2,029 research outputs found

    The shape and dynamics of a heliotropic dusty ringlet in the Cassini Division

    Full text link
    The so-called "Charming Ringlet" (R/2006 S3) is a low-optical-depth, dusty ringlet located in the Laplace gap in the Cassini Division. This ringlet is particularly interesting because its radial position varies systematically with longitude relative to the Sun in such a way that the ringlet's geometric center appears to be displaced away from Saturn's center in a direction roughly toward the Sun. In other words, the ringlet is always found at greater distances from the planet's center at longitudes near the sub-solar longitude than it is at longitudes near Saturn's shadow. This "heliotropic" behavior indicates that the dynamics of the particles in this ring are being influenced by solar radiation pressure. In order to investigate this phenomenon, which has been predicted theoretically but has never been observed this clearly, we analyze multiple image sequences of this ringlet obtained by Cassini in order to constrain its shape and orientation. These data can be fit reasonably well with a model in which both the eccentricity and the inclination of the ringlet have "forced" components (that maintain a fixed orientation relative to the Sun) as well as "free" components (that drift around the planet at steady rates determined by Saturn's oblateness). While the magnitude of the forced eccentricity is roughly consistent with theoretical expectations for radiation pressure acting on 10-to-100-micron-wide icy grains, the existence of significant free eccentricities and inclinations poses a significant challenge for models of low-optical-depth dusty rings.Comment: 31 pages, 6 figures, accepted for publication in Icarus. Slight edits made to match various proof correction

    Influence of the coorbital resonance on the rotation of the Trojan satellites of Saturn

    Get PDF
    The Cassini spacecraft collects high resolution images of the saturnian satellites and reveals the surface of these new worlds. The shape and rotation of the satellites can be determined from the Cassini Imaging Science Subsystem data, employing limb coordinates and stereogrammetric control points. This is the case for Epimetheus (Tiscareno et al. 2009) that opens elaboration of new rotational models (Tiscareno et al. 2009; Noyelles 2010; Robutel et al. 2011). Especially, Epimetheus is characterized by its horseshoe shape orbit and the presence of the swap is essential to introduce explicitly into rotational models. During its journey in the saturnian system, Cassini spacecraft accumulates the observational data of the other satellites and it will be possible to determine the rotational parameters of several of them. To prepare these future observations, we built rotational models of the coorbital (also called Trojan) satellites Telesto, Calypso, Helene, and Polydeuces, in addition to Janus and Epimetheus. Indeed, Telesto and Calypso orbit around the L_4 and L_5 Lagrange points of Saturn-Tethys while Helene and Polydeuces are coorbital of Dione. The goal of this study is to understand how the departure from the Keplerian motion induced by the perturbations of the coorbital body, influences the rotation of these satellites. To this aim, we introduce explicitly the perturbation in the rotational equations by using the formalism developed by Erdi (1977) to represent the coorbital motions, and so we describe the rotational motion of the coorbitals, Janus and Epimetheus included, in compact form

    Coronal Magnetic Field Structure and Evolution for Flaring AR 11117 and its Surroundings

    Full text link
    In this study, photospheric vector magnetograms obtained with the Synoptic Optical Long-term Investigations of the Sun survey (SOLIS), are used as boundary conditions to model the three-dimensional nonlinear force-free (NLFF) coronal magnetic fields as a sequence of nonlinear force-free equilibria in spherical geometry. We study the coronal magnetic field structure inside active regions and its temporal evolution. We compare the magnetic field configuration obtained from NLFF extrapolation before and after flaring event in active region (AR) 11117 and its surroundings observed on 27 October 2010. We compare the magnetic field topologies and the magnetic energy densities and study the connectivities between AR 11117 and its surroundings. During the investigated time period, we estimate the change in free magnetic energy from before to after the flare to be 1.74x10^{32}erg which represents about 13.5% of nonlinear force-free magnetic energy before the flare. In this study, we find that electric currents from AR 11117 to its surroundings were disrupted after the flare.Comment: 14 pages, 14 figures, Accepted by Solar Physics Journa

    Evolution of whole-body enantiomorphy in the tree snail genus Amphidromus

    Get PDF
    Diverse animals exhibit left–right asymmetry in development. However, no example of dimorphism for the left–right polarity of development (whole-body enantiomorphy) is known to persist within natural populations. In snails, whole-body enantiomorphs have repeatedly evolved as separate species. Within populations, however, snails are not expected to exhibit enantiomorphy, because of selection against the less common morph resulting from mating disadvantage. Here we present a unique example of evolutionarily stable whole-body enantiomorphy in snails. Our molecular phylogeny of South-east Asian tree snails in the genus Amphidromus indicates that enantiomorphy has likely persisted as the ancestral state over a million generations. Enantiomorphs have continuously coexisted in every population surveyed spanning a period of 10 years. Our results indicate that whole-body enantiomorphy is maintained within populations opposing the rule of directional asymmetry in animals. This study implicates the need for explicit approaches to disclosure of a maintenance mechanism and conservation of the genus

    Effect of the Surface on the Electron Quantum Size Levels and Electron g-Factor in Spherical Semiconductor Nanocrystals

    Full text link
    The structure of the electron quantum size levels in spherical nanocrystals is studied in the framework of an eight--band effective mass model at zero and weak magnetic fields. The effect of the nanocrystal surface is modeled through the boundary condition imposed on the envelope wave function at the surface. We show that the spin--orbit splitting of the valence band leads to the surface--induced spin--orbit splitting of the excited conduction band states and to the additional surface--induced magnetic moment for electrons in bare nanocrystals. This additional magnetic moment manifests itself in a nonzero surface contribution to the linear Zeeman splitting of all quantum size energy levels including the ground 1S electron state. The fitting of the size dependence of the ground state electron g factor in CdSe nanocrystals has allowed us to determine the appropriate surface parameter of the boundary conditions. The structure of the excited electron states is considered in the limits of weak and strong magnetic fields.Comment: 11 pages, 4 figures, submitted to Phys. Rev.

    Pre-M Phase-promoting Factor Associates with Annulate Lamellae in Xenopus Oocytes and Egg Extracts

    Get PDF
    We have used complementary biochemical and in vivo approaches to study the compartmentalization of M phase-promoting factor (MPF) in prophase Xenopus eggs and oocytes. We first examined the distribution of MPF (Cdc2/CyclinB2) and membranous organelles in high-speed extracts of Xenopus eggs made during mitotic prophase. These extracts were found to lack mitochondria, Golgi membranes, and most endoplasmic reticulum (ER) but to contain the bulk of the pre-MPF pool. This pre-MPF could be pelleted by further centrifugation along with components necessary to activate it. On activation, Cdc2/CyclinB2 moved into the soluble fraction. Electron microscopy and Western blot analysis showed that the pre-MPF pellet contained a specific ER subdomain comprising "annulate lamellae" (AL): stacked ER membranes highly enriched in nuclear pores. Colocalization of pre-MPF with AL was demonstrated by anti-CyclinB2 immunofluorescence in prophase oocytes, in which AL are positioned close to the vegetal surface. Green fluorescent protein-CyclinB2 expressed in oocytes also localized at AL. These data suggest that inactive MPF associates with nuclear envelope components just before activation. This association may explain why nuclei and centrosomes stimulate MPF activation and provide a mechanism for targeting of MPF to some of its key substrates

    Origin and Evolution of Saturn's Ring System

    Full text link
    The origin and long-term evolution of Saturn's rings is still an unsolved problem in modern planetary science. In this chapter we review the current state of our knowledge on this long-standing question for the main rings (A, Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During the Voyager era, models of evolutionary processes affecting the rings on long time scales (erosion, viscous spreading, accretion, ballistic transport, etc.) had suggested that Saturn's rings are not older than 100 My. In addition, Saturn's large system of diffuse rings has been thought to be the result of material loss from one or more of Saturn's satellites. In the Cassini era, high spatial and spectral resolution data have allowed progress to be made on some of these questions. Discoveries such as the ''propellers'' in the A ring, the shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume provide new constraints on evolutionary processes in Saturn's rings. At the same time, advances in numerical simulations over the last 20 years have opened the way to realistic models of the rings's fine scale structure, and progress in our understanding of the formation of the Solar System provides a better-defined historical context in which to understand ring formation. All these elements have important implications for the origin and long-term evolution of Saturn's rings. They strengthen the idea that Saturn's rings are very dynamical and rapidly evolving, while new arguments suggest that the rings could be older than previously believed, provided that they are regularly renewed. Key evolutionary processes, timescales and possible scenarios for the rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009) 537-57

    An evaluation of the site specificity of soil elemental signatures for identifying and interpreting former functional areas

    Get PDF
    Soil multi-element analysis is now a routine technique employed to help answer questions about space use and function in and around archaeological sites. The pattern of enhancement of certain elements, including P, Pb, Ca, Zn, and Cu, has been shown by numerous studies to correlate closely with the archaeological and historical record. Interpretation of these soil signatures, however, has generally been more problematic. One approach to the problem has been the use of ethnographic or “known” sites to guide interpretation, but how confidently can results from one site be extrapolated to another? This study of abandoned farms tests the site specificity of soil multi-element signatures of past space use through the use of discriminant models. Data analysis suggests that one to one comparisons of similar sites are much less accurate (38% accuracy) than comparisons based on a wider range of sites (59.3% accuracy), even when the latter have contrasting geology. The results highlight the importance of individual anthropogenic practices during occupation and abandonment in the development of diagnostic soil geochemical signatures
    corecore