gives the density, pmr gives the distribution function, qmr gives the quantile function, and rmr

generates random deviates.

Note

The asymptotic Moore-Rayleigh distribution with distribution function F (x) in k dimensions is re-

lated to the χ2 distribution with k degrees of freedom and distribution function G(x) by F (x) =

G(3kx2).

Examples

x <- seq(0.02,2.0,0.001)

p <- dmr(x)

plot(x,p,cex=0.5,pch=20,title="Density function in 3D")

d <- pmr(x)

plot(x,d,cex=0.5,pch=20,title="Distribution function in 3D")
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mr3 Exact Moore-Rayleigh distribution in three dimensions

Description

Density, distribution function, quantile function and random generation for the Moore-Rayleigh dis-

tribution in three dimensions, i.e., for the length of the resultant of a random flight with N linearly

growing steps, scaled by N3/2.

Usage

dmr3(x, N)

pmr3(q, N, method = "Borwein")

qmr3(p, N)

rmr3(n, N)

Arguments

x,q A vector of quantiles.

p A vector of probabilities.

n Number of observations. If length(n) > 1, the length is taken to be the

required number.

N Number of steps taken by the walk.

method This can be one of the following:

Borwein Combinatorial Borwein summation (default).

Integrate Use integrate to evaluate the oscillating integrals di-

rectly.

Details

Value

dmr3 gives the density, pmr3 gives the distribution function, qmr3 gives the quantile function, and

rmr3 generates random deviates.

Examples

x <- seq(0.02,2.0,0.001)

par(mfrow=c(1,2),mar=c(4,4,1,1)) # plot density and distribution

plot(x,dmr(x),type="l",lwd=1/2,lty=2,ylab=expression(pr(R^"*"==r)),

xlab="r")

lines(x,dmr3(x,N=10),lwd=1/2)

plot(x,pmr(x),type="l",lwd=1/2,lty=2,ylab=expression(pr(R^"*"<=r)),

xlab="r")

lines(x,pmr3(x,N=10),lwd=1/2)
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mr3.test Moore-Rayleigh test in three dimensions

Description

Test a sample of three-dimensional vectors for spherical symmetry.

Usage

mr3.test(x, exact = NULL, center = FALSE)

Arguments

x A matrix whose rows represent vectors in three dimensions.

exact A logical value that indicates whether to use the exact or the asymptotic dis-

tribution.

center A logical value that indicates whether to center the vectors before applying the

test.

Details

The Moore-Rayleigh test is a hypothesis test for spherical uniformity under a general alternative. It

ranks the N vectors in x by their lengths. Under the nullhypothesis the vectors are assumed to be

distributed uniformly on each hypersphere, and the ranks are randomly realized. The test statistic is

the length of the resultant of the vectors in x, normalized by their ranks, and corresponds to the dis-

tance covered by a uniform random flight with N linearly increasing steps under the nullhypothesis.

It is scaled by N3/2 for asymptotic simplicity. The distribution of the nullhypothesis is available in

closed form, and evaluated by a combinatorial sum for an exact test (valid for N . 60 under IEEE

754 arithmetic) or approximated by the asymptotic distribution (see mr).

For a two-sample test, the vectors need to be paired (see pairing).

Value

A list with class “htest” containing the following components:

statistic value of the test statistic for the data in x.

p.value the significance probability for the test.

alternative a character string describing the alternative hypothesis (‘not symmetric’).

method a character string describing the type of test.

data.name a character string giving the names of the data.

centered a logical value describing whether the columns of x were centered.
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Examples

x <- rsphere(10) # 10 samples from the unit sphere

mr3.test(x,exact=TRUE) # one-sample test: should reject alternative

y <- rsphere(10)

xy <- pairing.random(x,y)

mr3.test(xy,exact=TRUE) # two-sample test: should reject alternative

y <- matrix(runif(30),ncol=3)

xy <- pairing.random(x,y)

mr3.test(xy,exact=TRUE) # two-sample test: should accept alternative

pairing Pairing of vectors for two-sample tests

Description

Pair two set of vectors for a two-sample test.

Usage

pairing.transport(x, y, minimize = TRUE, normalize = FALSE)

pairing.ranks(x, y, inverse = FALSE)

pairing.random(x, y)

Arguments

x, y Two matrices where each row represents the coordinates of a vector. The num-

ber of columns needs to be the same, the number of rows can differ.

minimize Logical value that indicates whether the total cost is minimized or maximized.

normalize Logical value that indicates whether to project all vectors to the unit sphere

before matching them.

inverse Logical value that indicates whether to begin matching vectors with the small-

est (default) or the largest vectors (if inverse is TRUE).

Details

The preferred pairing is pairing.random in which vectors are randomly matched (by sampling

without replacement). Function pairing.ranks pairs vectors according to their lengths. The

value of inverse determines whether this proceeds from the smallest to the largest or the other

way around. Function pairing.transport pairs vectors by optimal transport under Euclidean

distance. The value of minimize determines whether the total cost is minimized (default) or maxi-

mized.
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Value

A list with class “pairing” containing the following components:

x,y original data.

xy a matrix representing difference vectors for all pairs.

x.pairing a vector of indices to index the vectors in x for the pairing.

y.pairing a vector of indices to index the vectors in y for the pairing.

cost value of the total cost (only for pairing.transport.

dist the distance matrix (only for pairing.transport.

Examples

x <- rsphere(10)

y <- rsphere(10)

d1 <- numeric(1e3)

d2 <- d1

for (i in seq(along=d)) {

xy <- pairing.random(x,y)$xy

d1[i] <- sum(apply(xy^2,1,sum)) # squared lengths of difference

xy <- pairing.ranks(x,y)$xy

d2[i] <- sum(apply(xy^2,1,sum))

}

plot(density(d2),main="Sum of squared lengths of difference vectors",

lty=2)

lines(density(d1),lty=1)

rsphere Random variates on the unit sphere

Description

Generate random vectors on the unit sphere in k-dimensional Euclidean space.

Usage

rsphere(n, k = 3)

Arguments

n Number of random variates generated. If length(n) > 1 the length is taken

to be the required number.

k Dimension of the space (default = 3).

Details

Uses the method of Knuth, i.e., the fact that a k-dimensional vector of normal variates is uniformly

distributed on the unit sphere Sk−1 after radial projection.
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Value

A matrix, where each row represents the coordinates of one random vector.

Examples

rsphere(2)

plot(rsphere(1000,k=2),cex=0.5,pch=20,xlab="",ylab="",

main="Uniform distribution on the circle")





Notes

A great deal more is known than has been proved

Richard Feynman

Section 2.2

Determination of the embedding dimension by the method of false nearest neighbour is de-

scribed by Kennel et al. (1992). Embedding for non-uniformly sampled time series is covered

by Huke and Broomhead (2007).

Section 2.4

Alternative classification by coefficients of global dynamical models is considered in (Kadtke,

1995).

Section 2.5.4

The performance of various synchronization measures is compared by Ansari-Asl et al. (2006)

for a number of numerical models of brain activity.

Section 2.7

Recurrence plots are a general tool to analyze dynamical systems, with manifold applications

(Webber, Jr. and Zbilut, 1994; Marwan et al., 2007). Joint recurrence plots even allow to com-

pare the dynamics of two dynamical systems defined on different phase spaces, overcoming

the main theoretical problem when comparing systems measured with distinct modalities

(Marwan et al., 2007). However, quantitative measures defined for recurrence plots do not

fulfill metric properties and cannot be used in a multivariate context.
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Section 3.1

A good introduction to the physiology of breathing is (Guyton and Hall, 2006). The book by

Kulish (2006) contains some advanced topics and corresponding mathematical models.

The branching nature of the bronchial tree is described by Weibel (1963) and by the model

of Horsfield et al. (1971). A three-dimensional generalization has been obtained by Kitaoka

et al. (1999). Optimality principles that explain the geometry of the lung were considered by

Weibel (1991) and criticized by Imre (1999).

The control of breathing is described in (Whipp, 1987; Bronzino, 2006). Mathematical mod-

els for this regulatory process include the basic Mackey-Glass model (Keener and Sneyd, 1998)

and the famous Grodins model (Grodins et al., 1967a), both incorporating time delays.

General cardiovascular models are described in (Ottesen et al., 2004; Batzel et al., 2006).

Section 3.2

The forced oscillation method is reviewed in (MacLeod and Birch, 2001; Oostveen et al., 2003);

the article by Nucci and Cobelli (2001) considers mathematical details. Normal values are

described by Landser et al. (1982). Details of the frequency-domain approach and parame-

ter estimation are given by Michaelson et al. (1975). The frequency-dependence of FOT was

observed and validated in Jackson et al. (1987).

A few facts about lung mechanics are: The tidal lung volume is about 1L, with a dynamic

driving pressure of about −1mmHg. Airway resistance is highest at segmental bronchi and

lower at higher airway generations. Similarly, resistance decreases nonlinearly with lung vol-

ume from 4 (2 L) to about 0.5cmH2Os/L (6 L); conductance increases linearly from about 0.25

(2 L) to about 2L/cmH2Os (6 L) (Herman, 2007)[pg. 539f]. Flow is at Reynolds number of

about 1600, so mostly laminar. However, turbulence occurs because the walls are not smooth.

Interestingly, the work to breathe can take up to 20% of total body energy consumption.

Partitioning of FOT signals has been pioneered by DuBois et al. (1956a). In this model,

transfer and input impedance are partitioned as follows,

Ztr = Zaw + Zt +
ZawZt

Zg
,

Zin = Zaw +
ZgZt

Zg + Zt

where (t = tissue): Zt = Rt + i2πfLt − iEt/(2πf) and Zg = −iEg/(2πf) (g = gas, compress-

ibility).

The frequency-dependence of FOT parameters is modelled in the constant-phase model

(Hantos et al., 1992; Peták et al., 1997). Thereby, Zin is separated into airway and tissue com-

ponents, since Rt = G/(2πf)α with a frequency depencence parameter α. Suki et al. (1997)

considered tissue nonlinearities in the context of this model.

At frequencies below 2 Hz mainly rheologic properties of the tissues are dominant, as well

as mechanical heterogeneities. At frequencies above 100 Hz FOT obtains information about

acoustic properties.

Ionescu and Keyser (2008) review other commonly used partioning models. Resistance,

compliance and inertance can also be considered in terms of electrical analogs and the math-
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ematical theory of the resulting equivalent electrical circuits has been considered quite gener-

ally by Smale (1972).

The recent book by Bates (2009) is a general introduction to the modeling of lung mechan-

ics. Viscoelasticity can be incorporated into the simple model (3.7) by an additional quadratic

term,

PA(t) − P0 = RrsV̇ (t) + E1V (t) + E2V
2(t).

Including an inertance term, this becomes a second-order nonlinear model,

PA(t) − P0 = RrsV̇ (t) + E1V (t) + E2V
2(t) + LrsV̈ (t).

The inertial pressure is in counterphase with respect to elastic recoil pressure under harmonic

forcing and thereby compensates the stiffness of the respiratory system. It becomes dominant

over elastance at frequencies greater than 5 to 10 Hz (Peslin and Fredberg, 1986).

Similarly can the linear resistance term be replaced by a flow-dependent resistance (Rohrer,

1915; Wagers et al., 2002). In an actively breathing patient an estimate of pleural pressure Ppl

is needed to partition between lung and chest wall characteristics. This can be measured

approximately by oesophageal pressure (minimally invasive measurement by means of an

oesophageal balloon). Another possibility to measure FOT signals is to use the pressure forc-

ing generated by the heart, leading to so-called output impedance (Bijaoui et al., 2001). The

problematic upper airways shunt has been studied by (Cauberghs and de Woestijne, 1989)

and Bijaoui et al. (1999) discuss how to detect it and estimate impedance in its presence.

In recent years modern multifrequency FOT measurements, e.g., by impulse oscillometry

(IOS) have become possible, but necessitate the use of complex, short pressure perturbations

(Kuhnle et al., 2000; Klein et al., 80).

Section 3.3

Both asthma and COPD are obstructive lung diseases; under this heading fall also emphy-

sema and chronic bronchitis (excessive mucus production). Narrowing of airways occurs in

asthma, due to edema (thicking of airway walls or muscle hypertrophy), which reduces wall

springiness and increases compliance.

Prevalence of COPD has been modeled by (Hoogendoorn et al., 2005). Influential projec-

tions of disease burden were published in (Murray and Lopez, 1997) and extended in (Mathers

and Loncar, 2006).

Clinical application of FOT measurements is reviewed by (Goldman, 2001). LaPrad and

Lutchen (2008) is a recent review of FOT with a focus on applications in asthma. (Lutchen

et al., 1996) consider disease-related changes in FOT signals and criticize (the use of time

averages of) single-frequency FOT in severely diseased lungs. Increased variability of Zrs in

asthma was reported by Que et al. (2001), but could not be confirmed later (Diba et al., 2007).

The book by Hamid et al. (2005) covers many further aspects of the physiology of healthy

and diseased lungs.

Variability and fluctuation analysis is reviewed in Seely and Macklem (2004). A critical

assessment of detrended fluctuation analysis was given by Maraun et al. (2004).
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Section 3.5

The idea of “dynamical disease” was popularized by Glass and Mackey (1988).

Section 3.7

A further method that can be considered to highlight differences in FOT time series is bispec-

trum analysis (Mendel, 1991), which was pioneered in the analysis of EEG data (Barnett et al.,

1971). Global dynamical models are reviewed in the recent article of Aguirre and Letellier

(2009).

Approaches to detect artifacts in FOT measurements are described by Marchal et al. (2004),

who also published considerations specific to measurements in young children (Marchal et al.,

2005). Filtering to improve FOT estimates was discussed by Schweitzer et al. (2003).

Fluctuations in the respiratory system are discussed by Suki (2002). The model of Venegas

et al. (2007) shows that exacerbations in asthma might be the result of a self-organizing cascade

of ventilatory breakdowns.

The work of Bailie et al. (2009); Sassi et al. (2009) shows that heartbeat interinterval se-

ries are nonchaotic and multifractal. Wessel et al. (2009) argue that this might be caused by

respiratory coupling.

Section 4.1

Since the publication of the first magnetoresonance (MR) image (Lauterbur, 1973), MR imag-

ing has become one of the most important medical imaging methods. The mathematics behind

image reconstruction in MRI is described by Twieg (1983); Ljunggren (1983).

Section 4.2

An important alternative to histogram estimates is kernel density estimation (Silverman, 1986),

which results in reduced bias away from the interval mid-points. Silverman (1981) described

one approaches to bump-hunting, i.e., estimation of the location of the peak of a density. Clas-

sification by likelihood ratios in this context has been considered by Silverman (1978). The

choice of the bandwidth is still an issue, however. Adaptive bandwidth selection overcomes

many of the problems with a single bandwidth (Sain and Scott, 1996; Sain, 2002). Kernel den-

sity estimation also offers the possibility to estimate total variation distances. In a different

context this has been discussed by Schmid and Schmidt (2006). Since densities are infinite-

dimensional objects, multivariate analysis of densities (discriminant analysis, PCA) needs to

be based on a finite approximation. The distance-based approach is a natural way to avoid

the bias and instability of histograms. A similar, popular approach is offered by kernel dis-

criminant analysis (Shawe-Taylor and Cristianini, 2004).

Section 4.3

Yet another approach to quantitative MRI is offered by finite mixture models of parameter dis-

tributions (McLachlan and Peel, 2000; Wehrens et al., 2002), that can be fitted in the Bayesian
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Figure D.1: Example: Fitting a two-component Gaussian mixture to an empirical
magnetic transfer ratio distribution.

framework (Fraley and Raftery, 2002). Although computationally involved, this approach al-

lows to work with substantial hypotheses and is a promising direction for future research.

Figure D.1 shows an example obtained with the MCLUST software (Fraley and Raftery, 2007).

For a true application, the fitting procedure needs to be extended to three-way analysis: One

component should describe the background (brain) MTR distribution common to all subjects,

whereas the remaining components should describe individual variations in the MTR param-

eter. This necessitates constrained and hierarchical fitting procedures which are not available

at the moment.

The recent work of Oh and Raftery (2007) considers Bayesian clustering of Euclidean rep-

resentations, and is similar to the distance-based analysis in its philosophy.

Section 4.4

The literature on Alzheimer’s Disease is too numerous to review here. Good starting points

are Goedert and Spillantini (2006); Roberson and Mucke (2006). Our publication (Musku-

lus, Scheenstra, Braakman, Dijkstra, Verduyn-Lunel, Alia, de Groot and Reiber, 2009) offers

a comprehensive review of small animal models of Alzheimer’s disease and mathematical

approaches to its genesis and disease severity quantification. Voxel-based relaxometry (Pell

et al., 2004) has gained much interest in recent years and is based on estimating significance

probabilities for single voxels in a group-wise comparison. Note that the T2 parameter should

be considered multi-exponential (Whittall et al., 1999), but a large (time-consuming) number

of echo times is needed to resolve this sensibly and uniquely. Further details can be found in

(Whittall et al., 1991).

Section 6.1

A comprehensive introduction into neuronal science is (Kandel et al., 2000). Magnetoen-

cephalography is reviewed by Hämäläinen et al. (1993) and the resourceful book of Nunez
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and Srinivasan (2006) is a standard reference for EEG and its problems. Practical aspects of

working with electrophysiological signals are covered by Sanei and Chambers (2007). A com-

prehensive overview of current topics in neuroscience is given by Buzsáki (2006) Approaches

to brain connectivity from the viewpoint of complexity theory are reviewed in (Tononi et al.,

1998; Tonini, 1998). The book by Kelso (1995) is an introduction to the theory of brain coor-

dination dynamics, where brain activity and interactions are modelled by coupled non-linear

oscillators. Recent modeling issues are discussed by Tognoli and Kelso (2009). The basic

reference for the modelling of single neurons is Koch (2004), and integrative approaches are

discussed in (Koch, 1998). The book by Izhikevich (2006) focusses on nonlinear approaches,

i.e., the theory of dynamical systems.

Section 6.3

Functional connectivity of the brain and its relation to anatomical connectivity has been stud-

ied by Honey et al. (2007) by functional MRI. Partial coherence is a recent extension of coher-

ence that has been applied in functional MRI to quantify directionality (Sun et al., 2004).

Synchronization approaches to brain dynamics model brain activity as self-sustained cou-

pled non-linear oscillators. A general introduction to all aspects of synchronization is (Pikovsky

et al., 2003). The Kuramoto model (Acebrón et al., 2005; Strogatz, 2000) has been very influ-

ential in this area (Cumin and Unsworth, 2007). In the time domain, Carmeli et al. (2005)

introduced a bivariate synchronization measure that is based on geometrical changes (con-

tractions) in delay embeddings.

A very different approach is considered in Albrecht and Palus (1991), where distance mea-

sures between power spectral densities are studied.

Section 6.5

Resting state connectivity in general has been studied by Greicius et al. (2003) and by Beck-

mann et al. (2005) in functional MRI. Effective connectivity in the context of auditory infor-

mation processing is discussed by Gonçalves et al. (2001), again for functional MRI.

Section 6.6

The standard reference for the electrophysiological inverse problem is Sarvas (1987). Apart

from beamforming, an important alternative approach to source location has been pioneered

by Pascal-Marqui (2002). The book by Kaipio and Somersalo (2004) discusses the statistical

approach to inverse problems and features a section on MEG.

Section A.1

Alternatively, and in a certain sense dual to the set-theoretic foundation of mathematics, it

is possible to base all of mathematics on the notion of functional relationships, i.e., to build

mathematics, and thereby also distance geometry, from the notion of a category (MacLane,

1985). This approach is not considered here.



235

Distance geometry started with the works of Menger (Menger, 1928, 1930), and the ac-

count of Blumenthal (1953) is still the canonical reference.

Section A.2

Euclidean point representations derived from multidimensional scaling can often be inter-

preted in terms of substantial properties. Beals et al. (1968) was influential with regard to this

interpretative approach, and a more recent discussion is given by Gati and Tversky (1982).

The embedding criterion was already established by Young and Householder (1938). The

double centering operation is studied in a more abstract setting by (Critchley, 1988). Gower

(1966) put multidimensional scaling on a solid theoretical foundation, stressing the differ-

ence between R-matrices (coefficients-of-association between pairs of characteristics) and Q-

matrices (coefficients-of-association between pairs of samples).

An introduction to nonmetric scaling procedures is given by (Borg and Groenen, 2005).

Recent local embedding algorithms allow to accomodate geodesic distances, confer (Roweis

and Saul, 2000; Tenenbaum et al., 2000)

For reconstruction of noisy distances, the method of (Singer, 2008) is available. More gen-

erally, the bound smoothing approach of Havel et al. (1983) allows to find optimal represen-

tations if lower and upper bounds of all pairwise distances are given. Thereby, the bound

smoothing algorithm of Dress and Havel (1988) allows to respect the triangle inequality con-

straint optimally. In three dimensions, errors and missing entries were considered by Berger

et al. (1999), and general distance matrix completion was studied by Trosset (2000).

Large scaling problems can potentially be solved by a divide and join strategy as described

by Tzeng et al. (2008).

The interesting article of Laub et al. (2006) considers whether there is a use in classificatory

task for negative eigendirections, arising from non-Euclidean pair-wise data.

Multidimensional scaling is essentially based on a Gram matrix (obtained by double cen-

tering), so it can be considered in the framework of kernel methods (Shawe-Taylor and Cris-

tianini, 2004). This allows to apply the methods of kernel discriminant analysis, in particular,

the recently developed support-vector machine classification strategies (Schölkopf and Smola,

2001; Hastie et al., 2008). However, these methods usually need much larger sample sizes to

outperform linear discriminant analysis.

Section A.3

The multiple response permutation test can be applied in a much more general setting; these

developments are described by Mielke and Berry (2007).

Although our distance-based approach was developed independently, generalized dis-

criminant analysis on distances was first considered by Anderson and Robinson (2003). The

solution of the out-of-sample problem, necessary for leave-one-out cross-validation, was ob-

tained by Trosset and Priebe (2008). Confer (de Leeuw and Meulman, 1986) for a more general

solution.

A recent issue of the Journal of the ICRU has been devoted entirely to receiver-operator

characteristics (Receiver operating characteristic analysis in medical imaging, 2008). An advanced
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measure of diagnostic accuracy in a probabilistic setting is the Brier score (Spiegelhalter, 1986;

Redelmeier et al., 1991).

A seminal article with regard to the combination of distinct classifiers was (Xu et al., 1992);

it considers averaging, voting, Bayesian methods, and Dempster-Shafer theory.

Section B.2

The optimal transportation problem was considered by Kantorovich (Kantorovich, 1942b,

1948). The discrete version is variously called the Hitchcock transportation problem (Hitch-

cock, 1941). In 1D it is efficiently solved by monotone rearrangement (Villani, 2003); Brandt

et al. (1991) contains a derivation in the discrete case, where this simple fact is proved by

duality (!). For finite points distributed on the circle, see (Cabrelli and Molter, 1995).

The “dictionary of distances” (Deza and Deza, 2006) discusses many other distance mea-

sures.

Section B.3

The Wasserstein distance is also called the Hutchinson metric (Hutchinson, 1981). In the image

analysis literature it is often referred to as the “Earth mover’s distance” (EMD). Its metric

properties and the lower bound by the difference in means is given by Rubner et al. (2000) in

the discrete case. Note that the EMD is often defined more generally, namely, for two positive

measures. Its solution is then given by the optimal transport that matches the smaller measure

optimally to the larger. This construction does not result in a distance, however. The behavior

of the Earth mover’s distance under transformations is considered by Klein and Veltkamp

(2005).

The Wasserstein distance has applications as a goodness of fit test in statistics (del Barrio

et al., 1999).

An elementary proof of the triangle inequality was recently given by Clement and Desch

(2008).

Hoffman (1963) showed that the optimal transportation problem can be solved in linear

time O(m + n) if the cost coefficients fulfill the Monge property,

cij + crs ≤ cis + crj for 1 ≤ i < r ≤ m, 1 ≤ j < s ≤ n.

This holds, for example, if cij = ui + vj . See the review by Burkard et al. (1996). This prop-

erty can be generalized to Monge sequences (Alon et al., 1989), and recognition of permuted

Monge matrices seems possible in (O(mn + m log m) time (confer Burkard et al. (1996) for

references). It is related to the so-called quadrangle inequality that allows significant computa-

tional speedups in many algorithms (Yao, 1980).

A feasible solution is always available by the greedy northwest corner rule (Burkard, 2007).

The fastest algorithm for solving minimum cost flows still seems to be Orlin’s algorithm, with

a running time of

O(n′ log n′(n′ log n′ + m′)),

where m′ = n+m and m′ is the number of (finite) entries in the cost matrix (Orlin, 1988). The

network simplex algorithm is described in detail by Kelly and O’Neill (1991).
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Dell’Amico and Toth (2000) compare computational codes for the assingment code.

The Hungarian algorithm (Kuhn, 1955) runs with complexity O(n3) (Jonker and Vol-

genant, 1986). In the plane, (Vaidya, 1989; Atkinson and Vaidya, 1995) have obtained improve-

ments to (O(n2.5 log n) for the Euclidean bipartite matching problem and O(n2.5 log n log N)

for the transportation problem, where N is the magnitude of the largest cost. Agarwal et al.

(1999) consider an ǫ-approximation algorithm with complexity O(n2+ǫ). A probabilistic algo-

rithm that results in an 1 + ǫ approximation with probability at least 1/2 has been given by

Varadarajan and Agarwal (1999); it has complexity O((n/ǫ3) log6 n). Kaijser (1998) considers

another improvement in the plane.

If many related transportation problems need to be solved, relaxation algorithms should

be considered, e.g., the Auction algorithm of Bertsekas and Castanon (1989).
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Nederlandse Samenvatting

Het concept afstand is een fundamenteel begrip dat een belangrijke basis vormt voor

de ruimtelijke oriëntatie. Het heeft een directe relatie met het natuurwetenschappe-

lijke meetproces: kwalitatieve metingen resulteren in numerieke gegevens, en deze

laten zich meteen vertalen in afstanden. Vanuit dit perspectief lijkt het alsof afstan-

den, net als in het gewone leven, een afgeleid concept zijn: in een bestaande ruimte

wiens meetkundige eigenschappen al vast staan dienen afstanden als hulpmiddel

om relaties tussen objecten aan te kunnen geven.

Echter, dit verband laat zich ook omkeren. Met een gegeven meetinstrument

dat afstanden bepaalt, kan een abstracte ruimte gedefinieerd worden. Deze ruimte

wordt niet alleen door de te meten objecten gedefinieerd, maar ook door de eigen-

schappen van het meetproces zelf. Als het meetinstrument interessante eigenschap-

pen meet, zijn deze terug te vinden als interessante patronen in de ruimte.

In dit proefschrift wordt dit idee toegepast op complexe systemen: het ademha-

lingsproces, de structuur en activiteit van de hersenen, en dynamische systemen in

meer algemene zin. Om in al deze verschillende situaties een afstand tussen twee

systemen te berekenen maken wij gebruik van zogenaamde optimal transport af-

standen. Deze afstanden zijn gedefinieerd tussen kansverdelingen en geven aan

hoeveel “werk” er nodig is om een gegeven kansverdeling in een andere te trans-

formeren. Daardoor meten deze afstanden, die ook wel Wasserstein afstanden ge-

noemd worden, subtiele verschillen in de vorm van kansverdelingen. Deze kansver-

delingen kunnen gewone metingen zijn (met het resultaat van de meting als zekere

uitkomst) of van meer ingewikkelde aard. In de specifieke toepassing voor dyna-

mische systemen, kunnen wij het statistische gedrag in de toestandsruimte van het

systeem als kansverdeling opvatten, die het lange-termijn gedrag van het systeem

benadert (de zogenoemde invariante maat van het systeem).

Deze Wasserstein afstanden worden dan omgezet in een representatie, waarbij

elk systeem door een punt weergegeven wordt in een abstracte ruimte, zodanig dat

de Euclidische afstanden de gemeten afstanden zo goed mogelijk benaderen. De-

ze techniek staat bekend als multidimensional scaling en wordt met name gebruikt

in de sociale wetenschappen en in de psychologie. Omdat de punt-configuraties
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onderliggende eigenschappen van de systemen weergeven, noemen wij deze repre-

sentatie een functionele representatie, en de corresponderende ruimte de functionele

of gedragsruimte.

Deze techniek, die in haar meest voor de hand liggende vorm principale compo-

nenten analyse van scalaire producten is, maakt het mogelijk voor complexe syste-

men met veel (zelfs oneindig veel) vrijheidsgraden een laag-dimensionale represen-

tatie te vinden, die de essentiële verschillen in hun gedrag (zoals bepaald door de

afstanden) weergeeft en onbeduidende verschillen (bijvoorbeeld veroorzaakt door

ruis) onderdrukt. Doordat voor N systemen alle N(N − 1)/2 afstanden bij deze re-

constructie gebruikt worden, is deze methode bijzonder robuust.

In de zo gereconstrueerde functionele ruimte kunnen de methodes uit de mul-

tivariate analyse gebruikt worden. In dit proefschrift bekijken wij daarbij vooral

de classificatie van verschillende groepen van systemen. Canonische discriminant

analyse is een klassieke techniek die een lineaire transformatie van de ruimte zoekt

zodanig dat de verschillen tussen de groepen optimaal in kaart worden gebracht.

Deze “afstand-gebaseerde” analyse van complexen systemen wordt in dit proef-

schrift gebruikt om verschillende longziektes (astma and COPD) van elkaar te schei-

den. Dit is een moeilijk probleem, maar wij laten zien dat deze methode grote dia-

gnostische nauwkeurigheid bereikt (Hoofdstuk 3).

Ook in de toepassing tot de activiteit (Hoofdstuk 6) en de structuur (Hoofdstuk 4)

van de hersenen blijken de Wasserstein afstanden veelbelovende hulpmiddelen te

zijn. In het eerste geval worden overeenkomsten in de dynamica van verschillende

hersengebieden in kaart gebracht, en in het tweede geval worden subtiele patholo-

gische veranderingen in de weefseleigenschappen van de hersenen gevonden. Deze

maken het mogelijk om bepaalde aandoeningen, zoals de auto-immuunziekte syste-

mic lupus erythematosus en de ziekte van Alzheimer, vroegtijdig te herkennen en te

kwantificeren.

Voor algemene dynamische systemen meten de Wasserstein afstanden verande-

ringen in het lange termijn gedrag. Dit biedt een nieuwe mogelijkheid tot numerie-

ke bifurcatieanalyse, en maakt het mogelijk om synchronisatie tussen systemen te

kwantificeren.

Een nadeel van deze methode is helaas dat de berekening van een Wasserstein

afstand de oplossing van een optimalisatie probleem vereist, wat tijdrovend kan zijn,

vooral wanneer een groot aantal systemen met elkaar vergeleken worden. Toekom-

stig onderzoek zou zich kunnen richten op snelle benaderingen van Wasserstein

afstanden, zodat het mogelijk wordt grotere problemen aan te pakken. Ook is de

aanpak in dit proefschrift vooral fenomenologisch: systemen worden succesvol ge-

classificeerd, maar wat de gemeten verschillen betekenen en door welke processen

zij veroorzaakt worden is tot nu toe onvoldoende onderzocht.
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