40,918 research outputs found

    Correction of laser range tracking data for atmospheric refraction at elevations above 10 degrees

    Get PDF
    A formula for correcting laser measurements of satellite range for the effect of atmospheric refraction is given. The corrections apply above 10 deg elevation to satellites whose heights exceed 70 km. The meteorological measurements required are the temperature, pressure, and relative humidity of the air at the laser site at the time of satellite pass. The accuracy of the formula was tested by comparison with corrections obtained by ray-tracing radiosonde profiles. The standard deviation of the difference between the refractive retardation given by the formula and that calculated by ray-tracing was less than about 0.04% of the retardation or about 0.5 cm at 10 deg elevation, decreasing to 0.04 cm near zenith

    Recovery of atmospheric refractivity profiles from simulated satellite-to-satellite tracking data

    Get PDF
    Techniques for recovering atmospheric refractivity profiles from simulated satellite-to-satellite tracking data are documented. Examples are given using the geometric configuration of the ATS-6/NIMBUS-6 Tracking Experiment. The underlying refractivity model for the lower atmosphere has the spherically symmetric form N = exp P(s) where P(s) is a polynomial in the normalized height s. For the simulation used, the Herglotz-Wiechert technique recovered values which were 0.4% and 40% different from the input values at the surface and at a height of 33 kilometers, respectively. Using the same input data, the model fitting technique recovered refractivity values 0.05% and 1% different from the input values at the surface and at a height of 50 kilometers, respectively. It is also shown that if ionospheric and water vapor effects can be properly modelled or effectively removed from the data, pressure and temperature distributions can be obtained

    Late quaternary time series of Arabian Sea productivity: Global and regional signals

    Get PDF
    Modern annual floral and faunal production in the northwest Arabian Sea derives primarily from upwelling induced by strong southwest winds during June, July, and August. Indian Ocean summer monsoon winds are, in turn, driven by differential heating between the Asian continent and the Indian ocean to the south. This differential heating produces a strong pressure gradient resulting in southwest monsoon winds and both coastal and divergent upwelling off the Arabian Peninsula. Over geologic time scales (10(exp 4) to 10(exp 6) years), monsoon wind strength is sensitive to changes in boundary conditions which influence this pressure gradient. Important boundary conditions include the seasonal distribution of solar radiation, global ice volume, Indian Ocean sea surface temperature, and the elevation and albedo of the Asian continent. To the extent that these factors influence monsoon wind strength, they also influence upwelling and productivity. In addition, however, productivity associated with upwelling can be decoupled from the strength of the summer monsoon winds via ocean mechanisms which serve to inhibit or enhance the nutrient supply in the intermediate waters of the Indian Ocean, the source for upwelled waters in the Arabian Sea. To differentiate productivity associated with wind-induced upwelling from that associated with other components of the system such as nutrient sequestering in glacial-age deep waters, we employ a strategy which monitors independent components of the oceanic and atmospheric subsystems. Using sediment records from the Owen Ridge, northwest Arabian Sea, we monitor the strength of upwelling and productivity using two independent indicators, percent G. bulloides and opal accumulation. We monitor the strength of southwest monsoon winds by measuring the grain-size of lithogenic dust particles blown into the Arabian Sea from the surrounding deserts of the Somali and Arabian Peninsulas. Our current hypothesis is that the variability associated with the 41 kyr power in the G. bulloides and opal accumulation records derive from nutrient availability in the intermediate waters which are upwelled via monsoon winds. This hypothesis is testable by comparison with Cd records of intermediate and deep waters of the Atlantic and Indian Ocean

    Matrix partitioning and EOF/principal component analysis of Antarctic Sea ice brightness temperatures

    Get PDF
    A field of measured anomalies of some physical variable relative to their time averages, is partitioned in either the space domain or the time domain. Eigenvectors and corresponding principal components of the smaller dimensioned covariance matrices associated with the partitioned data sets are calculated independently, then joined to approximate the eigenstructure of the larger covariance matrix associated with the unpartitioned data set. The accuracy of the approximation (fraction of the total variance in the field) and the magnitudes of the largest eigenvalues from the partitioned covariance matrices together determine the number of local EOF's and principal components to be joined by any particular level. The space-time distribution of Nimbus-5 ESMR sea ice measurement is analyzed

    Interplanetary propulsion using inertial fusion

    Get PDF
    Inertial fusion can be used to power spacecraft within the solar system and beyond. Such spacecraft have the potential for short-duration manned-mission performance exceeding other technologies. We are conducting a study to assess the systems aspects of inertial fusion as applied to such missions, based on the conceptual engine design of Hyde (1983) we describe the required systems for an entirely new spacecraft design called VISTA that is based on the use of DT fuel. We give preliminary design details for the power conversion and power conditioning systems for manned missions to Mars of total duration of about 100 days. Specific mission performance results will be published elsewhere, after the study has been completed

    Density Matrix Renormalization for Model Reduction in Nonlinear Dynamics

    Full text link
    We present a novel approach for model reduction of nonlinear dynamical systems based on proper orthogonal decomposition (POD). Our method, derived from Density Matrix Renormalization Group (DMRG), provides a significant reduction in computational effort for the calculation of the reduced system, compared to a POD. The efficiency of the algorithm is tested on the one dimensional Burgers equations and a one dimensional equation of the Fisher type as nonlinear model systems.Comment: 12 pages, 12 figure

    Machine Assisted Proof of ARMv7 Instruction Level Isolation Properties

    Get PDF
    In this paper, we formally verify security properties of the ARMv7 Instruction Set Architecture (ISA) for user mode executions. To obtain guarantees that arbitrary (and unknown) user processes are able to run isolated from privileged software and other user processes, instruction level noninterference and integrity properties are provided, along with proofs that transitions to privileged modes can only occur in a controlled manner. This work establishes a main requirement for operating system and hypervisor verification, as demonstrated for the PROSPER separation kernel. The proof is performed in the HOL4 theorem prover, taking the Cambridge model of ARM as basis. To this end, a proof tool has been developed, which assists the verification of relational state predicates semi-automatically

    Memory-Controlled Diffusion

    Full text link
    Memory effects require for their incorporation into random-walk models an extension of the conventional equations. The linear Fokker-Planck equation for the probability density p(r,t)p(\vec r, t) is generalized to include non-linear and non-local spatial-temporal memory effects. The realization of the memory kernels are restricted due the conservation of the basic quantity pp. A general criteria is given for the existence of stationary solutions. In case the memory kernel depends on pp polynomially the transport is prevented. Owing to the delay effects a finite amount of particles remains localized and the further transport is terminated. For diffusion with non-linear memory effects we find an exact solution in the long-time limit. Although the mean square displacement shows diffusive behavior, higher order cumulants exhibits differences to diffusion and they depend on the memory strength

    Electronic states and optical properties of PbSe nanorods and nanowires

    Full text link
    A theory of the electronic structure and excitonic absorption spectra of PbS and PbSe nanowires and nanorods in the framework of a four-band effective mass model is presented. Calculations conducted for PbSe show that dielectric contrast dramatically strengthens the exciton binding in narrow nanowires and nanorods. However, the self-interaction energies of the electron and hole nearly cancel the Coulomb binding, and as a result the optical absorption spectra are practically unaffected by the strong dielectric contrast between PbSe and the surrounding medium. Measurements of the size-dependent absorption spectra of colloidal PbSe nanorods are also presented. Using room-temperature energy-band parameters extracted from the optical spectra of spherical PbSe nanocrystals, the theory provides good quantitative agreement with the measured spectra.Comment: 35 pages, 12 figure

    The Migration and Growth of Protoplanets in Protostellar Discs

    Get PDF
    We investigate the gravitational interaction of a Jovian mass protoplanet with a gaseous disc with aspect ratio and kinematic viscosity expected for the protoplanetary disc from which it formed. Different disc surface density distributions have been investigated. We focus on the tidal interaction with the disc with the consequent gap formation and orbital migration of the protoplanet. Nonlinear hydrodynamic simulations are employed using three independent numerical codes. A principal result is that the direction of the orbital migration is always inwards and such that the protoplanet reaches the central star in a near circular orbit after a characteristic viscous time scale of approximately 10,000 initial orbital periods. This was found to be independent of whether the protoplanet was allowed to accrete mass or not. Inward migration is helped through the disappearance of the inner disc, and therefore the positive torque it would exert, because of accretion onto the central star.Our results indicate that a realistic upper limit for the masses of closely orbiting giant planets is approximately 5 Jupiter masses, because of the reduced accretion rates obtained for planets of increasing mass. Assuming some process such as termination of the inner disc through a magnetospheric cavity stops the migration, the range of masses estimated for a number of close orbiting giant planets (Marcy, Cochran, & Mayor 1999; Marcy & Butler 1998) as well as their inward orbital migration can be accounted for by consideration of disc--protoplanet interactions during the late stages of giant planet formation. Maximally accreting protoplanets reached about four Jovian masses on reaching the neighbourhood of the central star.Comment: 19 pages, 16 figures, submitted to MNRAS. A version of this paper that includes high resolution figures may be obtained from http://www.maths.qmw.ac.uk/~rpn/preprint.htm
    corecore