46 research outputs found

    Monitoring Klimawandel und Biodiversität - Grundlagen

    Get PDF
    Der Einfluss des Klimawandels auf die Biodiversität wird wahrscheinlich zunehmen. Das zeigen Modellierungen der zukünftigen Verbreitungsgebiete von klimasensitiven Arten und Biotoptypen. In der Broschüre werden die Grundlagen eines Monitoringkonzeptes zur Erfassung und Auswertung der Auswirkungen des Klimawandels auf die natürliche biologische Vielfalt in Sachsen vorgestellt. Sie umfassen u. a. die Ziele und Rechtsgrundlagen eines solchen Monitorings, diesbezügliche Aktivitäten des Bundes und ausgewählter Bundesländer sowie den Kenntnisstand zu Wirkungen des Klimawandels auf 13 Artengruppen und auf Biotoptypen. 272 klimasensitive Arten und 32 entsprechende FFH-Lebensraumtypen (LRT) wurden als besonders monitoringrelevant ausgewählt und deren Verbreitung in Sachsen untersucht. Für diese Arten und LRT, die sowohl wahrscheinliche »Gewinner« als auch »Verlierer« des Klimawandels umfassen, werden die geeigneten Monitoringmethoden beschrieben

    Monitoring Klimawandel und Biodiversität - Konzeption

    Get PDF
    Die im Heft 24 der Schriftenreihe präsentierten Grundlagen werden im vorliegenden Heft 25 zu einer Konzeption vervollständigt. Teilbereiche der folgenden bestehenden Monitoringprogramme sind für eine Einbeziehung in das konzipierte Monitoring Klimawandel und Biodiversität besonders geeignet: FFH-, SPA-, Tagfalter-, Brutvogel- und Wasserrahmenrichtlinien-Monitoring sowie Forstliches Umweltmonitoring. Es werden acht Module vorgestellt, welche bestehende Monitoringprogramme für ein umfassendes Klimawandel-Biodiversitätsmonitoring ergänzen bzw. bisher nicht untersuchte Aspekte abdecken können. Für die Auswertung der Daten wurden zwei komplexe Kernindikatoren entwickelt und anhand realer Datensets getestet, der Community Temperature Index (CTI) und der Areal Index (AI). Beide zeigen für die Artengruppen der Tagfalter und Libellen innerhalb Sachsens einen Anstieg, der unterstreicht, dass die Erhöhung der Jahresmitteltemperaturen in den letzten Jahrzehnten bereits zu Veränderungen in diesen Artengemeinschaften geführt hat

    A new comprehensive trait database of European and Maghreb butterflies, Papilionoidea

    Get PDF
    Trait-based analyses explaining the different responses of species and communities to environmental changes are increasing in frequency. European butterflies are an indicator group that responds rapidly to environmental changes with extensive citizen science contributions to documenting changes of abundance and distribution. Species traits have been used to explain long- and short-term responses to climate, land-use and vegetation changes. Studies are often characterised by limited trait sets being used, with risks that the relative roles of different traits are not fully explored. Butterfly trait information is dispersed amongst various sources and descriptions sometimes differ between sources. We have therefore drawn together multiple information sets to provide a comprehensive trait database covering 542 taxa and 25 traits described by 217 variables and sub-states of the butterflies of Europe and Maghreb (northwest Africa) which should serve for improved trait-based ecological, conservation-related, phylogeographic and evolutionary studies of this group of insects. We provide this data in two forms; the basic data and as processed continuous and multinomial data, to enhance its potential usage

    A regionally informed abundance index for supporting integrative analyses across butterfly monitoring schemes

    Get PDF
    1. The rapid expansion of systematic monitoring schemes necessitates robust methods to reliably assess species' status and trends. Insect monitoring poses a challenge where there are strong seasonal patterns, requiring repeated counts to reliably assess abundance. Butterfly monitoring schemes (BMSs) operate in an increasing number of countries with broadly the same methodology, yet they differ in their observation frequency and in the methods used to compute annual abundance indices. 2. Using simulated and observed data, we performed an extensive comparison of two approaches used to derive abundance indices from count data collected via BMS, under a range of sampling frequencies. Linear interpolation is most commonly used to estimate abundance indices from seasonal count series. A second method, hereafter the regional generalized additive model (GAM), fits a GAM to repeated counts within sites across a climatic region. For the two methods, we estimated bias in abundance indices and the statistical power for detecting trends, given different proportions of missing counts. We also compared the accuracy of trend estimates using systematically degraded observed counts of the Gatekeeper Pyronia tithonus (Linnaeus 1767). 3. The regional GAM method generally outperforms the linear interpolation method. When the proportion of missing counts increased beyond 50%, indices derived via the linear interpolation method showed substantially higher estimation error as well as clear biases, in comparison to the regional GAM method. The regional GAM method also showed higher power to detect trends when the proportion of missing counts was substantial. 4. Synthesis and applications. Monitoring offers invaluable data to support conservation policy and management, but requires robust analysis approaches and guidance for new and expanding schemes. Based on our findings, we recommend the regional generalized additive model approach when conducting integrative analyses across schemes, or when analysing scheme data with reduced sampling efforts. This method enables existing schemes to be expanded or new schemes to be developed with reduced within-year sampling frequency, as well as affording options to adapt protocols to more efficiently assess species status and trends across large geographical scales

    Do drivers of biodiversity change differ in importance across marine and terrestrial systems — Or is it just different research communities' perspectives?

    Get PDF
    Cross-system studies on the response of different ecosystems to global change will support our understanding of ecological changes. Synoptic views on the planet's two main realms, the marine and terrestrial, however, are rare, owing to the development of rather disparate research communities.We combined questionnaires and a literature review to investigate howthe importance of anthropogenic drivers of biodiversity change differs amongmarine and terrestrial systems and whether differences perceived by marine vs. terrestrial researchers are reflected by the scientific literature. This included asking marine and terrestrial researchers to rate the relevance of different drivers of global change for either marine or terrestrial biodiversity. Land use and the associated loss of natural habitatswere rated as most important in the terrestrial realm,while the exploitation of the sea by fishing was rated as most important in the marine realm. The relevance of chemicals, climate change and the increasing atmospheric concentration of CO2 were rated differently for marine and terrestrial biodiversity respectively. Yet, our literature review provided less evidence for such differences leading to the conclusion that while the history of the use of land and sea differs, impacts of global change are likely to become increasingly similar

    Research questions to facilitate the future development of European long-term ecosystem research infrastructures : A horizon scanning exercise

    Get PDF
    Distributed environmental research infrastructures are important to support assessments of the effects of global change on landscapes, ecosystems and society. These infrastructures need to provide continuity to address long-term change, yet be flexible enough to respond to rapid societal and technological developments that modify research priorities. We used a horizon scanning exercise to identify and prioritize emerging research questions for the future development of ecosystem and socio-ecological research infrastructures in Europe. Twenty research questions covered topics related to (i) ecosystem structures and processes, (ii) the impacts of anthropogenic drivers on ecosystems, (iii) ecosystem services and socio-ecological systems and (iv), methods and research infrastructures. Several key priorities for the development of research infrastructures emerged. Addressing complex environmental issues requires the adoption of a whole-system approach, achieved through integration of biotic, abiotic and socio-economic measurements. Interoperability among different research infrastructures needs to be improved by developing standard measurements, harmonizing methods, and establishing capacities and tools for data integration, processing, storage and analysis. Future research infrastructures should support a range of methodological approaches including observation, experiments and modelling. They should also have flexibility to respond to new requirements, for example by adjusting the spatio-temporal design of measurements. When new methods are introduced, compatibility with important long-term data series must be ensured. Finally, indicators, tools, and transdisciplinary approaches to identify, quantify and value ecosystem services across spatial scales and domains need to be advanced.Peer reviewe
    corecore