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Abstract  

Soil multi-element analysis is now a routine technique employed to help answer 

questions about space use and function in and around archaeological sites. The pattern of 

enhancement of certain elements, including P, Pb, Ca, Zn, and Cu, has been shown by 

numerous studies to correlate closely with the archaeological and historical record. 

Interpretation of these soil signatures, however, has generally been more problematic. 

One approach to the problem has been the use of ethnographic or “known” sites to guide 

interpretation, but how confidently can results from one site be extrapolated to another? 

This study of abandoned farms tests the site specificity of soil multi-element signatures of 

past space use through the use of discriminant models. Data analysis suggests that one to 

one comparisons of similar sites are much less accurate (38% accuracy) than comparisons 

based on a wider range of sites (59.3% accuracy), even when the latter have contrasting 

geology. The results highlight the importance of individual anthropogenic practices 
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during occupation and abandonment in the development of diagnostic soil geochemical 

signatures.     
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Background 

 

The atmospheric deposition of metals from modern and historic industrial activity is an 

obvious effect of anthropogenic processes on soils (e.g. Mighall et al., 2002; Norton, 

2007; Rawlins et al., 2006; Sabin and Schiff, 2008). However, soils may also preserve 

more localised evidence of past human activity as a result of material inputs, either 

deliberate or accidental, from a range of domestic, agricultural, and industrial processes 

(e.g. Davidson et al., 2006; El Khalil et al., 2008; Murray et al., 2004; Nicholson et al., 

2006). The resulting chemical signatures, in the form of enhanced soil element 

concentrations, are increasingly being used as an interpretational tool to aid 

archaeological site prospection (Aston et al., 1998; Eckel et al., 2002; Schlezinger and 

Howes, 2000), map patterns of past space use (Cook et al., 2006; Entwistle et al., 1998; 

Entwistle et al., 2000; Sullivan and Kealhofer, 2004; Wells, 2004), and identify former 

functional areas (Cook et al., 2005; Knudson et al., 2004; Middleton and Price, 1996; 

Terry et al., 2004). 

 

Recent research into multi-element concentrations in the soils around abandoned farm 

sites with a known history of use (Wilson et al., 2005; Wilson et al., 2008), has shown 

there is a remarkable consistency in the suite of elements that are enhanced, and also of 

the pattern of enhancement. Concentrations of barium (Ba), calcium (Ca), copper (Cu), 

phosphorus (P), lead (Pb), strontium (Sr), and zinc (Zn) were found to be enhanced in the 

soils at each site studied. These elements have also been identified in elevated 

concentrations in archaeological soils of many periods and from around the world (see 
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for example, Aston et al., 1998; da Costa and Kern, 1999; Linderholm and Lundberg, 

1994; Middleton and Price, 1996; Pierce et al., 1998; Wells et al., 2000).  

 

The generalised pattern of enhancement in the abandoned farms included peak 

concentrations of P in the byres (animal houses) whilst the peak concentrations of the 

other elements were often associated with the hearth and kitchen areas. Pb isotope 

analysis has confirmed the hearth as the source for a significant proportion of Pb loadings 

on such sites (Meharg et al., 2006; Wilson et al., 2006a). Element concentrations were at 

lower levels in the byre (except P), midden (dung hill), garden and arable fields. Besides 

this core suite of element enhancements, site specific patterning in a range of other 

elements was also identified (Wilson et al., 2005) and the between site effects for all 

elements were highly significant. However, elements such as titanium, vanadium, 

aluminium and zirconium showed virtually no correlation with the archaeological 

remains on these abandoned farms and variations in their concentration were thought to 

reflect geological differences (Wilson et al., 2005).  A combined discriminant model 

based on soil geochemical patterns associated with six comparable abandoned farm sites 

in the UK was found to be accurate in identifying functional areas (from a choice of eight 

alternatives) in more than 75% of instances (Wilson et al., 2008).  

 

These similarities in suites and patterns of elemental enhancement suggest that it should 

be possible to interpret space use and function at one site based on known evidence from 

another using discriminant type analyses. However, in practice the interpretation of 

elemental concentrations on sites where archaeological evidence is limited, is extremely 
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problematic. Often, interpretations are limited to the location of areas of interest, or 

tentative identifications of activities are made based on element associations and 

groupings from a known context or ethnographic site (for example, Barba and Ortiz 

Butrón, 1992; Barba et al., 1995; Fernández et al., 2002; Knudson et al., 2004; Middleton 

and Price, 1996; Terry et al., 2004). One reason interpretation of soil element 

concentrations is so difficult is the effect of post-depositional soil processes, such as 

differential leaching and adsorption of metals (Ottaway and Matthews, 1988; Wilson et 

al., 2008). However, the immense diversity of potential human activities and individual 

practices could also complicate extrapolation of results from modern or neighbouring 

sites.   

  

This paper presents the results of a study to test the efficacy of discriminant models of 

soil element concentration in identifying past space use, and assesses the importance of 

site specific factors in the expression of elemental soil loadings. This is accomplished 

through the analysis of soils from two neighbouring post-Medieval abandoned farm sites, 

Balnreich and Tombrek. These two historic rural settlement sites have comparable 

geological, environmental and socio-economic settings; hence it is hypothesised that a 

discriminant model built from the site data of one should be accurate in predicting 

function from the soil geochemistry at the second. The data from Balnreich and Tombrek 

were then compared with that for five other previously studied sites; Olligarth, Grumby, 

Auchindrain, Far House and Cwm Eunant (Wilson et al. 2008). These five sites, however, 

have contrasting soil types, geologies and geography. The aim was to assess whether 

models of soil geochemistry from known sites could reliably be used to identify areas of 
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former function on sites with a similar history of use. The results of this work have 

implications for the application and interpretation of multi-element soil analysis in 

archaeological research. 

 

Methods 

Study sites 

In total, seven historic rural settlement sites from across the UK are included in this 

study. Six of these sites (Balnreich, Olligarth, Far House, Cwm Eunant, Auchindrain and 

Grumby) had been previously sampled (2002 and 2003) and the results are presented in 

Wilson et al. (2008). One site (Tombrek) was sampled subsequently (2006) and was 

chosen so as to be directly comparable with the previously studied site of Balnreich in 

North Tayside, Perthshire, Scotland (Figures 1 and 2).  

 

This area of North Tayside suffered significant depopulation through the late 19th and 

early 20th Centuries and as a result the relatively fertile land along the loch side has many 

abandoned townships and farms of the type described by Entwistle et al. (2008). The soils 

in this area of LochTayside are dominated by histosols and spodosols formed in glacial 

drift deposits derived from the Dalradian schist that underlies both Balnreich and 

Tombrek. Both sites are in areas of relatively free-draining soils and occupy a terrace 

landform that runs along the loch edge at ca. 200 m AOD.  The John Farquharson 1769 

survey map of North Lochtayside (McArthur, 1936) confirms the historical similarity in 

site layout and farming practice at the two sites.  
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The other five sites, used for comparison purposes in this study, are located across 

Scotland (Olligarth, Papa Stour; Grumby, Sutherland; Auchindrain, Argyll), England (Far 

House, N. Yorkshire) and Wales (Cwm Eunant, Powys) on a range of contrasting 

geology (limestone, sand, mica schist, shale, rhyolite, and gneiss) and consequently soils. 

Each site is of a comparable size and was farmed traditionally until abandonment 

between the mid 19th Century and 1940 (see Wilson et al., 2005 and Wilson et al., 2008 

for further site details). 

 

At each farm soil samples were taken from a range of comparable functional areas 

identified on the basis of standing and archaeological evidence and documentary 

evidence. The functional areas sampled were: hearth, house, byre, midden, garden, arable 

fields and grazed fields as well as “off-site” reference soils. The grazed fields were not 

sampled at Tombrek as they are located at some distance from the main settlement and in 

an area of contrasting geology, thus negating the aim of keeping background conditions 

identical between Balnreich and the later sampled Tombrek site. Also, no midden 

contexts were identified at either of these two sites. Within the buildings samples were 

taken over a 1 m grid from the upper 5-15 cm of the soil that had accumulated since the 

abandonment of the buildings (overburden). Test pits (1 m x 1 m) were excavated within 

the buildings to expose the uppermost (most recent) floor surface. Samples of the 

overburden were taken from the pit sections and samples from the floor layers were taken 

from between the exposed cobbles and flags of the floor layers. Five replicates were 

taken from each horizon or 20 cm depth increments. In the field areas the topsoil – upper 

5-15 cm or less depending on horizonation - was sampled using auger grid surveys (grid 
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size 8 m x 6 m) with a 2 m sampling interval (minimum 12 samples). Test pits (0.6 m x 

0.6 m) were excavated to the parent material. Five replicate samples were taken from 

each horizon or 20 cm depth increments depending on the horizon differentiation within 

individual soil profiles. Samples of the parent material were also taken from each test pit. 

 

Analysis 

Five grams of air-dried, less than 2 mm soil was digested in 5 ml of Aristar concentrated 

nitric acid at 120oC for 1 hour. The digest was filtered through Whatman No. 2 filter 

paper and the filtrate made to 100 ml volume using deionised water. Samples were 

analysed using a Perkin-Elmer 3300RL ICP-AES spectrometer. Loss-on-ignition 

(405oC), soil pH (1:5 soil:water), particle size distribution (laser diffraction LS230 

Coulter Counter), and cation exchange capacity (1M KCl leaching method) were also 

determined to provide background soil conditions for each functional area. This digestion 

method was chosen as giving the best recovery of anthropogenic signals versus the 

geological background (Wilson et al., 2006b). 

 

Data Analysis 

Data were normalised using a logarithmic transformation and four samples with extreme 

outliers (quartiles +/- 3 x interquartile range) were removed. Stepwise discriminant 

analysis was used to model elemental differences between functional areas. Models were 

generated for (1) the Balnreich site only, and (2) a composite model of six abandoned 

farm sites from across the UK (Balnreich, Olligarth, Grumby, Auchindrain, Far House 

and Cwm Eunant). These models were then used to predict functional area based on the 
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elemental composition of the samples from Tombrek. Note that the generic model 

includes grazed field and midden contexts whilst the directly comparable model of 

Balnreich and Tombrek excludes these contexts because of differences in geology and 

absence respectively. 

 

Results 

Comparison of settlement remains at Tombrek and Balnreich 

The buildings at Tombrek and Balnreich were constructed from stone rubble stabilised by 

clay mortar, with roof crucks supporting turf thatch. At Tombrek the hearth consisted of a 

large (ca. 1 m x 0.8 m) raised hearth stone placed centrally in the building, to the west of 

which may have been a wooden partition. The hearth stone itself showed evidence of 

heating but had evidently been cleaned at or following abandonment as no charcoal or 

ash deposits were found. Samples from the hearth were taken from cracks in the hearth 

stone where ash may have accumulated, and from the floor immediately around the 

hearth. This contrasts with the hearth at Balnreich where carbonised deposits were found 

in-situ. The floors in both houses were of flag stones, and the byre floors were cobbled. 

There had clearly been some reuse of the house section of Tombrek after its abandonment 

as a poorly constructed stone wall had been inserted across the building.   

 

The garden area at Tombrek contains a deepened soil profile with an Ap/A horizon 0.6 m 

thick containing charcoal, glazed pottery, and bone fragments indicating intensive past 

manuring of this area. An auger survey across a 1 m grid around the pit produced samples 

from the upper 5-15 cm of the soil. At Balnreich the garden soil showed no evidence of 

deepening (ca. 0.3 m deep); nor did it contain any visible anthropogenic inclusions. 
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The arable areas at both sites were identified by reference to the Farquharson map of 

north Loch Tayside dating to 1769. The arable field areas at both Tombrek and Balnreich 

were shallow (ca. 0.3 m) and contained no visible evidence of charcoal. The outfield 

areas to the north of the Tombrek site were not sampled as the previous analysis at 

Balnreich had revealed geological changes on the slopes of Ben Lawers; hence only the 

fields close to the steadings were felt to be suitable controls for comparison. 

 

Soil geochemical results 

Comparison of Balnreich and Tombrek 

The mean pH, cation exchange capacity (CEC), and percentage organic matter (OM), 

sand, silt and clay content for each functional area are summarised in Table 1 for both 

Tombrek and Balnreich. The reference soils of both sites have a very similar sandy clay 

loam texture and acid pH (reference soils pH 5.7 and 5.6). However, organic matter 

content and CEC are consistently higher on-site at Balnreich than at Tombrek. This 

suggests that CEC, and hence the ability of the soils to retain metal cations, is strongly 

influenced by soil organic matter content. 

 

The sub-soils (C horizons) provide background parent material element concentrations, 

thus allowing comparison between Tombrek and Balnreich (Figure 3). With the 

exception of potassium (K), iron (Fe), aluminium (Al), and titanium (Ti), there are no 

significant differences (p 0.05) in the geochemistry of the glacial drift parent materials at 

Balnreich and Tombrek.  
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Table 2 summarises the pattern of significant differences (one-way ANOVA, p <.05) in 

individual elemental top-soil concentrations between functional areas on Tombrek and on 

each of the six other sites used in the models of function. Elements with one star show a 

generalized pattern of enhancement in the built settlement (house, hearth, byre and 

garden) relative to the surrounding fields, whilst those with two stars also show 

significant differences in element concentrations between the contexts of the built 

settlement. It can be seen that Ba, Ca, K, Na, P, Pb, Sr, Cu and Zn, all show significant 

differences in soil concentration across Tombrek. With the exception of sodium this suite 

of enhanced elements is similar to that seen at the other sites studied previously. No 

significant differences in the concentrations of these elements were identified between 

the samples taken from the floor layer and those from the overlying (overburden) 

material. Henceforth, concentrations refer to the floor samples in the buildings (hearth, 

house and byre) and the topsoils (5-15 cm) in the fields; as this was found to give the 

most effective separation of functional areas. 

 

Figure 4 shows the pattern of concentration of Pb, Ca, P, Cu, and Zn in topsoils and floor 

layers across the sites of Tombrek and Balnreich. These elements had been highlighted 

during the study of Balnreich as potentially discriminating between the different 

functional areas of hearth, house, byre, garden, and arable fields (Table 2) and as being 

substantially enhanced relative to the off-site reference soil (As can be seen in Figure 4). 

This shows that at both sites Pb concentrations are significantly higher than in the local 

soil parent materials. The hearth contains the highest Pb concentrations followed by the 

house and byre. The garden and arable fields at Balnreich were not enhanced relative to 
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the reference sub-soil; however, at Tombrek these soils do contain significantly more Pb. 

The pattern of Ca enhancement shows greater differences between the two sites. At 

Balnreich the hearth showed very strong enhancement of Ca with significant, but much 

lower levels of enhancement in the house, byre, garden and arable fields (still limed by 

farmer). By contrast at Tombrek the house contains the highest levels of Ca followed 

closely by the hearth and byre. The garden and arable fields show no significant 

enhancement of Ca as confirmed by analysis of variance and Tukey’s Honest Significant 

Differences (Table 3). At both Balnreich and Tombrek, P is significantly enhanced in the 

soils surrounding the township compared to the parent material. At Balnreich the highest 

P concentrations were found in the byre, whilst at Tombrek the garden soils contain the 

highest levels of P, though the hearth, house and byre also contain relatively high 

concentrations.  

 
At Balnreich both Zn and Cu were strongly concentrated in the hearth area; whilst the 

hearth at Tombrek is enriched in these two elements (particularly Cu), the level of 

enhancement is much lower than at Balnreich.  

 

One-way Analysis of Variance of log transformed soil concentrations from Tombrek 

shows significant differences (p value < .000) in soil concentrations by functional area 

(Table 3). Tukey’s post-hoc analysis shows that P was concentrated in the byre, garden, 

house and hearth areas, Ca, Sr and K in the hearth, house and byre, and Pb in the hearth.  

 

Discriminant model results 
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The regionally specific discriminant model built using only data from Balnriech is 

presented in Table 4. Note that the elements used in the model do not include the full 

suite of “anthropogenic” elements. This is because a stepwise discriminant model was 

used due to the strong cross correlation between elements; thus, P, Pb, Zn and Ba best 

summarised the discriminating power of the “anthropogenically interesting” elements. 

Entering the Tombrek floor and topsoil data into the regionally specific discriminant 

model built with the data from neighbouring Balnreich resulted in 38.0% of the samples 

being correctly classified (Table 5). Identification of house and garden samples was good 

(69.1% and 90.9% respectively), but all the hearth, byre, arable and reference soils were 

incorrectly identified. Ignoring functional areas and classifying samples according to site 

was highly successful, with correct classification of independent samples (not used in the 

model) in a minimum of 97.1% cases (Table 6). 

 

The discriminant model built using the data from Balnreich, Olligarth, Cwm Eunant, Far 

House, Grumby and Auchindrain is presented in Table 7. Note the greater number of 

elements used in the model compared with the regional model (Table 4); this reflects the 

lower levels of cross correlation between elements in this larger, multiple site data set. 

Entering the Tombrek data into the generic model based on all the other six farm sites, 

resulted in 59.3% of the samples being correctly classified (Table 8).  All the hearth 

samples were incorrectly identified, predominantly (92.3%) as from the house. In total, 

85.3% of house samples were correctly identified, the remainder of the samples being 

assigned to byre; 70.4% of the byre samples were correctly identified and all the garden 

samples were correctly assigned. However, 96% of the arable field samples were 
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incorrectly assigned either to garden or grazed field samples, and all the reference sub-

soil samples were incorrectly assigned.  

 

 

Discussion 

The parent materials at Balnreich and Tombrek have been shown to be effectively 

identical in terms of their elemental composition. The soils at the two sites also have 

similar soil clay contents and pH. Given the similar geomorphological, hydrological and 

land use settings of the two sites, we could expect, therefore, that unamended soils would 

have similar elemental compositions and this expectation is borne out by the results. 

Thus, we can be confident that these two sites are directly comparable in terms of 

background soil element loadings. 

 

The high pH in the reference sub-soil reflects the natural level of base cations that have 

been progressively leached from the topsoils. The higher pH in the hearth areas is 

probably the result of additions of peat ash. Organic matter content and consequently 

cation exchange capacity are higher at Balnreich than at Tombrek. This means that 

loadings of elements such as calcium, barium and strontium, which are predominantly 

held in the exchangeable soil fraction (Wilson et al., 2006b) and hence are vulnerable to 

leaching in the wet Scottish climate, may have a lower residency time at Tombrek than at 

Balnreich. However, there was no evidence of any significant differential leaching effect 

over the 100-150 year time scale since abandonment at these two sites. 
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 A similar suite of elements (Ca, Ba, Sr, Zn, Pb, P, Cu and K) shows enhancement in and 

around Tombrek as at the previously studied abandoned farms. Previous studies of 

reference materials (Davidson et al., 2007) and Pb isotopes (Wilson et al., 2006b) 

suggests that at other historic rural settlement sites the hearth and the process of 

combustion is the main process of element concentration; these loadings then are spread 

further across the site through middening and manuring. The pattern of contamination at 

Balnreich supports this with the hearth containing the highest levels of lead, calcium, zinc 

and copper. At Tombrek too, the hearth contains the highest recorded levels of lead, zinc 

and copper, and amongst the highest concentrations of phosphorus, calcium, potassium, 

sodium, and strontium. However, the level of enhancement is much lower because, unlike 

at Balnreich, the hearth at Tombrek had been thoroughly cleaned prior to abandonment.  

 

The garden at Balnreich was somewhat atypical compared to the other Scottish townships 

as it contained a shallow soil profile, with none of the signs of deepening or inclusions 

such as charcoal and pottery that were found in the garden soils at Tombrek. This 

suggests a more sustained manuring effort at Tombrek than at Balnreich, and this is 

reflected in the higher phosphorus levels in the Tombrek garden. The byre at Tombrek, 

however, contains lower phosphorus levels than that at Balnreich, and of the other sites 

analysed previously. This may be due to cleaning of the byre at Tombrek (and likewise 

the hearth) prior to its abandonment.  

 

These site-specific differences in anthropogenic history influence the soil chemistry. As a 

result the model of space use based on soils from Balnreich was able to correctly predict 
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functional area for only 38% of samples. Prediction rates of house and garden samples 

were good (69.1% and 90.9% respectively), but no hearth, byre, arable or reference 

samples were successfully identified.  

 

The generic model based on the results of all six sites from the former study (see Wilson 

et al., 2008), produced a respectable 59.3% success rate for function prediction from the 

soils at Tombrek. Compared with the regionally specific model, the generic model was 

better at predicting both house and garden samples (85.3% and 100% respectively), and 

additionally successfully identified more than 70% of byre and 4% of arable field 

samples. Because the Tombrek hearth had been cleaned out, no hearth samples were 

correctly identified based on the chemistry of the charcoal-rich residues recovered from 

the other six sites. Nor were any of the reference soils correctly identified, though this is 

to be expected from a model developed from six geologically diverse (limestone, sand, 

mica schist, shale, rhyolite, and gneiss) locations. Identification of individual field areas 

is also poor, probably because of lower levels of enhancement that will mask background 

variation less well. The importance of site-specific factors, other than geology, is borne-

out by the strong site discrimination of soils on the basis of their elemental 

concentrations, and echoes the results of the previous study by Wilson et al. (2005; 2008) 

which identified factors of enhancement compared to the off-site reference soils in the 

order of ca. 4 – 50x in the hearth, house and byre. The findings seem to indicate that site-

specific anthropogenic factors are largely responsible for these differences. However, it is 

possible that at older sites post-depositional soil forming processes and post-

abandonment site use may be a more significant factor.  
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Conclusions 

Multi-element soil analysis is now a well established technique for aiding archaeological 

understanding of space use and function. Interpretation of these geochemical signals, 

however, can be problematic because of the range of materials being deposited, their on-

site mixing, natural variations in background soil chemistry and post-depositional 

processes. The traditional approach to aid interpretation has been the use of closely 

matched ethnographic or experimental sites. However, this study of two very similar sites 

(geologically, geographically, temporally, and functionally) has clearly illustrated the site 

specific nature of multi-element soil concentrations.  

 

Differences in anthropogenic processes, particularly those of abandonment and post-

abandonment use, such as the cleaning out of abandoned sites, have a significant effect 

on the scale of enhancement and the within site spatial patterning of element 

concentrations. As a result one to one comparative models (such as those traditionally 

used in ethnographic studies) may produce relatively poor results and in this case better 

prediction rates were achieved through the use of a model derived from data from a range 

of sites. It could be suggested that better results again would be gained if multiple sites 

from a geologically comparable region were used. However, it must be remembered that 

the model will always be limited by ‘unusual’ occurrences or practices. Although multi-

element soil analysis is undoubtedly a valuable tool in archaeological investigation and 

ethnographic studies add greatly to our understanding of soil loadings, the results of this 
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study highlight the great care that should be taken when trying to draw close comparisons 

between individual sites.   
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Table 1: Summary of soil parameters from functional areas in Tombrek (TMB) and 
Balnreich (BLN) 
 

pH Loss on 
Ignition (%) 

CEC (mmol C 
kg-1) % Sand % Clay  

TMB BLN TMB BLN TMB BLN TMB BLN TMB BLN 
Hearth 5.2 5.6 7.6 14.8 109.19 144.23 48.34 53.46 2.97 2.80 

House 4.6 4.5 11.3 14.0 38.86 68.27 67.50 58.37 1.79 2.40 

Byre 4.3 3.7 6.8 19.3 35.41 55.90 70.60 65.84 1.54 1.81 

Garden 5.0 5.1 9.2 9.4 36.67 37.67 67.42 55.05 1.75 2.51 

Arable fields 5.0 4.2 6.7 9.1 27.10 53.15 54.63 61.58 3.03 2.18 

Reference 
(parent material) 

5.7 5.6 2.7 2.5 n/d 12.48 n/d 57.85 n/d 3.09 

 

Table 2: Patterns of elemental concentrations on Tombrek and all sites used in previous 
functional models (Wilson et al. 2005) 

Site  Tombrek Balnreich Auchindrain
Cwm 

Eunant 
Far 

House Grumby Olligarth
Al           • • 
Ba •• •• • •• • •• •• 
Ca •• •• • •• •• •• •• 
Co   •     • •• •• 
Cr     •     •• •• 
Cu ••  •• • ••   • •• 
Fe           •• •• 
K •• ••         • 
Li         • • •• 
Mg       • •• • • 
Mn   •     •• •• •• 
Na ••       •     
Ni   • • • • • • 
P •• •• •• • • • •• 

Pb •• ••   ••   •• •• 
Sr •• •• • •• •• •• •• 
Ti           •  
V           • • 
Y   •       •• •• 

Zn •• •• •• •• •• •• •• 
• = general enhancement in element concentration in soils associated with buildings 
(houses, byres, middens and gardens) relative to surrounding arable and grazed fields 
•• = as above but additional differences in element concentration between individual on-
site functional areas (houses, hearths, byres, middens and gardens) 
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Table 3:  One-way ANOVA results for functional areas at Tombrek based on natural log 
transformed mineral soil concentrations of P, Ca, K, Na, Pb, Sr and Zn 

        Tukey's HSD subsets alpha = 0.05 

Element 
F-

Value 
Welch's 
statistic Sig 1 2 3 4 5 

P 76.599 106.514 < .000 
REF RF 

HR, 
HS, 
BY GD   

 
Ca 40.653 97.806 < .000 

REF, 
RF, 
GD 

HR, 
HS, 
BY       

K 52.022 80.148 < .000 
REF 

RF, 
GD 

HR, 
HS, 
BY     

Na 21.921 33.796 < .000 

REF 

HR, 
RF, 
GD 

HR, 
GD, 
BY 

HR, 
HS, 
BY 

   

Pb 130.017 153.165 < .000  
REF RF 

BY, 
GD HS HR 

Sr 38.617 111.183 < .000 
REF, 
RF, 
GD 

HR, 
HS, 
BY       

Zn 18.25 41.406 < .000 

REF RF 

HR, 
HS, 
BY, 
GD     

REF, reference soil; RF, arable field; GD, garden; BY, byre; HS, house; HR, hearth. 
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Table 4: Standardized canonical discriminant function co-efficients for the regionally 
specific model based on data from Balnreich. 

Function  
1 2 3 4 5 

ln P .536 -.084 -.960 -.730 .923 
ln Na .114 -.400 .933 .008 -.419 
ln Mg 2.080 -1.322 .787 .733 .596 
ln Fe .285 -.328 .568 .575 -1.725 
ln Ba .480 .228 .817 .910 .270 
ln Co -0.77 1.063 -.227 -.643 -1.127 
ln Pb .021 .790 -.122 .545 -0.006 
ln Ti -1.129 .161 -1.734 .137 -.124 
ln V -.195 .111 .433 -.275 2.128 
Ln Zn -1.433 .907 .107 -1.115 .120 
Eigenvalue 11.702 10.590 5.177 1.370 .972 
% of variance 39.3 35.5 17.4 4.6 3.3 
   

Table 5: Predicted context membership (%) for Tombrek data entered into regionally 
specific discriminant model. 
  Predicted context membership 

Assigned 
context HR HS BY GD RF REF 

HR   92.3   7.7     
HS 7.4 69.1 1.5 22.1     
BY 3.7 29.6   66.7     
GD   9.1   90.9     
RF   4   96     

REF       83.3 16.7   
REF, reference soil; RF, arable field; GD, garden; BY, byre; HS, house; HR, hearth. 
 
 
Table 6: Predicted site membership (%) for unselected cases from Balnreich and 
Tombrek. 

Predicted site membership  
Assigned site Balnreich Tombrek 
Balnreich 98.8 1.2 
Tombrek 6 94 
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Table 7: Standardized canonical discriminant function co-efficients for the generic model 
based on data from Balnreich, Olligarth, Cwm Eunant, Far House, Grumby and 
Auchindrain. 
 

Function  
1 2 3 4 5 

ln Al -.292 -.499 -1.374 1.866 1.056 
ln Fe .537 .081 -.663 -.047 -1.283 
ln Mg -.925 -.780 -.336 -.595 -1.526 
ln Ca .388 .379 .322 .592 1.90 
ln Na -.187 .663 .623 -.739 .730 
ln K .284 -.197 .400 .163 -.009 
ln Ti .373 .551 .455 .109 .828 
ln P .399 -.670 .576 .420 .140 
ln Mn  -1.055 .248 -.076 .771 1.222 
ln Ba .026 -.545 -.353 -.418 .024 
ln Co 1.632 -.489 .282 -1.144 .860 
ln Cu .017 .414 -.276 -.427 .308 
ln Li -.377 .809 1.962 -.347 .436 
ln Ni .692 .160 -.051 -.211 .254 
ln Sr .481 .417 -.654 .261 -.545 
ln V -.437 .684 .191 .433 -.631 
ln Zn -.001 -.684 -.171 -.095 -.841 
ln Pb .164 .492 -.343 -.058 .111 
Eigenvalue 3.119 1.394 .709 .463 .391 
% of variance 49.6 22.2 11.3 7.3 6.2 
 
 
Table 8: Predicted context membership (%) for Tombrek data entered into generic 
discrimanant model 
 Predicted context membership 
Assigned  
context 

HR HS BY GD RF OF REF MD 

HR  92.3 7.7      
HS  85.3 14.7      
BY  14.8 70.4 11.1  3.7   
GD    100     
RF    48 4 48   

REF  16.7  33.3 33.3 16.7   
REF, reference soil; RF, arable field; GD, garden; BY, byre; HS, house; HR, hearth; MD, midden; OF, 
grazed field 
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 Figure Titles 
 

Figure 1: Location of study sites Balnreich and Tombrek. 

 

Figure 2: Site maps and sampling locations for Balnreich and Tombrek 

 

Figure 3: Comparison of element concentration in C horizons (sub-soils) of Easter 

Tombrek and Balnreich (Note: Concentration is plotted in log10 scale) 

 

Figure 4: Mean element concentrations in top soils (A horizons of garden, field and 

reference contexts) and floor layers (hearth, house, byre) at Tombrek and Balnreich 
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