557 research outputs found

    The scalable mammalian brain: emergent distributions of glia and neurons

    Get PDF
    In this paper, we demonstrate that two characteristic properties of mammalian brains emerge when scaling-up modular, cortical structures. Firstly, the glia-to-neuron ratio is not constant across brains of different sizes: large mammalian brains have more glia per neuron than smaller brains. Our analyses suggest that if one assumes that glia number is proportional to wiring, a particular quantitative relationship emerges between brain size and glia-to-neuron ratio that fits the empirical data. Secondly, many authors have reported that the number of neurons underlying one mm2 of mammalian cortex is remarkably constant, across both areas and species. Here, we will show that such a constancy emerges when enlarging modular, cortical brain structures. Our analyses thus corroborate recent studies on the mammalian brain as a scalable architecture, providing a possible mechanism to explain some of the principles, constancies and rules that hold across brains of different size

    The effect of computer-based cognitive flexibility training on recovery of executive function after stroke: rationale, design and methods of the TAPASS study

    Get PDF
    Background: Stroke survivors frequently suffer from executive impairments even in the chronic phase after stroke, and there is a need for improved rehabilitation of these functions. One way of improving current rehabilitation treatment may be by online cognitive training. Based on a review of the effectiveness of computer-based cognitive training in healthy elderly, we concluded that cognitive flexibility may be a key element for an effective training, which results in improvements not merely on trained tasks but also in untrained tasks (i.e., far transfer). The aim of the current study was to track the behavioral and neural effects of computer-based cognitive flexibility training after stroke. We expected that executive functioning would improve after the cognitive flexibility training, and that neural activity and connectivity would normalize towards what is seen in healthy elderly. Methods/design: The design was a multicenter, double blind, randomized controlled trial (RCT) with three groups: an experimental intervention group, an active control group who did a mock training, and a waiting list control group. Stroke patients (3 months to 5 years post-stroke) with cognitive complaints were included. Training consisted of 58 half-hour sessions spread over 12 weeks. The primary study outcome was objective executive function. Secondary measures were improvement on training tasks, cognitive flexibility, objective cognitive functioning in other domains than the executive domain, subjective cognitive and everyday life functioning, and neural correlates assessed by both structural and resting-state functional Magnetic Resonance Imaging. The three groups were compared at baseline, after six and twelve weeks of training, and four weeks after the end of the training. Furthermore, they were compared to healthy elderly who received the same training. Discussion: The cognitive flexibility training consisted of several factors deemed important for effects that go beyond improvement on merely the training task themselves. Due to the presence of two control groups, the effects of the training could be compared with spontaneous recovery and with the effects of a mock training. This study provides insight into the potential of online cognitive flexibility training after stroke. We also compared its results with the effectiveness of the same training in healthy elderly

    Brain training in progress: a review of trainability in healthy seniors

    Get PDF
    The cognitive deterioration associated with aging is accompanied by structural alterations and loss of functionality of the frontostriatal dopamine system. The question arises how such deleterious cognitive effects could be countered. Brain training, currently highly popular among young and old alike, promises that users will improve on certain neurocognitive skills, and this has indeed been confirmed in a number of studies. Based on these results, it seems reasonable to expect beneficial effects of brain training in the elderly as well. A selective review of the existing literature suggests, however, that the results are neither robust nor consistent, and that transfer and sustained effects thus far appear limited. Based on this review, we argue for a series of elements that hold potential for progress in successful types of brain training: (1) including flexibility and novelty as features of the training, (2) focusing on a number of promising, yet largely unexplored domains, such as decision-making and memory strategy training, and (3) tailoring the training adaptively to the level and progress of the individual. We also emphasize the need for covariance-based MRI methods in linking structural and functional changes in the aging brain to individual differences in neurocognitive efficiency and trainability in order to further uncover the underlying mechanisms

    Remarks on hard Lefschetz conjectures on Chow groups

    Full text link
    We propose two conjectures of Hard Lefschetz type on Chow groups and prove them for some special cases. For abelian varieties, we shall show they are equivalent to well-known conjectures of Beauville and Murre.Comment: to appear in Sciences in China, Ser. A Mathematic

    Consolidation of long-term memory: Evidence and alternatives.

    Get PDF
    Memory loss in retrograde amnesia has long been held to be larger for recent periods than for remote periods, a pattern usually referred to as the Ribot gradient. One explanation for this gradient is consolidation of long-term memories. Several computational models of such a process have shown how consolidation can explain characteristics of amnesia, but they have not elucidated how consolidation must be envisaged. Here findings are reviewed that shed light on how consolidation may be implemented in the brain. Moreover, consolidation is contrasted with alternative theories of the Ribot gradient. Consolidation theory, multiple trace theory, and semantization can all handle some findings well but not others. Conclusive evidence for or against consolidation thus remains to be found

    Reminiscence bump in memory for public events

    Get PDF
    People tend to recall more personal events from adolescence and early adulthood than from other lifetime periods. Most evidence suggests that differential encoding causes this reminiscence bump. However, the question why personal events are encoded better in those periods is still unanswered. To shed more light on this discussion, we examined memory for public events. Since it is often impossible to ascertain that queried events are equally difficult, we circumvented the issue of equivalence by calculating deviation scores for each trial. We found that participants more frequently answered questions correctly about events that occurred in the period in which they were between 10 and 25 years old. Furthermore, we found that the reminiscence bump was more pronounced for cued recall than for recognition. We argue that these results support the biological account that events are stored better, because the memory system is working more efficiently during adolescence and early adulthood. These results do not falsify the other accounts for differential encoding, because they are not mutually exclusive. People speak of autobiographical memory when they are referring to the memories they have of their own life experiences (Robinson, 1986). Autobiographical memory does not only consist of personal memories that are remembered vividly, but also of autobiographical facts (Brewer, 1986). Some researchers have examined the contents of autobiographical memories (e.g., Fitzgerald, 1988; NiedzĢwienĢska, 2003; Robinson, 1976), whereas other researchers have focused on the temporal distribution of memories of personal events across the lifespan (e.g., Janssen, Chessa, &amp

    Transcriptional repressor ZEB2 promotes terminal differentiation of CD8āŗ effector and memory T cell populations during infection

    Get PDF
    ZEB2 is a multi-zinc-finger transcription factor known to play a significant role in early neurogenesis and in epithelial-mesenchymal transition-dependent tumor metastasis. Although the function of ZEB2 in T lymphocytes is unknown, activity of the closely related family member ZEB1 has been implicated in lymphocyte development. Here, we find that ZEB2 expression is up-regulated by activated T cells, specifically in the KLRG1(hi) effector CD8(+) T cell subset. Loss of ZEB2 expression results in a significant loss of antigen-specific CD8(+) T cells after primary and secondary infection with a severe impairment in the generation of the KLRG1(hi) effector memory cell population. We show that ZEB2, which can bind DNA at tandem, consensus E-box sites, regulates gene expression of several E-protein targets and may directly repress Il7r and Il2 in CD8(+) T cells responding to infection. Furthermore, we find that T-bet binds to highly conserved T-box sites in the Zeb2 gene and that T-bet and ZEB2 regulate similar gene expression programs in effector T cells, suggesting that T-bet acts upstream and through regulation of ZEB2. Collectively, we place ZEB2 in a larger transcriptional network that is responsible for the balance between terminal differentiation and formation of memory CD8(+) T cells

    Psychological Coping and Behavioral Adjustment Among Older Adults in Times of COVID-19: Exploring the Protective Role of Working Memory and Habit Propensity

    Get PDF
    The impact of the COVID-19 pandemic on mental health, well-being, and behavior is likely influenced by individual characteristics that determine oneā€™s capacity for resilience. In this exploratory study, we examined whether individual differences in working memory (WM) capacity and habit propensity (HP), measured before the outbreak, could predict variation in subsequent psychological coping efficacy (as operationalized by measures of depression, mental well-being, perceived stress, and loneliness) and behavioral adjustment (by evaluating compliance and self-reported automaticity of four COVID-19 guidelines) among Dutch older adults (n = 36) during the pandemic (measured April 25 to May 6, 2020). While we found elevated levels of depression and emotional loneliness, overall mental well-being, and perceived stress were not affected by the pandemic. Contrary to our expectations, we found no robust evidence for a protective role of WM in predicting these outcomes, although our findings hint at a positive relationship with perceived change in mental well-being. Interestingly, WM and HP were found to affect the self-reported automaticity levels of adherence to behavioral COVID-19 guidelines (i.e., washing hands, physical distancing), where a strong HP appeared beneficial when deliberate resources were less available (e.g., low WM capacity). These novel and preliminary findings offer new potential avenues for investigating individual differences in resilience in times of major life events or challenges
    • ā€¦
    corecore