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Abstract The Cassini spacecraft collects high resolution images of the saturnian satel-

lites and reveals the surface of these new worlds. The shape and rotation of the satellites

can be determined from the Cassini Imaging Science Subsystem data, employing limb

coordinates and stereogrammetric control points. This is the case for Epimetheus (Tis-

careno et al. 2009) that opens elaboration of new rotational models (Tiscareno et al.

2009; Noyelles 2010; Robutel et al. 2011). Especially, Epimetheus is characterized by its

horseshoe shape orbit and the presence of the swap has to be introduce explicitly into

rotational models. During its journey in the saturnian system, Cassini spacecraft accu-

mulates the observational data of the other satellites and it will be possible to determine

the rotational parameters of several of them. To prepare these future observations, we

built rotational models of the coorbital (also called Trojan) satellites Telesto, Calypso,

Helene, and Polydeuces, in addition to Janus and Epimetheus. Indeed, Telesto and

Calypso orbit around the L4 and L5 Lagrange points of Saturn-Tethys while Helene

and Polydeuces are coorbital of Dione. The goal of this study is to understand how

the departure from the Keplerian motion induced by the perturbations of the coorbital

body, influences the rotation of these satellites. To this aim, we introduce explicitly the

perturbation in the rotational equations by using the formalism developed by (Érdi

1977) to represent the coorbital motions, and so we describe the rotational motion of

the coorbitals, Janus and Epimetheus included, in compact form.
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1 Introduction

The space mission Cassini orbiting Saturn since 2004 provides a lot of data and notably

images of the surface of over 20 satellites (Thomas 2010). From these images methods

based on limb profile provide the satellites shape (Thomas et al. 1998, 2007; Thomas

2010). To combine the different images taken at different time, it is crucial to assume

a rotational motion of the satellites. Thus, the rotational determination is obtained

as a by-product result. Usually for almost satellites a synchronous uniform rotational

motion seems to be enough to fit the images (Thomas et al. 2007). However, for specific

cases such as Janus and Epimetheus more elaborated rotational models are required

(Tiscareno et al. 2009) because of the swap in their orbital motion. This swap is due to

the 1:1 mean motion resonance where every 4 years these satellites approach and swap

their orbits by a few tens of kilometers. The resulting orbits in the rotating reference

frame are an horseshoe shape orbits.

In the Saturnian system, four additional coorbital satellites (i.e. in 1:1 orbital reso-

nance) are currently known. They are Calypso and Telesto that are coorbital of Tethys,

and, Helene and Polydeuces, coorbital of Dione. Contrary to Janus and Epimetheus,

their orbits describe a tadpole shape in the rotating reference frame (Fig. 1). Their

masses are very small with respect to their main satellites Tethys and Dione, whereas

Janus and Epimetheus have a comparable size. According to Horizons ephemeris

(Giorgini et al. 1996), the mass ratio between Janus and Epimetheus is about 3.604,

while the masses of Telesto, Calypso, and Helene are several tens of thousand times

smaller than the one of Tethys and Dione. We note that Polydeuces’ mass is currently

unknown, but it is expected much smaller than the one of Helene because the mean

radius of Polydeuces is less than 2 kilometers (Porco et al. 2007). Consequently, the

orbital motion of these four small satellites may be deduced from the restricted three

body problem including Saturn and one of these small bodies, Tethys or Dione. In this

framework, the small satellites are located close to the L4 and L5 Lagrange points

of the main satellites, executing a tadpole orbit around one of the Lagrange points

(see Christou et al. (2007) and references therein). The objective of the present paper

is to investigate the influence of the orbital oscillations resulting from the 1:1 orbital

resonance, on the rotational motion of these satellites by developing a general method

based on the Hamiltonian approach and parametrization of the orbital motion.

The coorbital satellites have irregular shape that probably results from their orig-

inal accretion or their impact history (Porco et al. 2007; Thomas 2010). The shape

can be approximated by an ellipsoid obtained from the best fit to the numerical shape

model developed by Thomas (2010). But, for the rotation, the main parameters of

interest are the moments of inertia. They can be deduced from the semi-axes of the

ellipsoid by assuming an homogenous interior. The error can be estimated of the order

of 30 % for Janus (see Section 4), so we could explore a large range of values around

the homogenous ellipsoidal shape. In addition, we assume that the rotation of these

satellites is synchronous as in Porco et al. (2007) and Thomas (2010) because this is

the most expected state due to tidal dissipation (e.g. Peale, 1999).

In Robutel et al. (2011) a perturbative approach has been used to solve the equa-

tions of the rotational motion by assuming that the orbital trajectories of Janus and

Epimetheus were quasiperiodic. This method allows to determine and to measure the

influence of the coorbital resonance on the rotation of theses satellites. Here, we propose

to apply such a method to compute efficiently the rotational motion of these satellites.

As the satellites present a 1:1 orbital resonance and 1:1 spin-orbit resonance, first we
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clarify vocabulary used in this paper. On one hand, the 1:1 mean motion resonance

generates tadpole or horseshoe orbits along which the difference of the longitude of

the two satellites are perturbed (called usually libration) with an orbital frequency

ν that we called the coorbital frequency. On the other hand, the 1:1 spin-orbit reso-

nance also causes a libration corresponding to an oscillation of the rotation angle of the

satellite with respect to an uniform rotation. For quasiperiodic motion, the frequency

that depends on the amplitude of the oscillation is called proper libration frequency.

This frequency will be denoted σ at the center of libration (see e.g. Wisdom (2004)).

The term libration is used only to describe the quasiperiodic rotational motion of the

satellites.

The paper is divided as follows: first we describe the representation of the orbital

motion that we use to model the coorbital satellites. We then present a Hamiltonian

formulation of the rotational problem and discuss on non-resonant and secondary res-

onant cases. These secondary resonant cases result in commensurability between the

libration frequency and orbital frequency. They appear for some values of the triaxiality

of the satellites and we detail the 1:1 and 1:2 secondary resonances. In particular, we

show how the overlap of resonances associated with the coorbital frequency generates

relatively large chaotic regions. Finally, we discuss our results in prevision of future

observations and the assumption made in this paper.

2 Approximation of the orbital motion

In this paper, we restrict the orbital model to the circular restricted three-body prob-

lem. It is within this simplified framework that the phenomena we want to highlight

will appear the most clearly. Let us consider two bodies of masses m0 (Saturn) and

m1 (Dione or Tethys) with m0 � m1 and

µ =
m1

m0 +m1
. (1)

The body of mass m1 describes a circular orbit of radius r0 centered on the most

massive body with an angular velocity (mean motion) equal to n. The origin of the

reference frame is located at the massive body (the planet), and polar coordinates are

assigned to the two other bodies: (r0, vp) to the main satellite, and (r, v) to the trojan.

Érdi (1977), in his paper dedicated to the dynamics of the Jovian Trojans, derives

asymptotical solutions of the trojan motion in the case of the elliptic restricted three

body problem expending the series up to order two in
√
µ. Limiting Érdi’s theory to

the first order in
√
µ and assuming circular revolutions for the two massive bodies, the

coordinates (r, v) can be approximated by these expressions1:

r(t) = r0

[
1 +
√
µ ρ cos(vp(t) + ζ(t) + ψ)− 2

3n

dζ(t)

dt

]
, (2)

v(t) = vp(t) + ζ(t)− 2
√
µρ sin(vp(t) + ζ(t) + ψ), (3)

vp(t) = nt+ vp,0, (4)

d2ζ

d t2
(t) = −3µn2

(
1− (2− 2 cos ζ(t))−3/2

)
sin ζ(t). (5)

1 See the appendix for the relationship of these expressions with the Érdi’s theory (1977).
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The coefficients (ρ, ψ, vp,0) are constant parameters linked with the initial conditions.

This model provides a quasiperiodic approximation of the motion of the massless body

in the coorbital 1:1 mean motion resonance, which is valid for a tadpole orbit as well

as for a horseshoe obit.

The previous expressions split in two components: a fast component whose ampli-

tude is controlled by ρ, and a slow component governed by the function ζ. This function

represents the temporal variations of v − vp averaged on one orbital period 2π/n. An

usual approximation of this quantity is given by the solution of the differential equa-

tion (5) (see Kevorkian (1970), Salo and Yoder (1988), and also Morais (2001) for an

averaged Hamiltonian formulation). This equation provides a good approximation of

the coorbital secular motion as long as the trajectories stay outside of the Hill sphere

(here a circle of radius r0(µ/3)1/3 whose center is the body of mass m1). According to

Kevorkian (1970), this condition imposes the parameter ρ not to be very large with re-

spect to unity. The system associated with the differential equation (5) possesses three

fixed points corresponding to the two stable equilibria L4 and L5 for (ζ, ζ̇) = (±π/3, 0),

and to the unstable equilibrium L3 when (ζ, ζ̇) = (π, 0). The collinear points L1 and

L2 are not fixed points of the equation (5), but as the points lie on the boundary of

the Hill sphere, we do not consider this problem. In contrast to the real problem, in

this one degree of freedom approximation given by the equation (5), the stable and

unstable manifolds associated with L3 coincide (the system is integrable). The domain

inside these manifolds is filled with tadpole orbits: periodic orbits surrounding L4 or

L5 whose frequency varies from
√

27µn/2 in the neighborhood of the corresponding

equilibrium to 0 approaching the separatrix. Outside of the separatrices lie the horse-

shoe orbits whose frequency ranges from zero on the separatrix to infinity when ζ̇ tends

to infinity. However, the value of the frequency is bounded because when |ζ̇| is large,

the distance between the trajectory and the collision with the mass m1 is small, that is

contrary to our hypothesis that the horseshoe trajectory must not enter the Hill sphere

(see Eq.5). Therefore, it can be shown that the frequency of the horseshoe trajectories

is bounded by a quantity of the order of
√
µn, similar to the frequency in the tadpole

regime.

The fast component of the motion is equal to r0
√
µρ cos(vp + ζ(t) + ψ) in the

expression of r and equal to −2
√
µρ sin(vp + ζ(t) + ψ) for v. These two functions

are quasiperiodic with frequencies n and ν where ν = O(
√
µ) is the frequency of the

periodic function ζ representing the secular motion. If we do not consider the function

ζ, the expressions of r and v are the same as those obtained by a first order expansion

in eccentricity in the Keplerian case, the eccentricity being equal to
√
µρ. This remark

will be exploited below.

For the real trojan satellites of Saturn, formulas (2) to (5) provide a quite rough

approximation of their orbital motion. Indeed, even if we can assume that the motion

of Dione (resp. Tethys) is not too much affected by their coorbital companions Helene

and Polydeuces (resp. Telesto and Calypso), the motion of Dione and Tethys is not Ke-

plerian. In particular, the 2 : 1 mean motion resonances between Dione and Enceladus

and between Mimas and Tethys generate long period variations of the orbital elements

of these bodies (period of about 70.5 years for Tethys and 11.1 years for Dione (Vienne

and Duriez 1995)). Here, the effect of Saturn’s oblateness is not directly taken into

account. Its main impact on the orbital motion is to slightly modify the fundamental

frequencies. As we derive these frequencies from the Horizons ephemerides that already

include several spherical harmonics related to the shape of Saturn, the oblateness is im-

plicitly considered. In addition, a second effect of the Saturn J2 factor is to modify the
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triangular equilibrium configuration. Indeed, the equilateral triangle flattens slightly

to give an isosceles triangle (see Sharma and Rao, 1976), but this modification is very

small in regard to the other neglected perturbations. Even if the orbital model that

we consider here is not accurate enough to describe precisely the orbital motion of the

studied satellites, its injection in the equations of the rotation is enough to describe the

rotational libration with a better accuracy than the accuracy providing by the Cassini

data (Tiscareno et al. 2009).

The parameters used in this paper to model the orbits are displayed in the table 1. µ

is the mass of the main satellite associated with the coorbital in the three-body problem

divided by the mass of Saturn. The value of ρ is fitted to the mean eccentricity of the

satellite, derived from the ephemerides, because it controls the amplitude of the short

time variations of r and v−nt therefore it acts like the mean eccentricity of the satellite.

This crude approximation is sufficient to give a reasonable order of magnitude of the

libration amplitude for the coorbital satellites (see Table 2). The secular variations of v

and r are represented by the function ζ, solution of the differential equation (5). For the

first four satellites of the table, this solution is chosen such a way that its period 2π/ν

(ν is given in the last column of the table) is the same as the period of the libration

around L4 or L5 (depending on the satellite) deduced from the Horizons ephemerides

(Giorgini et al. 1996).

For Janus and Epimetheus, the situation is more complicated because the long-

term component of their true anomaly (the average of v with respect to the orbital

period, namely the 8-years component) does not verify the equation (5). But, as it is

shown in Robutel et al. (2011), the average of the relative mean anomaly (difference

between Janus’ anomaly and the Epimetheus one) satisfies the differential equation (5).

In order to describe the long term temporal evolution of r and v we use the expressions

(2) and (3) again, but by replacing the function ζ by mE/(mJ + mE)ζ for Janus,

and mJ/(mJ + mE)ζ for Epimetheus, where ζ represents the above mentioned long

time variations of relative orbits of Janus and Epimetheus, is solution of the equation

(5). More explanations concerning this point can be found in Robutel et al. (2011)

and references therein. The minimum and maximum values of ζ are presented in the

fourth and fifth columns of Tab. 1. For the orbital motion of Janus and Epimetheus,

the variation in ζ is greater than 180 degrees resulting from the horseshoe shape orbits

of these satellites. On the contrary, the variations in ζ are smaller for the satellites in

tadpole orbits.

satellite µ ρ minζ maxζ n ν
(deg.) (deg.) (rad/day) (10−3 rad/day)

Polydeuces 2.9 10−6 11.5 268 321 2.3 7.93
Helene 2.9 10−6 4.6 47 77 2.3 8.18
Telesto 1.0 10−6 0.6 296 304 3.3 9.03
Calypso 1.0 10−6 0.8 59 61 3.3 9.02
Janus 9.7 10−10 218 6 354 9.03 2.15

Epimetheus 3.3 10−9 171 6 354 9.03 2.15

Table 1 Orbital parameters of the six coorbital satellites deduced from the Horizons
ephemerides: µ = m1/(m1 + m0), ρ that appears in the expressions (2) and (3) is derived
from the satellite’s averaged eccentricity, n is the mean motion and ν the coorbital frequency.
The fourth and fifth columns give minimal and maximal values of the long-term component ζ
satisfying the equation (6).
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Fig. 1 Average orbit of the satellites modeled by the equation (5) plotted in the plan
(ζ, dζ/dτ). The coordinates of L3, L4 and L5 are respectively (π, 0), (π/3, 0) and (5π/3, 0).
The two tadpole orbits surrounding L4 are associated with Calypso (smallest one) and Helene,
while the ones around L5 corresponds to Telesto (smallest one) and Polydeuces. The outermost
orbit describes the average motion of Epimetheus with respect to Janus.

In order to display the average orbits of the 6 coorbital satellites on the same plot,

different time-scale is used for each body. Rather than t, we use the time τ =
√
µnt in

such a way that the differential equation (5) becomes free from any parameter, that is

to say:

d2ζ

d τ2
= −3

(
1− (2− 2 cos ζ)−3/2

)
sin ζ. (6)

This rescaling allows us to compare these orbits in the plan (ζ, dζ/dτ) and to add

the separatrix associated with L3 (black curve) which discriminates the tadpole orbits

surrounding L4 and L5 from the horseshoe orbits outside of the separatrix. For the

four satellites in tadpole orbit (Polydeuces, Helene, Calypso, Telesto) the rescaling

coefficient
√
µn is derived from the table 1, while the initial conditions of (6) at τ = 0

are (ζmax, 0) where ζmax is given in the fifth column of the table 1. As mentioned above,

the individual orbit of Janus or Epimetheus is not directly related to the equation (5),

so we use their relative orbit (red in figure 1). This orbit is the integral curve of (6)

with τ =
√

(mJ +mE)/(mS +mJ +mE)nt which includes the point of coordinates

(ζmax, 0).
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3 A Hamiltonian formulation of the rotation

3.1 A simple quasiperiodic model

The dynamical equation governing the physical libration is inferred from the angular

momentum balance equation between the body’s inertia and the gravitational torque

exerted by Saturn projected onto the equatorial plane of the body. These equations

have the following form (see e.g. Robutel et al. (2011)):

θ̈ +
σ2

2

(
r0
r

)3
sin 2(θ − v) = 0, with σ2 = 3

Gm0

r30

(B −A)

C
, (7)

where θ is the rotational angle, G the gravitational constant, m0 the mass of Saturn,

A,B,C are the principal moments of inertia such as A ≤ B ≤ C, and (r, r0, v) are the

orbital parameters defined in the previous section. The frequency σ is constant and

corresponds to the frequency of libration at the equilibrium point. σ depends on the

difference B−A and for a spherical body, or an axisymetric body along the north-south

direction, it is equal to zero. By introducing the angular distance x = θ − v between

the long axis of the satellite and the direction satellite-planet, we obtain the equation

ẍ+
σ2

2

(
r0
r

)3
sin 2x = −v̈, (8)

whose solutions describe the motion of the planet in the satellite’s sky.

Using the approximation of v given by the relation (3), we get

ẍ+
σ2

2

(
r0
r

)3
sin 2x = −2

√
µρn2 sin(vp + ζ(t) + ψ), (9)

where the terms of order µ are neglected. As mentioned in section 2, r and the right

hand side of the equation (9) are quasiperiodic functions of frequencies n and ν, thus

the differential equation (9) depends quasiperiodically on the time.

The mass ratio µ being small, we adopt a perturbative method. We begin by as-

suming that µ = 0. The equation (9), which is now equivalent to the one representing

the motion of the pendulum, possesses a stable fixed point for ẋ = x = 0 surrounded

by periodic trajectories whose frequencies are close to σ in a small neighborhood of

the fixed point. Now, increase the value of µ corresponds to perturb the pendulum

equation in a quasiperiodic manner. If the size of the perturbation (governed by µ) is

small enough, and under other suitable conditions excluding some resonances between

the frequencies σ, n and ν, the fixed point of the unperturbed equation is replaced

by a quasiperiodic solution of frequencies (n, ν) around which revolves quasiperiodic

orbits possessing 3 frequencies (see Jorba and Simó (1996)). The frequencies of the

central orbit are the two forcing frequencies n and ν, while the other orbits possess an

additional ”free” or ”proper” frequency (close to σ) which depends on their initial con-

ditions. The perturbed systems thus possesses a one parameter family of 2-frequencies

quasiperiodic orbits which end in x = ẋ = 0 when µ tends to zero.

These forced solutions play a major role in the rotational dynamics of the close

satellites. Indeed, in presence of dissipative phenomena, the forced solution will be a

stable equilibrium (quasiperiodic attractor) towards which most of the trajectories will

converge (see Celletti and Chierchia (2008)). It is worth mentioning that the quasiperi-

odic attractor of the dissipative case and the quasiperiodic forced solution of the con-

servative case are not the same trajectories (see Landau and Lifchitz, 1960, chap. 28).
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But their frequencies, which are the orbital frequencies, are independent from the dis-

sipation and consequently are equal. Let us also mention that for small dissipations,

the two trajectories are very close, and that the dissipative limit cycle tends to the

conservative forced orbit when the dissipation vanishes. For these reasons, we will de-

vote the rest of this article to the study of the dynamics in the neighborhood of the

forced quasiperiodic orbit.

3.2 Hamiltonian formulation of the problem

3.2.1 Autonomous Hamiltonian system

In order to adopt an autonomous Hamiltonian formulation which takes into account

the different time-scales, let us denote: λ1 = vp + ψ and λ2 =
√
µnt. The solution ζ of

the equation (5) can be rewritten as:

ζ(t) = ζ(λ2
√
µ−1n−1) = ζ̂(λ2) (10)

and its time derivative as:

dζ

dt
(t) =

√
µnζ̂′(λ2), with ζ̂′(λ2) =

dζ̂

dλ2
(λ2). (11)

It turns out that:(
r0
r(t)

)3

= 1 +
√
µh(λ1, λ2) +O(µ), where

h(λ1, λ2) = 2ζ̂′(λ2)− 3ρ cosu, with u = λ1 + ζ̂(λ2)

(12)

and

v̇(t) = n (1 +
√
µg(λ1, λ2)) +O(µ), where

g(λ1, λ2) = ζ̂′(λ2)− 2ρ cosu.
(13)

Finally, using the conjugated variables (x,X) = (θ−v(t), θ̇−n), (λ1, Λ1) and (λ2, Λ2),

the equation (9) is equivalent to the canonical equations associated with the Hamilto-

nian H given by:

H = nΛ1 +
√
µnΛ2 + X2

2 −
σ2

4

(
1 +
√
µh(λ1, λ2)

)
cos 2x − n√µg(λ1, λ2)X.(14)As

we are only looking for the solutions in a neighborhood of zero, we expand the term

cos 2x at order 4. Using the variables (y, Y ) = (σ1/2x, σ−1/2X), the expansion of the

previous Hamiltonian (that we still denote by H) reads:

H = nΛ1 + σ
y2 + Y 2

2
− y4

6

+
√
µ

(
nΛ2 +

(
σ
y2

2
− y4

6

)
h(λ1, λ2)− n

√
σg(λ1, λ2)Y

)
.

(15)

In this expression the terms depending only on λ1 and λ2 are omitted.

An usual way to study the dynamics for small values of y and Y is to reduce the

Hamiltonian (15) to a normal form (see e.g. Arnold et al. (2006)). This will be done
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in two consecutive steps. The first one, performed in Section 3.2.2 leads to get rid of

the linear terms in Y , that is to eliminate g(λ1, λ2)Y using a new set of canonical

coordinates. This is equivalent to bring back the force trajectory to the origin of the

Cartesian coordinates. The second step, which is described in Section 3.3 consists in

the replacement of the Cartesian coordinates by polar symplectic ones before averaging

the obtained expression.

3.2.2 The quasiperiodic forced trajectory

The suppression of the term g(λ1, λ2)Y in the expression (15) is performed by in-

troducing a new coordinate system (y′, Y ′, λ′1, Λ
′
1, λ
′
2, Λ
′
2) linked to the coordinates

(y, Y, λ1, Λ1, λ2, Λ2), by the relations2:

y = y′ − ∂F

∂Y ′
, Y = Y ′ +

∂F

∂y′
, λj = λ′j −

∂F

∂Λ′j
, Λj = Λ′j +

∂F

∂λ′j
, (16)

where the generating function F is a solution of the partial differential equation:

n
∂F

∂λ′1
+ σ

(
Y ′
∂F

∂y′
− y′ ∂F

∂Y ′

)
= n
√
σ
√
µg(λ′1, λ

′
2)Y ′. (17)

We choose here the solution:

F = n
√
σ
√
µ

(
ζ̂′(λ′2)

σ
y′ − 2ρ

σy′ cos(λ′1 + ζ̂(λ′2))− nY ′ sin(λ′1 + ζ̂(λ′2))

σ2 − n2

)
. (18)

This solution is valid only if σ 6= n, and more generally when |σ−n| is not too small, in

other words when the system is far enough from the 1:1 secondary resonance between

the libration frequency σ and the mean motion n.

In the coordinate system (y′, Y ′, λ′1, Λ
′
1, λ
′
2, Λ
′
2) the Hamiltonian (that we denote

H again) becomes:

H = nΛ′1 + σ
y′2 + Y ′2

2
− y′4

6
+
√
µ

(
nΛ′2 +

(
σ
y′2

2
− y′4

6

)
h(λ′1, λ

′
2)

)
. (19)

It is now clear that the trajectory

(y′(t), Y ′(t), λ′1(t), λ′2(t)) = (0, 0, nt+ λ′1
(0)
,
√
µnt+ λ′

(0)
2 ) (20)

is a quasiperiodic solution of (19). This trajectory depending only on the orbital fre-

quencies is the forced orbit which reads in original coordinates:

x(t) = θ(t)− v(t) = −2ρ
√
µ

n2

σ2 − n2
sin(λ′1 + ζ̂(λ′2)). (21)

The expression of the forced trajectory in a reference frame rotating with the angular

velocity n reads:

θ(t)− vp(t) = ζ(t)− 2ρ
√
µ

σ2

σ2 − n2
sin(λ′1 + ζ̂(λ′2)). (22)

2 Let us notice that the transformation (16) is canonical only when the terms of order two
and more in

√
µ are neglected



10

The solution is the sum of two terms of different nature: a long-period term, which

amplitude is about 1◦ for Calypso and can reach 135◦ for Epimetheus (Robutel et al.

2011), and a term at the orbital period whose amplitude, given in Table 2, does not

exceed 9◦. The amplitude of this libration is very similar to the one obtained for a

satellite in Keplerian motion. If we equate the term ρ
√
µ with the orbital eccentricity,

we recover the ”Keplerian” amplitude expression but the phase has a very different

behavior. In contrast with the Keplerian case, the phase is a quasiperiodic function

of the time and the solution is close to the solution obtained by adiabatic invariant

method developed in Robutel et al. (2011).

3.3 The non-resonant case

In order to proceed to the reduction of the Hamiltonian (19), let us introduce the

symplectic polar coordinates

(y′, Y ′) = (
√

2W sinw,
√

2W cosw). (23)

In these variables, the Hamiltonian (19) can be split in three components: the unper-

turbed part H0 given by

H0 = nΛ′1 + σW, (24)

the averaged part of the perturbation H1 which reads

H1 = n
√
µΛ′2 −

W 2

4
+
√
µ

(
σW − W 2

2

)
ζ̂′(λ′2), (25)

and its remainder H̃1 given by

H̃1 =

(
−√µσWζ̂′ + (1 + 2

√
µζ̂′)

W 2

3

)
C0,2 − (1 + 2

√
µζ̂′)

W 2

12
C0,4

+
√
µρ(

3σ

2
W −W 2)C1,2 +

√
µρW 2

4
C1,4 − 3

√
µρ(

σ

2
W − W 2

4
)C1,0,

(26)

with

2Cp,q = cos(pu+ qw) + cos(pu− qw) = 2 cos pu cos qw (27)

where u = λ′1 + ζ̂(λ′2).

These expressions show that the angles w and λ′1 vary rapidly (ẇ = O(σ) and

λ̇′1 = O(n)) while λ′2 is a slow angle (λ̇′2 = O(
√
µn)). Consequently, an usual way to

find the approximate solutions of the previous Hamiltonian system is to consider its

average with respect to the fast angles λ1 and w.

If, as it is the case in the previous section, the terms of order µ and more are

neglected, and if the term cos 2x is expanded in Taylor series up to degree 2p in x, the

resonances that occur during the first order averaging process of the Hamiltonian (26)

are n+ kσ = 0, k being an integer satisfying |k| ≤ 2p.

As mentioned above, the Hamiltonian H can be reduced to its average with respect

to the fast angles λ′1 and w given by the expression:

K = nΛ′1 + σW + n
√
µΛ′2 −

W 2

4
+
√
µ

(
σW − W 2

2

)
ζ̂′(λ′2), (28)
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where the terms which are negligible with respect to
√
µ and W 2 (when µ and W

tend to zero) are omitted. The transformation linking H to K is approximated by the

expression:

z = z̄ − ∂Fa

∂Z̄
, Z = Z̄ +

∂Fa
∂z̄

, (29)

where (z, Z) is a couple of conjugated coordinates belonging to {(λ′1, Λ′1), (λ′2, Λ
′
2), (w,W )},

(z̄, Z̄) are the average variables, and Fa the generating function of the transformation.

For simplicity, the ”bar” symbols will be omitted in the rest of this section.

The function Fa being a solution of the equation

n
∂Fa
∂λ′1

+ σ
∂Fa
∂w

+ H̃1 = 0, (30)

we adopt here:

Fa = −
∑
p,q

Hp,q(W,λ
′
2)Sp,q, (31)

with

Sp,q =
1

2

(
sin(pu+ qw)

pn+ qσ
+

sin(pu− qw)

pn− qσ

)
if Hp,q 6= 0,

Sp,q = 0 if Hp,q = 0.

(32)

Solving the Hamiltonian system associated with K allows to give the solutions of

the problem in the original variables (x,X). In particular, we have:

x(t) = −2
√
µρ

n2

σ2 − n2
sinu+

√
2Wσ−1 sinw

+

√
µ

2σ
W
[
ζ̂′(λ2) sinu+

3σρ

4n

(
n+ 4σ

n+ 2σ
sin(u+ w) +

n− 4σ

n− 2σ
sin(u− w)

)]
,

(33)

where W is a constant and the temporal expressions of the angles u and w are:

u(t) =nt+ ζ(t) + ψ,

w(t) =w0 +

(
σ − W

2

)
t+

σ −W
n

ζ(t).
(34)

When W = 0, we find the forced trajectory (21) whose fundamental frequencies are

only the orbital frequencies (n, ν). When W > 0, the trajectories which oscillate around

the forced trajectory have one additional frequency that depends on the distance to

the forced orbit W : σ̄(W ) = σ − W/2 + O(W
2
). We note that, unlike the naive

representation which consists in separating the solution of the motion in a forced and

a free component, the part of the trajectory which depends on the parameter W does

not contain only σ̄(W ) but mixed term containing the three main frequencies.
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3.4 Secondary resonances

We have seen in Section 3.2.2 that due to the presence of the denominator σ2 − n2
the transformation defined by the relations (16) to (18), which maps a neighborhood

of the forced orbit onto a neighborhood of y′ = Y ′ = 0, is not defined when the system

approaches the 1:1 secondary resonance. Similarly, the averaging performed in Section

3.3 makes sense only when n + kσ 6= 0. Consequently we will see on two particular

cases (the 1:1 and 2:1 secondary resonances) how the topology of the phase space is

modified when secondary resonances occur. Such a development of secondary spin-orbit

resonance has been done by Wisdom (2004) in the case of Keplerian orbit and more

specifically for the 3:1 resonance.

3.4.1 The 1:1 secondary resonance

In order to study the dynamics in the neighborhood of 1:1 resonance between the

frequency of libration and the orbital frequency, we start from the initial Hamilto-

nian (15). Using the new coordinate system (w,W, λ′j , Λ
′
j) defined by the relation

(y, Y, λj , Λj) = (
√

2W sinw,
√

2W cosw, λ′j , Λ
′
j) the Hamiltonian reads

H = H0 +H1 + H̃1 + n
√
µ
√

2Wσ
(

2ρC1,1 − ζ̂′(λ′2)C0,1

)
, (35)

where the notations are defined by the formulas (24) to (27). This Hamiltonian presents

an additional term with respect to the previous case, the last term, that represents the

linear term in Y in Hamiltonian (15). Then, we define a new set of canonical variables

as:

z = w − u = w − (λ′1 + ζ̂(λ′2)), Z = W,

ϑ1 = λ′1, Θ1 = Λ′1 +W, (36)

ϑ2 = λ′2, Θ2 = Λ′2 + ζ̂′(λ′2)W,

where z and ϑ2 are slow angles. After having averaged the Hamiltonian (35) with

respect to the only fast angle ϑ1, the Hamiltonian reads:

K1:1 =n
√
µΘ̄2 + (σ − n)

(
1 +
√
µζ̂′(ϑ̄2)

)
Z

−
(

1 + 2
√
µζ̂′(ϑ̄2)

)
Z
2

4
+ n
√

2Zσ
√
µρ cos z,

(37)

where (z, Z, ϑ̄2, Θ̄2) represent the averaged variables as in section 3.3.

As the term
√
µζ̂′(ϑ2) is always small with respect to the unity, it can be neglected

in first approximation3. Consequently, we are left with the one degree of freedom

Hamiltonian:

K
(0)
1:1 = (σ − n)Z − Z

2

4
+ n
√

2Zσ
√
µρ cos z, (38)

which corresponds to the classical problem known as the second fundamental model of

resonance, or also Andoyer’s model (Henrard and Lemaitre 1983).

The fixed points of the Hamiltonian system correspond to the slow component of the

forced orbits (average with respect to the angle fast angle λ1). If we set Q =
√

2Z, the

3 If the Trojan satellite is at L4 or L5, then ζ̂′(ϑ2) = 0 ∀t.
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coordinates (z, Z) of these fixed points are given by the positive roots of the polynomial

equation:

P−(Q) = Q3 − 4(σ − n)Q− 4nρ
√
µσ = 0 if z = 0, (39)

P+(Q) = Q3 − 4(σ − n)Q+ 4nρ
√
µσ = 0 if z = π. (40)

As P−(−Q) = −P+(Q) , the roots of one of these polynomials are the opposite of the

roots of the other one.

By fixing the parameters µ, ρ, n and vary the frequency σ (in the neighborhood of

n), there exists a critical value σ0 such that for σ < σ0 the average resonant system

has only one fixed point, which is stable. Then, when σ reaches the critical value σ0
a pitchfork bifurcation with symmetry breaking (see e.g. Lichtenberg and Lieberman

(1992)) occurs and gives rise to two new branches of fixed points. One of these new

families contains stable fixed points while the other one possesses unstable equilibrium

points. The bifurcation arises when the discriminant ∆ of the polynomial involved in

(39) or (40) is equal to zero, that is

∆ = 16
(
n2σµρ2 − 16

27
(σ − n)3

)
= 0, (41)

or

16δ3 − 27µρ2n2δ − 27µρ2n3 = 0 with δ = σ − n. (42)

Since µρ2 < 4, this equation has only one real root δ0 given by:

δ0 =
3n

4
(2µρ2)1/3

(1 +

√
1− µρ2

4

)1/3

+

(
1−

√
1− µρ2

4

)1/3


=
3n

4
(4µρ2)1/3 + o(µ1/3).

(43)

In other words, the critical value of σ is:

σ0 = n+ δ0 =
(

1 +
3

4
(4µρ2)1/3

)
n+ o(µ1/3). (44)

Finally, the family of fixed points that exists for all values of σ is given by (z1, Z1) =

(0, Q2
1/2) where Q1 is the positive root of the polynomial equation (39) given by the

expression

Q1 =
(

2nρ
√
µσ +

η

2

√
|∆|
)1/3

+
(

2nρ
√
µσ − η

2

√
|∆|
)1/3

, (45)

where η = 1 if σ < σ0 and η =
√
−1 if σ ≥ σ0.

The two others fixed points which coincide when σ = σ0 and split for larger values

are of the form (zp, Zp) = (π,Q2
p/2), where the Qp’s (p = 2, 3), which are the two

positive roots of P+, can be calculated in the following way. Let us define the complex

number u by the expression

u = −2nρ
√
µσ +

√
−1

2

√
|∆|. (46)

As the real part of u is negative and its imaginary part positive, φ, the argument of u,

is between π/2 and π. It turns out that the two positive roots of P+ read:

Q2 = 4

√
σ − n

3
cos

φ

3
, Q3 = 4

√
σ − n

3
cos

φ+ 4π

3
. (47)
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It is worth mentioning that, as P−(−Q) = −P+(Q), the positive root of P− can

also be read:

Q1 = −4

√
σ − n

3
cos

φ+ 2π

3
for σ ≥ σ0. (48)

The expression of the Qj are particularly simple when σ = σ0. Indeed, as for this value

of σ the argument φ is equal to π, we have

Q1 = 4

√
δ0
3
, Q2 = Q3 = 2

√
δ0
3
. (49)

Regarding the stability of these three equilibrium points, a straightforward calcu-

lation shows that the characteristic polynomial of the linearized differential system in

the neighborhood of (zj , Zj) is given by:

Pj(h) = h2 +
1

4
n
√
σ
√
µρ
P ′(Qj)

Qj
, (50)

P ′ being the first derivative of P− if j = 1 and of −P+ if j = 2, 3.

The polynomial function P−(Q) being increasing for all values of σ, its derivative

is positive and the roots of P1 are purely imaginary numbers. It turns out that the

fixed point of coordinates (0, Z1) is linearly stable. The other family is more interesting.

Indeed, when σ = σ0, Q2 = Q3 is a double root of P+ and consequently its first deriva-

tive vanishes. This ”double” equilibrium point is then degenerated (its eigenvalues are

both equal to zero). As soon as σ becomes larger that σ0, the point associated with Q2

becomes hyperbolic, while the one corresponding to Q3 becomes elliptic. Indeed, the

polynomial P+ having three distinct roots, one negative and the two others Q2 and

Q3 positive, the produce dP+

dQ (Q2)dP
+

dQ (Q3) is negative. As Q3 ≤ Q2, dP+

dQ (Q2) > 0

and dP+

dQ (Q3) < 0, which proves the assertion stated above.

A straightforward computation, based on the determination of the generating func-

tion used to averaging the Hamiltonian (35) with respect to ϑ1, allows us to express

the fixed points of (38) in the original variable (x,X). In particular, we have:

xj =
Qj√
σ

sin(zj + λ1) + o
(√

µ
1
3

)
, Xj = ẋj +O(

√
µ). (51)

In the previous expression, the index j is equal to 1 if σ ≤ σ0 (only one fixed point)

and to 1, 2 or 3 otherwise (three fixed points). When σ is close to the bifurcation value

σ0, according to the expressions (44) and (49), we have:

xj = cj (2
√
µρ)

1
3 sin(zj + λ1) + o(

√
µ

1
3 ), (52)

with c1 = 2 and c2 = c3 = 1. Consequently, the amplitude of the resonant case is

much larger than in the non-resonant case, where the forced trajectory is of amplitude

O(
√
µ) (see formula (21) and (33)).

Now we illustrate the analytical results by some numerical simulations. Until the

end of this section, we fixed the free parameters of the model such that : µ = 1×10−6,

n = 1, ρ = 1, ψ = −π/3 and vp,0 = 0. According to the expression (44) the critical

value σ is then equal to σ0 = 1.011953.

Let us first illustrate the evolution of the fixed points of the Hamiltonian (38)

close to this bifurcation value. The quantities Qj , which determine the location of the

equilibrium points through the formula (51) are plotted in Fig 2.a for σ varying in
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Fig. 2 Bifurcation inside the 1:1 secondary resonance. The upper graph displays the values
of the Qj (Y-axis) versus σ (X-axis). The quantities associated with the stable equilibria are
represented with solid lines while dotted lines are associated with the unstable equilibrium.
The frequencies of the libration around the two stable fixed points are plotted in the bottom
graph. The two vertical dotted lines indicate the values of the parameter σ used in the numerical
simulations presented in Fig. 3.

the interval (0.96, 1.064) including σ0. For σ smaller than the critical value the phase

space has only one equilibrium point defined by Q1 (bold curve). In this domain, Q1

increases since the distance of the fixed points from the origin is of order µ1/2 and of

order µ1/3 when σ is close to σ0. After the bifurcation, this equilibrium point moves

away from the origin.

For σ > σ0, the stable equilibrium associated with Q1 persists while a new pair

of fixed points appears at a distance of order µ1/3 from the origin: an unstable point
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related to Q2 (dotted line) and a stable one associated with Q3 (thin solid line).

While the unstable point moves away from the origin as σ increases, Q3 decreases,

reaching values of order
√
µ outside the resonance. In other words, the stable fixed

point associated with Q3 plays the same role after the 1:1 resonance than the one

connected to Q1 before this secondary resonance. The figure 2.b shows the evolution

of the frequencies f1 and f3 of the two elliptical (stable) fixed points deduced from

the equation Pj(
√
−1fj) = 0, where the Pj are defined by the relation (50). When σ

increases, the value of the frequency f1 begins to decrease, reaches a minimum for σ

slightly greater than 1, and then increases slowly. The fixed point that is created at

the bifurcation being degenerated the frequency f3 (dotted curve) starts from zero and

then increases rapidly along the stable branch.
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Fig. 3 Phase portraits of the 1:1 secondary resonance in the coordinate system (x, ẋ). The
figures (a) and (c) show the iterates of the first return map of the unperturbed problem for
two different values of σ chosen in both side of the critical values σ0: σ = 1 in figure (a)
and σ = 1.013 in (c). The figures (b) and (d) represent the libration frequency f(ẋ) for the
corresponding values of σ. The two gaps visible in figure (d) correspond to the crossing of
the separatrices where a logarithmic singularity is encountered. The tangent to the frequency
curve in this point is consequently horizontal.

In order to get more details regarding the structure of the phase space in the

neighborhood of the forced trajectory, we use Poincaré sections. To this end, we will not

consider averaged equations, or expansions in a neighborhood of zero as we have done to
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carry out the analytical computations, but the complete initial differential equation (8)

where the temporal evolution of v, r and ζ is deduced from (2) to (5). As in the above

analytical development, we have neglected the terms containing the function ζ̂′, the

function ζ has to be constant along the integration. This can be done easily assuming

that the satellite is at the equilibrium points L4 or L5, that is ζ = ζ̂ = ±π/3 and

ζ̇ = ζ̂′ = 0. Consequently, we are left with a one degree of freedom system depending

periodically on the time (just like in the Keplerian case) and the phase portrait can

be studied using the first return map defined by the flow of the system at time 2π/n.

The global phase portrait of this problem is well known, it resembles to the one of the

π-periodic pendulum weakly perturbed by a periodic time dependent function (see e.g.

Wisdom (1987, 2004)). Here we focus on a neighborhood of x = ẋ = 0 because we are

interested in a local phenomenon that disturbs the forced orbit when σ is close to the

critical value σ0.

The Figs. 3a and 3c show two different phase portraits of the system in coordinates

(x, ẋ), restricted to a small area around the origin. The Fig.3a is computed with σ = 1

chosen below the critical value σ0 ≈ 1.011953 (Eq. 44 ), whereas on the bottom plot

(c) σ = 1.013 is chosen slightly above the critical value σ0. The phase space (a) shows

only one elliptical fixed point (a periodic orbit) which is not centered on zero due to

the non-zero value of Q1. For the phase space (c), a second elliptical point appears at

the position Q3 because the system has crossed the bifurcation located at σ0. Around

these points, the trajectories rotate in two different directions and these two dynamical

states are separated by the separatrix emerging from an hyperbolic point located just

upper the Q3 fixed point.

The Figs. 3b and 3d represent the graphs of the frequency map of the system for the

two selected values of σ. More precisely, assuming that the system is regular, the orbit

of the first return map passing through the point of coordinates (0, ẋ) is quasiperiodic

and has two fundamental frequencies: n and an independent frequency denoted f(ẋ).

The frequency map is the map which associated with ẋ the frequency f(ẋ). In prac-

tice, this frequency is evaluated numerically applying the frequency analysis developed

by Laskar (1990, 1999). If the dynamics of the studied system is regular (integrable

system), the graph of the frequency map is almost everywhere perfectly smooth. On

the contrary, its singularities or lack of smoothness indicate the location of chaotic

zones, or of hyperbolic domains associated with resonances. In addition, when a stable

island associated with a resonance is crossed, the frequency f(ẋ) remains constant. For

further explanations and developments about the frequency map analysis, we refer the

reader to Laskar (1999) and references therein.

The frequency f(ẋ) versus ẋ is plotted in the right column of the figure 3. In

Fig. 3.b, where σ = 1, the curve seems perfectly smooth, which indicates the global

stability of the considered problem (if unstable regions exist, their size is microscopic

at the scale of the figure). The frequency reaches a local maximum corresponding to

the fixed point. Its value fits very well to the value predicted by the relation (50). The

two local minima are not directly related to critical points or singular structures of the

phase space, but by increasing the values of σ, these minima will tend to zero. When

σ = σ0, one of these minima indicates the location of the fixed point Q2 = Q3 and the

other one, the location of its separatrix. Notice that, for σ = 1, the frequency f(ẋ) is

always greater that 0.01, that will be of interest when the coorbital perturbation will

be added to the model.

For σ = 1.013 (Fig. 3.d), the frequency curve is globally smooth, but possesses

three singularities associated with two gaps (close to ẋ = 0.15 and 0.18) and a cusp (at
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ẋ = −0.4). These structures correspond to the crossing of the separatrices emerging

from the unstable equilibrium. Between these singularities, the frequency reaches two

extrema, the positive one, which coincides with the equilibrium located inside the big

clockwise libration island, and the negative minimum associated with the fixed point

lying inside the small counterclockwise libration island. Here again, the agreement

between the values of the extrema and the values predicted by f1 and f3 is better than

1%.
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 0.05

 0.1

 0.15

 0.2

 0.25

-6 -4 -2  0  2  4  6  8  10

dx
/d

t

f/ν
Fig. 4 Chaotic behavior of the libration frequency of the perturbed problem: enlargement of
the counterclockwise libration island. The X-axis represents the ratio of the frequencies f(ẋ)/ν,
thus the abscissa of the main resonance integer (or half-integer). The values of ẋ are on the Y-
axis. This figure highlights the overlap of the lower order resonances and its associated chaotic
area. The regions where f(ẋ) is constant (vertical segments) are associated with the resonances
f/ν = p ∈ N.

Let us now study the effect of the coorbital perturbation on the rotation inside

the 1:1 secondary resonance. As the perturbed problem has three degrees of freedom,

we cannot visualize its dynamics using Poincaré sections. But we can still study the

frequency map of the perturbed problem. Here the situation is very different from the

non-resonant case studies in section 3.3. Indeed, in the non-resonant case, the libration
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frequency is close to σ. It turns out that the ratio of this frequency by the coorbital

frequency ν is of order 1/
√
µ. Then, the possible resonances between these frequencies

are of high order and their dynamical influence is negligible. But, as in the resonant case,

the libration frequency can reach null values, so we can expect to observe interesting

phenomena that we detail below.

As the size of the perturbation increases with the amplitude of the variations of ζ,

a large amplitude tadpole orbit has been chosen to introduce the perturbation in our

simulation. Its initial conditions are ζ(0) = π/3, ζ̇(0) = 0.0024. Along this orbit, ζ varies

between 24.3◦ and 162.5◦ and the coorbital frequency is equal to ν = 1.5085 10−3.

In the case of σ = 1, the frequency curve of the perturbed problem (not presented

in the paper) is extremely similar to the one of the unperturbed problem drawn in Fig.

3.b. This shows that the addition of the perturbation does not generate any significant

instability. This is probably due to the fact that the minimum of the libration frequency

being of about 0.0103, the lower order reachable resonance is given by f = 7ν, and the

system is in some sense protected from the destabilizing influence of the perturbation.

Consequently, the chaotic zones resulting from these resonances are extremely small.

On the contrary, the situation is much more interesting when σ = 1.013 for at least

two reasons. First, due to the presence of a hyperbolic fixed point, very thin chaotic

regions exist near the separatrices of the unperturbed problem. Then we expect that,

adding one degree of freedom, the size of these chaotic region increases. The second

reason lies on the fact that, as shown in Fig 3.d, the frequency f approaches zero,

making possible resonances of low order between f and ν. The expected phenomena

are observed in Fig 4 which presents an enlargement of the graph of the perturbed

frequency map. The global shape of the frequency curve is similar to the case of the

unperturbed problem (Fig. 3.d), but new structures are clearly visible. This curve

presents two very different regions. The first one is composed of three pieces of the

curve: the part lying above the line ẋ = 0.196, the part below ẋ = 0.025 and the one

located in the left side of the vertical line f/ν = −4. In this first domain, the curve is

very smooth except for some regions marked by discontinuities generated by resonances

between f(ẋ) and ν. But they are isolated and their associated chaotic areas are not

observable, even at this scale.

The second region includes what remains of the two (quasi) horizontal branches

of Fig. 3.d marking the crossing of the separatrices of the unperturbed problem. The

regular branches are replaced by vertical segments, whose abscissa is integer, and by

regions where the points are not well arranged. These structures are mainly generated

by the presence of low order resonances f = kν, the integer k satisfying−4 ≤ h ≤ 5, and

of their overlapping. Although these phenomena are clearly visible, they are confined

to the vicinity of the separatrices of the unperturbed problem. In the parameter space

that we explored, this should not significantly affect the rotation of the satellite. By

extension, in the case of the coorbitals, with the parameters listed in Tables 1 and 2,

the resonances should stay confined in very limited phase space.

3.4.2 The 2:1 secondary resonance

According to Section 3.3, the invariant set (y′(t), Y ′(t), λ′1(t), λ′2(t)) = (0, 0, nt+λ′1
(0)
,

√
µnt+ λ′

(0)
2 ) corresponds to the forced trajectory which is elliptic (stable) in absence

of secondary resonances. As its normal frequency is close to σ, a doubling period like

bifurcation arises when σ is close to n/2. In order to study this phenomenon, we



20

introduce the canonical coordinates:

z = 2w − u = 2w − (λ′1 + ζ̂(λ′2)), Z = W/2,

ϑ1 = λ′1, Θ1 = Λ′1 +W/2, (53)

ϑ2 = λ′2, Θ2 = Λ′2 + ζ̂′(λ′2)W/2,

such that z and ϑ2 are two slow angles. After the substitution of (w,W, λ′j , Λ
′
j) by the

new coordinates (z, Z, ϑj , Θj) in the Hamiltonian H defined by the relations (24) to

(26), followed by its averaging with respect to ϑ1, the resonant Hamiltonian reads4:

K2:1 = (2σ − n)Z − Z2 +

√
µρ

2

(
3σZ − 4Z2

)
cos z

+
√
µnΘ2 +

√
µ (2σ − n− 2Z)Zζ̂′(ϑ2).

(54)

As in Section 3.4.1, in a first step, we can focus on the first line of the previous

expression, neglecting the terms depending on (ϑ2, Θ2). The topology of the phase

space of this Hamiltonian system whose Hamiltonian is denoted by K
(0)
2:1 bifurcates for

two different values of the parameter σ:

σ0 =
n

2

(
1− 3

2

√
µρ
)−1

, and σπ =
n

2

(
1 +

3

2

√
µρ
)−1

. (55)

When σ < σ0 the system associated with K
(0)
2:1 does not have any fixed point, except

the point Z = 0, which corresponds to the singular half-line of the polar coordinates.

In other words, in cartesian coordinates (
√

2Z sin z,
√

2Z cos z), the origin is a stable

fixed point, and the topology of the phase space is similar to the non resonant case.

When the first critical value σ0 is reached, the origin (or the half-line Z = 0) loses its

stability given rise to a new elliptical fixed points of coordinates (z0, Z0) with

z0 = 0, Z0 =
2(2σ − n) + 3

√
µρσ

4(1 + 2
√
µρ)

. (56)

From the second critical value σπ, the central equilibrium point recovers its stability

while a new unstable fixed point of coordinates (zπ, Zπ), where

zπ = π, Zπ =
2(2σ − n)− 3

√
µρσ

4(1− 2
√
µρ)

, (57)

emerges from Z = 0. Its separatrix surrounds the point (z0, Z0) which becomes stable

again. This kind of bifurcation is described by Murray and Dermott (1999, Chap. 8, Fig.

8.12) for a different situation corresponding to an internal second-order mean motion

resonance in the restricted three body problem. One gets the same phase portrait as

in the book using a coordinate system like (Z cos(z/2), Z sin(z/2)).

As it is the case for the 1:1 secondary resonance studied in Section 3.4.1, if the value

of the parameter σ exceeds σ0, the frequency can approach zero. If we take into account

the orbital perturbation, this will give rise to resonances with the frequency ν, gener-

ating wide chaotic regions in the neighborhood of the separatrices of the unperturbed

problem. But the goal of this paper is not to describe these local phenomena.

4 In order to simplify the notations, the bars symbols over the variables are omitted in the
expression of the averaged Hamiltonian.
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4 Discussion and Conclusion

In previous sections, we have described the dynamical behavior of the rotational motion

of the coorbital satellites. Notably, we show that three parameters control the dynamics

(i) the frequency σ related to the dynamical figure of the satellite, (ii) the departure

from the Lagrangian points that leads to introduce orbital perturbations represented

by ζ and adds a new frequency in the system, and (iii) the combination
√
µρ coming

from the short-period orbital perturbation.

(i) The coorbital satellites are small satellites of some kilometers (the mean radius

ranges from 1.3 km for Polydeuces to 89.5 km for Janus). The Cassini spacecraft

provides high resolution images leading to mapping and cartography these satellites

with an accuracy of 0.4 km for Polydeuces (Porco et al. 2007; Thomas 2010). The only

accessible parameters for the figure of the satellites are the long axes ellipsoidal shape.

From these data, we can compute the moment of inertia by assuming that the satellites

are homogeneous and ellipsoidal

A =
M

5
(b2 + c2), (58)

B =
M

5
(c2 + a2), (59)

C =
M

5
(a2 + b2), (60)

where A,B,C are the principal moment of inertia and a, b, c are the fitted long axis

ellipsoidal shape coming from shape models (Thomas 2010). By looking the recent

images of Helene (Cassini image N00172886.jpg, NASA/JPL/Space Science Institute),

it is clear that it is a rough hypothesis. We use the data provided by Thomas (2010)

that compiled the recent shape models of these satellites and we compute the triaxiality

(B −A)/C that is equal to

B −A
C

=
a2 − b2

a2 + b2
, (61)

so the main uncertainties come from the equatorial axes of the shape. The resulting

values of σ = n
√

3(B −A)/C are shown in Table 2. To give an idea of the error

due to the ellipsoidal approximation, it is interesting to review the determination of

the shape of Janus and Epimetheus. Tiscareno et al. (2009) provided the moments of

inertia of both satellites from shape model without the assumption of the ellipsoidal

shape and deduced σ equal to 8.51, and 4.94 rad/day instead of 5.62, and 3.85 rad/day

for the ellipsoidal shape model. Clearly, the ellipsoidal shape model gives an error of

the order of 33 %. The Table 2 provides the different values of σ for the coorbitals by

assuming an ellipsoidal shape. We note that Telesto, Calypso, and Polydeuces present

a departure from the 1:1 secondary resonance of 3.3, 12.0, 23.2 %, whereas Helene

shows 19.0% departure from the 1:2 secondary resonance. Consequently, by assuming

an uncertainty of 30%, these satellites could be in or close to secondary resonance

and more data are necessary to determine their figure. Basing on the values given in

the tabels 1 and 2, we estimate the amplitude of the forced orbit for each of the six

coorbital satellites. To this end, we assume that the rotation of the satellites is not

in secondary resonance, and use the expression (21) to derive the amplitude of the

libration with respect to the line Saturn-satellite AS = 2ρ
√
µn2(n2 − σ2)−1, which

is given in the fifth column of the table 2. The amplitude of the forced orbit in an
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uniformly rotating reference frame (Tab. 2, last column) derived from the expression

(22) is given by Ar = 2ρ
√
µσ2(n2 − σ2)−1.

(ii) The departure of the trajectories from the Lagrange points leads to long-period

oscillations in the orbital motion characterized by ζ. The perturbation of the orbital

motion influences the rotational motion of the satellites by varying the gravitational

torque coming from Saturn expressed in (6), through r and v. This is an indirect effect

acting on the satellite. It has been shown in the equation (21) that the amplitude of

the forced trajectory is almost the same than in the Keplerian case but its phase differs

by the ν-periodic function ζ(νt). For the σ values listed in the Table 2, the influence of

ζ is small for Calypso, Telesto, and Helene. However, for large tadpole orbits such as

Polydeuces and for horseshoe orbits (Janus and Epimetheus) the influence is large. In

addition, for σ leading to secondary spin-orbit resonance, the presence of the additional

frequency ν causes new resonances and generates chaotic areas.

(iii) The orbital motion of the satellites is described through the Érdi’s formal-

ism (Érdi 1977) and the initial values come from the Horizons ephemerides (Giorgini

et al. 1996). The Horizons ephemerides provide a recent orbit of the satellites based

on additional images from Cassini spacecraft (Jacobson et al. 2008). In our model the

parameter
√
µρ controls the amplitude of the orbital short period variations as the

eccentricity does for Keplerian motions. Consequently, ρ is directly adjusted to the

mean eccentricity of the satellite. The eccentricity of the coorbitals from the Horizons

ephemerides varies with time on short and long periods due to several effects. First, the

eccentricity of the principal satellites is not equal to zero. The eccentricities of Dione

and Tethys are 0.0022 and 0.0001, respectively. Érdi (1977) shows that in this case, the

Equation (2) will present an additional periodic term at the orbital frequency leading

to an additional term of frequency n in the solution. Moreover, due to the interactions

between the satellites, the longitude v will present secular terms, long periodic compo-

nent, as illustrated for Janus and Epimetheus (Robutel et al. 2011). All these effects

could be easily introduced in the present formalism by adding periodic terms in the

equation of motion. On contrast, the interactions with Enceladus and Mimas that are

in 2:1 resonance with Dione and Tethys, and therefore with the coorbitals, are more

complicated to model and to describe.

Satellite n σ
√
µρ AS Ar

(rad/day) (rad/day) (deg.) (deg.)
Polydeuces 2.3 1.86 0.0196 6.5 4.2
Helene 2.3 1.42 0.0078 1.5 0.6
Telesto 3.3 3.22 0.0006 1.4 1.4
Calypso 3.3 2.97 0.0008 0.5 0.4

Janus(a) 9.03 4.94 0.0068 1.1 0.3

Epimetheus(a) 9.03 8.51 0.0098 10 8.9

Table 2 Amplitude of the forced orbit. The mean motion n and the parameter σ (libration
frequency at the center of libration) are given in the second and third columns. The fourth
column corresponds to the values of the parameter

√
µρ that governs the variations of the

orbital motion at the frequency n. AS is the amplitude of the forced orbit measured with
respect to the line Saturn-satellite, while Ar represent the amplitude of the short-period term
of the forced trajectory in uniformly rotating frame. The symbol (a) indicates that the value
of σ comes from Tiscareno et al. (2009).
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In conclusion, we have studied the impact of the coorbital resonance on the ro-

tational motion of Telesto, Calypso, Helene and Polydeuces, in the planar problem

(orbital and equatorial inclination are neglected). We have shown that the main pa-

rameters acting on the rotational motion are (σ, ζ,
√
µρ) where σ is related to the

dynamical figure of the moons, ζ is the secular perturbation of the orbit and
√
µρ is

the departure from the Lagrangian points. The uncertainties in the dynamical figure

of the moons range the possibility that they are close or in secondary resonances. Such

secondary resonances, coupled with the secular motion of the moons due to the coor-

bital resonance, increase the possibility to reach supplementary resonances and these

satellites are inclined to exhibit a rich dynamics. The determination of the dynamical

figure of these satellites by space observations will bring precious information for the

dynamics of these moons.

Appendix

The link with the expressions given by Érdi (1977) and the equations (2) to (5) is

not straightforward and some clues are given in the following lines. The xth formula

is denoted by [x] if it appears in Érdi (1977) and by (x) if it comes from the present

paper.

From the relations [5a] and [19] truncated at first order in ε =
√
µ, we deduce that

r = 1+
√
µ
(
ρ1 cos(ϕ+ ψ1)− 2

3f1
)
, while [5b] and [20] give θ = ϕ−2

√
µρ1 sin(ϕ+ψ1)+√

µq1 (the polar angle θ is denoted by v in our paper). The functions ϕ, f1, ρ1 and ψ1

depend a priori on ṽ which is a slow time defined by ṽ =
√
µ(v − v0), v being the true

anomaly of the massless body (v = nt in the Circular Restricted Three Body Problem

(C.R.T.B.P.)). As from [27a] and [27b], the functions ρ1 and ψ1 are constant (e1 = 0

in the C.R.T.B.P.), it only remains to give an explicit expression for ϕ and f1 . From

[7a] we have ϕ = v +
√
µ
∫
f1(ṽ)dv and the relation [23] links f1, and consequently ϕ,

to ζ1 (ζ in the present paper) that satisfies the differential equation [24] (equation (5)

in this text). By some changing of notations, we get the approximations (2) to (5).

Here, we have extracted from Érdi’s paper only the necessary relations to get a

simple orbital model of a Trojan satellite. However, Érdi’s theory goes far further since

it gives asymptotical expansions to second order in
√
µ within the framework of the

planar elliptic restricted three body problem. The section 7 of Érdi (1977) summarizes

these results. A spatial theory is given in Érdi (1978).
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