
Machine Assisted Proof of ARMv7 Instruction

Level Isolation Properties

Narges Khakpour1, Oliver Schwarz2,1, and Mads Dam1

1 KTH Royal Institute of Technology, Stockholm, Sweden
2 SICS Swedish ICT, Kista, Sweden
{nargeskh,oschwarz,mfd}@kth.se

Legal Notice. This is the author version of the correspondent paper
published in the proceedings of Certi�ed Programs and Proofs 2013
(CPP; editors: G. Gonthier and M. Norrish), Springer LNCS 8307. The
publisher is Springer International Publishing Switzerland . The �nal
publication is available at
http://link.springer.com/10.1007/978-3-319-03545-1_18.

Abstract. In this paper, we formally verify security properties of the
ARMv7 Instruction Set Architecture (ISA) for user mode executions.
To obtain guarantees that arbitrary (and unknown) user processes are
able to run isolated from privileged software and other user processes,
instruction level noninterference and integrity properties are provided,
along with proofs that transitions to privileged modes can only occur
in a controlled manner. This work establishes a main requirement for
operating system and hypervisor veri�cation, as demonstrated for the
PROSPER separation kernel. The proof is performed in the HOL4 theo-
rem prover, taking the Cambridge model of ARM as basis. To this end, a
proof tool has been developed, which assists the veri�cation of relational
state predicates semi-automatically.

Keywords: ARM instruction set, noninterference, user mode execution, kernel
security, theorem proving

1 Introduction

The ability to execute application software in a manner which is isolated from
other application software running on a shared processing platform is an essential
prerequisite for security. This allows user applications or virtual machines to
coexist without violating con�dentiality or integrity of critical data, it allows
critical system resources to be protected from user manipulation, it can help to
prevent fault propagation, and it can be used to save costly hardware that might
otherwise be needed to provide physical separation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/19085263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://link.springer.com/10.1007/978-3-319-03545-1_18


Isolation is typically provided by a mix of hardware and software. A memory
management unit (MMU) may be used to provide basic memory protection, and
the processor may be equipped with multiple privilege levels, running application
programs as userland processes and kernel routines at privileged levels, with
additional abilities to access and con�gure critical parts of the processor, the
MMU, and various storage/display/peripheral devices attached to the processor.

In such a setting, isolation is a result of the correct interplay between hard-
ware and kernel. It is the responsibility of the kernel to correctly manipulate
the processor state to achieve the desired e�ects, whatever they may be (con-
text switching, logging, fault management, device management, etc). It is the
responsibility of the processing hardware to correctly implement the partitioning
safeguards and mode transition conventions assumed by the kernel. For security,
the kernel and the processor must both be correct and agree on their mode of
interaction. Most formal kernel analyses in the literature [7,12,13,15,18] address
the kernel software itself, in source or binary form, and leave the properties of
the instruction set architecture (ISA) to be handled by �at. Our contribution is
to suggest a possible approach, including tool support, for performing the ISA
speci�c security analysis, speci�cally for user mode execution.

We have identi�ed two main concerns.

First, an implicit contract must exist which stipulates the �region of in�u-
ence/dependency� of userland processes. That is, in a given user mode proces-
sor/MMU con�guration it must be determined which memory locations and
(control) registers can be read or written, or, in a more �ne grained analysis,
how information is able to �ow to or from speci�c parts of the processor and
the memory. User processes must be constrained in accessing or otherwise being
in�uenced by critical resources of the kernel or of other user processes. This is
not trivial. For instance, as shown by Du�ot et al. [9], on some x86 processors it
is possible for low-privilege code to overwrite higher privilege code by writing to
an address that usually refers to the video card. To enable this attack, it su�ces
to �rst �ip a con�guration bit usually accessible from the low privilege level.

Second, kernel code relies on a set of mode switching conventions, for instance
on ARM that program status registers and relevant user registers (including the
program counter) are properly banked, the program counter is updated to point
at the correct location in the vector table, and so on. If these conventions are not
established by the processor and adhered to by the kernel, it may be possible for
userland processes to induce various sorts of malicious behavior, for instance by
letting a handler's link register point to a foreign address.

Performing this analysis is not trivial, particularly not if information �ow
is to be taken into account, as is done in this paper. All instructions, error
conditions, and user to privileged mode transitions must be considered. The
number of instructions is high and in modern processors a single instruction can
involve a large number (order of 20-30) of atomic register or memory accesses.

In this paper, we identify and prove several partitioning-related properties
of the ARMv7 ISA speci�cation [2,3] addressing user mode execution and mode
switching. The �rst is an instruction level noninterference property related to the



non-in�ltration property in [12] stating that the behavior of an ARMv7 proces-
sor in user mode only depends on its accessible resources, mostly user registers,
MMU con�gurations and the memory allocated to that process. The second,
corresponding to the non-ex�ltration property of [12], is an integrity property
stating that, again while in user mode, the processor is unable to modify pro-
tected resources. A third set of properties concerns mode switching conventions.
These properties have been applied in the PROSPER project [5] to verify iso-
lation for the PROSPER separation kernel [8]. The PROSPER project aims at
producing and verifying a fully functional secure hypervisor for embedded sys-
tems, providing services such as guest isolation, so that only explicitly allowed
communication occurs.

Our proof uses the HOL4 [4] model of ARM, developed at Cambridge by Fox
et al. [10]. We extend this model by simple memory protection. The ARMv7 ISA
properties outlined above are formalized and proved. To make the quite sizable
proof task feasible, we have developed a helper tool based on relational Hoare
logic, that is able to automate signi�cant parts of the proof.

To the best of our knowledge our work represents the �rst formalized analysis
of the ARMv7 ISA. Others, speci�cally the Cambridge HOL4 group, have de-
veloped various helper tools for assembling, disassembling, executing, and man-
aging ARM machine code and the HOL4 ARM ISA model [10,16]. Also, the
HOL4 ARM model has been used in several veri�cation exercises in the liter-
ature, on software fault isolation (SFI) [22] and on the extension of the seL4
veri�cation work [13] from C to binary level [20]. However, we have not yet seen
general correctness properties formalized and veri�ed for ARM at the ISA level.
In fact, we believe the type of analysis presented here can be useful beyond
kernel veri�cation. For instance, formalized security properties can be useful to
both improve the usefulness and precision of ISA speci�cations, and to enable
developers obtain a concise description of secure con�gurations, without manual
consideration of extensive architecture speci�cations.

2 The Formal Speci�cation of ARM

We use Fox et al's monadic HOL4 model [10] of the ARMv7 ISA. This model
covers the ARM, Thumb and ThumbEE instruction sets, comprising 81 instruc-
tions for branching, memory access, data processing, co-processor access, status
access, and miscellaneous functionality. Figure 1 shows a simpli�ed de�nition of
an ARM state in this model. The function psrs returns the value of a processor
state register (of type ARMpsr). The processor state registers include the current
program status register, CPSR, in addition to the banked psrs SPSR_m for each
privileged mode m, except for system mode. Program status registers encode
arithmetic �ags, the processor mode M, interrupt masks (I for ordinary and F

for fast interrupts) and instruction encoding. The ARMv7 core provides seven
processor modes: one non-privileged user mode usr, and six privileged modes
(abt,fiq,irq,svc,und,sys), activated when an exception (such as an inter-
rupt) is invoked. Variants with the TrustZone extension [1] also have a monitor



arm-state = <| psrs : PSRName -> ARMpsr;

regs : RName -> word32;

memory : word32 -> word8;

coproc : coprocessors;

accesses : memory_access list;

misc : Monitors # ARMinfo # bool # bool |>;

Fig. 1. The ARM state in HOL4

mode. However, this has to be invoked from a privileged mode and we consider
its usage out of scope of this paper.

The function regs takes a register name and returns its value. The ARM reg-
isters include sixteen general purpose registers (r0-r15) that are available from
all modes in addition to the banked registers of each privileged mode (except
of sys) that are available only in that mode. Among the user registers, register
r13 functions as stack pointer SP, register r14 as link register LR and register
r15 as program counter PC.

The function memory reads a byte (word8) from an address (word32). The
�eld coproc represents those coprocessor registers in CP14 and CP15 that im-
plicitly in�uence execution. The coprocessor registers central for this work are
registers SCTLR , TTBR0 and DACR of coprocessor 15. They, together with the page
table, are used to con�gure the MMU. The �eld misc represents the exclusive
monitors used for synchronization purposes, general information about the state,
e.g. the architecture version, if the system is waiting for an interrupt etc, and
accesses records the accesses to the memory.

A computation in the monadic HOL4 ARM model is a term of the following
(slightly beauti�ed) type

α M = arm_state 7→ (α, arm_state) error_option.

where error_option is a datatype de�ned as follows:

(α,β) error_option = ValueState of α => β
| Error of string

Computations act on a state arm_state and return either ValueState a s, a
new state s of type arm_state along with a return value a of type α, or an error
e. The unpredictable computations, i.e., those that are underspeci�ed by the
ARM speci�cation return an error. The monad unit constT injects a value into
a computation, i.e. constT a s = ValueState a s, while binding is a sequential
composition operation

f1 �=e f2 = λs.case f1s of Error c → Error c

|| ValueState a s′ →
if e s′ then f2 a s

′
else f1 s.

That is, if e holds in the �nal state of f1, the return value of f1 is passed to f2
as the input parameter, otherwise f2 is not executed.



errorT a = Error a
condT e f = if e then f else constT ()
if e then f1 elsef2 = λs.if e s then f1 s else f2 s
f1 |||e f2 = f1 �=e (λx.f2 �=e (λy.constT (x, y)))
forTe l h f = if l > h then constT []

else ((f l)�=e (λr.forTe (l + 1) h f �=e (λl.constT r :: l)))

Fig. 2. Auxiliary monad operations

In addition to unit and binding, the ARM monadic speci�cation uses stan-
dard constructs for lambda, let, and cases, as well as the monad operations
parallel composition (f1 |||e f2), positive conditional (condT e f), full condi-
tional (if e then f1 else f2), error (errorT a), and an iterator (forTe l h f),
(inductively) de�ned in Figure 2.

3 Memory Management

The Memory Management Unit (MMU) enforces memory access policies and is
therefore important for isolation. MMU con�gurations consist of page tables in
memory and dedicated registers of CP15. Speci�c to ARM is the possibility of
partitioning pages into collections of memory regions, so-called domains. The
theorems in this paper are based on the concrete MMU con�gurations (memory
ranges, the page table setup etc.) used in the PROSPER kernel. The coprocessor
registers involved are SCTLR, TTBR0 and DACR. The SCTLR register determines
whether the MMU is enabled, TTBR0 contains the base address of the page table,
and DACR manages the ARM domains.

MMU Extension The evaluation function permitted takes as parameters a byte
address, a �ag indicating whether reading or writing access is to be evaluated,
the values of SCTLR, TTBR0 and DACR, a �ag indicating whether permissions are
to be checked against a privileged mode, and the memory containing the page
tables. The pair of booleans returned by permitted states whether the access
permission on the speci�ed byte is de�ned in the given con�guration and the
outcome of that decision (true if access is granted). The PROSPER kernel uses
a basic version of permitted, supporting one-level page tables without address
translation, but including the interpretation of ARM domains. It is shown that
permitted is de�ned for all addresses in all reachable states.

The history of memory accesses is tracked in the accesses �eld of the ma-
chine state, allowing to compute the set of memory pages accessed by an in-
struction. To stop computation after the �rst access violation, �=nav has been
chosen as standard binding operator, where nav s (�no access violation�) is true
if and only if there is no entry in the access list of machine state s that causes
permitted to return a negative answer int the current con�guration of s. The
recording of an access always happens before the access itself.



next irpt s =

(clear_alist �=nav

(λu. if irpt = NoInterrupt then

waiting_for_interrupt �=nav

(λwfi. condT (¬wfi)
(fetch_instruction �=T

(λ(opc, ins). is_viol �=T (λav. clear_alist �=nav

(λu. if av then prefetch_abort

else

(execute ins �=T (λu. is_viol �=T

(λav. condT av

(clear_alist �=nav

(λu. data_abort))))))))))

else take_exception irpt �=nav (λu. clear_wait_for_irpt))) s

Fig. 3. The next computation.

The instruction execution function next (see Figure 3) takes an exception/in-
terrupt �ag irpt and a state s and produces the consequent state, by either initi-
ating the demanded exception or by fetching and executing the next instruction
pointed to by the PC in s. If an access violation is recorded after instruction
fetching or execution, a prefetch or data abort exception (respectively) is initi-
ated. The access list is cleared between the single steps, preventing the execution
from halting and instead proceeding with exception handling. Occasionally, the
unconditional binding �=T is used.

MMU Con�guration Let accessible i a express that address a is readable
and writable by user process i. The predicate mmu_setup i s holds if and only
if (i) state s implements the desired access policy for process i, (ii) no MMU
con�guration for any address is underspeci�ed, and (iii) none of the active page
tables in s (represented by the address set page_table_adds s) is accessible
according to the policy.

mmu_setup i s = ∀add, is_write, u, p.

(u,p) = permitted add is_write (mmu_registers s) F s.memory

⇒ u ∧ ((accessible a i) ⇔ p)

∧ (a ∈ (page_table_adds s) ⇒ ¬(accessible a i))

4 Security Properties

We next turn to formalizing the instruction level partitioning properties. For
user mode execution we formulate the requirements in terms of non-in�ltration
and non-ex�ltration properties (cf. [12]), adapted to our setting.



Our model does not include caches, timing or hardware extensions such as
TrustZone or virtualization support. Devices are not part of the model either;
however, interrupts and other exceptions are taken into account, apart from fast
interrupts and resets. Accordingly, the fiq and mon modes are outside of our
analysis. As discussed, the chosen memory con�guration is speci�c to the PROS-
PER project. Consequences of a limited coprocessor model and underspeci�ed
instructions are discussed in Section 8.

4.1 Non-in�ltration

Con�dentiality of the kernel and neighboring user processes is guaranteed by non-
in�ltration, a noninterference-like property at the user mode single instruction
level. Consider two machine states in user mode that are low equivalent in the
sense that the two states agree on the resources (registers and memory locations)
that are permitted to in�uence user mode execution, but do not necessarily agree
on other resources. Non-in�ltration holds if the poststates, after execution of one
instruction, remain low equivalent (or produce the same error).

Theorem 1. Non-in�ltration

∀s1, s2, i, irpt. mode s1 = mode s2 = usr ∧ bisim i s1 s2

⇒ (∃t1, t2. next irpt s1 = ValueState () t1

∧ next irpt s2 = ValueState () t2 ∧ bisim i t1 t2)

∨ (∃e. next irpt s1 = Error e ∧ next irpt s2 = Error e)

The relation bisim is the low equivalence relation. User mode processes are
allowed to be in�uenced by the user mode registers, the memory assigned to
them, the CPSR, the coprocessors, pending access violations and the misc state
component. Exclusive monitors (as �eld of misc) can inherently in�uence and
be in�uenced by user mode software and need thus to be cleared by kernels on
context switches.

bisim i s1 s2 =

mmu_setup i s1 ∧ mmu_setup i s2 ∧ (equal_user_regs s1 s2)

∧ (∀a. (accessible i a) ⇒ (s1.memory a = s2.memory a))

∧ (s1.psrs(CPSR)= s2.psrs(CPSR)) ∧ (s1.coproc.state = s2.coproc.state)

∧ (nav s1 = nav s2) ∧ (s1.misc = s2.misc)

∧ s1.psrs(spsr_(mode s1)) = s2.psrs(spsr_(mode s2))

∧ s1.regs(lr_(mode s1)) = s2.regs(lr_(mode s2))

The two last items have been included to assure that SPSR and link register
(of a possibly privileged poststate) only depend on resources allowed to in�uence
user mode execution as well, so that they can actually be restored later on.

4.2 Non-ex�ltration

Non-ex�ltration guarantees the integrity of resources foreign to the active user
process. It expresses that, given an MMU setup for user process i active, the
execution of a single instruction in user mode will not modify any other resources
but those considered to be modi�able by i.



Theorem 2. Non-ex�ltration

∀s, t, i, irpt. mode s = usr ∧ mmu_setup i s

∧ next irpt s = ValueState () t ⇒ unmodified i s t

Here, unmodified expresses the desired relation between the prestate s and the
poststate t of an active process i. We require that coprocessors, the fast interrupt
�ag and any memory not belonging to i remain unchanged. The only registers
allowed to change are the CPSR, the user mode registers, and the PSR and the
link register of the mode in t. The interrupt �ag of the CPSR is not modi�ed
when staying in user mode.

unmodified i s t =

(s.coproc = t.coproc) ∧ (s.psrs(CPSR).F = t.psrs(CPSR).F)

∧ (∀a. ¬(accessible i a) ⇒ (s.memory a = t.memory a))

∧ ((mode s ∈ {usr, mode t} ∧ mode t ∈ {usr, fiq, irq, svc, abt, und})

⇒( (∀reg. reg /∈ accessible_regs(mode t) ⇒ s.regs(reg) = t.regs(reg))

∧ (∀psr. psr /∈ {CPSR, spsr_(mode t)} ⇒ s.psrs(psr) = t.psrs(psr))

∧ (mode t = usr ⇒((s.psrs(CPSR)).I = (t.psrs(CPSR)).I))))

4.3 Switching to Privileged Modes

Secure user mode execution is not by itself su�cient. It is also necessary to con-
sider transitions to privileged modes to prevent user processes from privileged
execution rights. No user process should be able to e�ect a mode change with the
PC set to a memory location of his choice. Instead, all entry points into privileged
modes should be in the exception vector table. Similarly, even though user pro-
cesses are allowed to choose a di�erent endianness for their own execution, that
should not in�uence the interpretation of the system handlers when switching
back to privileged mode. Theorem 3 covers those additional constraints.

Theorem 3. Privileged Constraints

∀s, t, i, irpt. mode s = usr ∧ mmu_setup i s

∧ next irpt s = ValueState () t ⇒ priv_const s t

Besides the above properties, the relation priv_const lists the reachable pro-
cessor modes3 and assures that interrupts are masked when entering a privileged
mode. Also, status register �ags regarded as unwritable will be copied from the
CPSR in prestate s to the SPSR in poststate t. This guarantees that a kernel can
restore the saved program status register without further modi�cations when
jumping back to the user process. Otherwise, user processes would be able to
make the kernel enable/disable interrupts or change their execution mode. All
access violations, if there were any, will have been handled (nav t).

3 Monitor and system mode can only be reached from another privileged mode.



priv_const s t =

mode t ∈ {usr, fiq, irq, svc, abt, und}

∧ (mode t 6= usr ⇒
( t.regs(PC) ∈ vt_adds(vt_base s, mode t) ∧ nav t

∧ (t.psrs(CPSR)).(I, J, IT, E) = (T, F, 0w, endianess s)

∧ (t.psrs(spsr_(mode t))).(M, I, F)

= (usr, (s.psrs(CPSR)).I, (s.psrs(CPSR)).F)))

4.4 Link Register Contents in Supervisor Mode

Upon reception of a software interrupt, exception handlers in the invoked su-
pervisor mode (svc) often need to analyze the calling instruction, in order to
determine the software interrupt number for example. Therefore, veri�cation
might require assertions that the memory location pointed to by the link regis-
ter actually does belong to the user process which caused the switch to supervisor
mode. Formally, when going from state s in user mode to state t in supervisor
mode, it is required that the svc-link register of t (i) is equal to the PC of s plus
an instruction set dependent o�set and (ii) corrected by the o�set, points to an
aligned word that is readable in t (independent of the mode). Note that o�set
and width of the word depend on the instruction set used by the user process,
not on the one used by the handler.

Theorem 4. Link Register Constraints

∀s, t, i, irpt, lr. mode s = usr ∧ mmu_setup i s

∧ next irpt s = ValueState () t ∧ mode t = svc ∧ lr = t.regs(LR_svc)

⇒ lr = s.regs(PC) + offset s

∧ ((t.psrs(SPSR_svc)).T ⇒ aligned_word_readable t T (lr - 2w))

∧ (¬(t.psrs(SPSR_svc)).T ∧ ¬(t.psrs(SPSR_svc)).J
⇒ aligned_word_readable t F (lr - 4w))

Here, aligned_word_readable s b add states that the aligned word re-
ferred to by add is readable in s. Dependent on whether b is true or false,
word width and alignment are 16 or 32 bit.

4.5 Safe User Mode Execution

The �nal aim is to guarantee that as long as the machine is executing in
user mode, it causes no noninterference or integrity violations. Let s1  sn de-
note a sequence of next computations s1 → s2 → ....→ sn in user mode, i.e.
mode si = usr, 1 ≤ i < n and mode sn 6= usr. The following theorem assures the
safe execution and safe mode switching of a user process.

Theorem 5. Let s1  sn and mmu_setup i s1, (i) if s
′
1  s′n and bisim i s1 s′1 then

bisim i sn s′n, (ii) unmodified i s1 sn, and (iii) priv_const sn−1 sn.

The proof of (i) and (ii) is an easy induction on n using theorems 1 and 2.
Item (iii) follows from Theorem 3.



errorTR
{errorT a : R_m→ R_m}

constTR
{constT a : R_m→ R_m}

condTR
{f : R_m→ R_m}

{condT ψ f : R_m→ R_m}
forTR

{f : R_m→ R_m}
{forTnav l h f : R_m→ R_m}

conR
{f : R_m→ R_n} {f ′ : R_m→ R_n}
{if ψ then f else f ′ : R_m→ R_n}

widenR
{f : R_m→ R_n}

{f : R_m→ R_(n,k)}
absR

∀y.{f y : R_m→ R_n}
{λy.f : R_m→ R_n}

seqTR
{f : R_m→ R_n} {f ′ : R_n→ R_k} (m = n) ∨ (n = k)

{f �=nav f
′ : R_m→ R_(n,k)}

parTR
{f : R_m→ R_n} {f ′ : R_n→ R_k} (m = n) ∨ (n = k)

{f |||navf ′ : R_m→ R_(n,k)}

Fig. 4. Relational inference rules

5 The Logic Framework

Considering the size and complexity of the ARM model and the instruction set,
to prove the properties of the previous section tool support is essential. In this
section we present proof rules for relational and invariant reasoning that help to
automate the proof.

Non-in�ltration The proof uses a relational Hoare logic based on assertions {f:R
→R'} de�ned as follows:

{f:R → R'} = ∀s1,s2. R s1 s2 ⇒
(∃a,t1,t2. f s1 = ValueState a t1 ∧

f s2 = ValueState a t2 ∧ R' t1 t2)
∨(∃e.f s1 = Error e ∧ f s2 = Error e)

The judgment asserts that, if started in prestates s1, s2 related by prerelation
R, either the executions of the monadic computation f return identical values
a with poststates t1, t2 related by postrelation R', or else they both return the
same error e.

For the analysis it su�ces to consider a �xed set of relations

R_m = λs1.λs2.bisim i s1 s2 ∧ mode s1 = m ∧ mode s2 = m

or R_(n,m) = R_n ∪ R_m.
Figure 4 shows the relational logic inference rules. The inference system is

incomplete, but su�cient for our purpose. A relation R_m is preserved by errorT

and constT (rules constTR and errorTR), and if a computation preserves one
of the R_m relations then that computation can be used in a conditional or a for

loop as well (condTR, conR and forTR). The rule widenR and absR are used to
weaken the postrelation and reason about lambda computations, respectively.
The rule seqTR states that the postrelation of f �=nav f

′ is the union of the



errorTI
INV〈errorT a, Q, P〉

constTI refl P

INV〈constT c, Q, P〉

condTI
refl P INV〈f, Q, P〉
INV〈condT e f, Q, P〉

forTI
refl P trans P INV〈f, Q, P〉

INV〈forTe l h f, Q, P〉

conRI
INV〈f, Q, P〉 INV〈f ′, Q, P〉

INV〈if ψ then f else f ′, Q, P〉

absI
∀y.INV〈f y, Q, P〉
INV〈λy.f, Q, P〉

seqTI
INV〈f, Q, P〉 INV〈f ′, Q, P〉 trans P

INV〈f �=e f
′, Q, P〉

parTI
INV〈f, Q, P〉 INV〈f ′, Q, P〉 trans P

INV〈f |||ef ′, Q, P〉

Fig. 5. Invariant inference rules

postrelations of f and f ′, provided that either f preserves R_n or f ′ preserves
R_k. If there is an access violation after f , the computation stops and R_n must
hold. Otherwise, f ′ will execute and R_k must hold. Thus, the postrelation is
the union of R_n and R_k.

Theorem 6. All assertions {f : R → R′} derivable according to the inference

rules in Figure 4 are valid.

Non-ex�ltration Similar to the non-in�ltration proof, the proof of non-ex�ltration
uses a sound but incomplete inference system, this time concerning computation
invariants of the following shape:

INV〈f, Q, P〉 = ∀s, t. Q s ∧ f s = ValueState a t =⇒ P s t ∧ Q t .

That is, if Q holds of the prestate then P holds of the prestate-poststate pair,
and Q of the poststate. We use a simple collection of inference rules to prove
Q and P , shown in Figure 5. In this �gure, refl P and trans P respectively
state that P is re�exive and transitive. For non-ex�ltration we need to prove that
unmodified i is satis�ed during the execution of each instruction both when
it ends in user mode and when switching to privileged mode. A prerequisite for
this is that the MMU is con�gured correctly during computation. To prove the
non-ex�ltration property, we check INV〈next, mmu_setup i, unmodified i 〉.

Theorem 7. All assertions INV〈f,Q,P〉 derivable according to the inference

rules in Figure 5 are valid.

Privileged Constraints The �nal goal is to prove that next establishes the rela-
tion priv_const, a conjunction of primitive constraints P. Since the primitive
constraints do not always hold during computations in privileged mode, the in-
ference rules of Figure 5 are generally not able to prove this property. To make
veri�cation tractable, we prove primitive constraints locally at the point in the
monadic computation where it is established and then use a set of inference
rules to infer its correctness for the entire computation. We illustrate the proof



take_svc_exception = IT_advance �=nav

(λ u.(read_reg 15w |||nav exc_vector_base |||nav read_cpsr |||nav
read_scr |||nav read_sctlr )�=nav

(λ(pc,ExcVectorBase,cr,scr,sctlr).
(condT (cr.M = 0b10110w) (write_scr (scr with NS := F)) |||nav
write_cpsr (cr with M := 0b10011w)) �=nav

(λ (u1,u2). (write_spsr cr |||nav
write_reg 14w (if cr.T then pc - 2w else pc - 4w) |||nav
(read_cpsr �=nav

(λ cr'.write_cpsr (cr' with

<| I := T; IT := 0b00000000w;J := F;

T := sctlr.TE; E := sctlr.EE |>))) |||nav
branch_to (ExcVectorBase + 8w)) �=nav unit4)))

Fig. 6. The HOL4 code for switching to svc mode [4]

using an example. In the ARM model, all computations which lead to a privi-
leged mode m end by a computation called take_m_exception. Figure 6 shows
the function take_svc_exception for switching to supervisor mode. Let this
computation start in state s1 and end in state sn. Consider the primitive con-
straint Ppsr stating that SPSR_svc of the �nal state sn must be equal to CPSR
of the initial state s1. Let t and t′, respectively be the initial state and �nal
state of write_spsr cr and m be the mode of t′. The computation write_spsr
cr writes the value of free variable cr into SPSR_m and establishes the property

P′psr
def
= t′.psrs(SPSR_m) = cr. We call write_spsr cr a P′psr-establisher. A

computation g is P-establisher, if independently of its input state, P holds in its
output state, i.e.

P−establ(g) = ∀s, a, t. g s = ValueState a t ∧ nav t =⇒ P t

We can prove that the block starting from write_spsr cr establishes P′psr as
well, because the rest of the computations of this block does not modify this prop-
erty. Then we can prove that the free variable cr takes the value s1.psrs(CPSR),
and m is bound to svc. Thus, sn.psrs(SPSR_svc) = s1.psrs(CPSR) holds for the
computation block from write_spsr cr. As this block is a Ppsr-establisher, we
conclude that the computations before write_spsr do not in�uence the estab-
lished property and Ppsr is satis�ed by take_svc_exception.

Figure 7 shows the P-establisher inference rules. These rules along with the
inference rules of Figure 5 are used to prove the privileged constraints. The rule
seqTS1 states that if the monadic computation f is a P-establisher and P is an
invariant of f ′, then the sequential composition f �=nav f

′ is P-establisher. The
rule seqTS2 describes that if the monadic computation f is a P-establisher, then
f ′ �=nav f is also P-establisher. Similar rules are de�ned for the |||nav operator.

Theorem 8. All assertions P-establ(f) derivable according to the inference

rules in Figure 7 are valid.



seqTS1
P−establ(f) INV〈f ′, P,>〉

P−establ(f �=nav f
′)

seqTS2
P−establ(f)

P−establ(f ′ �=nav f)

parTS1
P−establ(f) INV〈f ′, P,>〉

P−establ(f |||nav f ′)
parTS2

P−establ(f)
P−establ(f ′ |||nav f)

absS
∀y.P−establ(f y)
P−establ(λy.f)

Fig. 7. Privileged constraints inference rules

6 Implementation and Evaluation

Implementation We use the HOL4 theorem prover to verify our properties. The
central assets of our work are available from [5]. We have developed a tool, ARM-
prover, to automate the veri�cation process based on the proof systems in Fig. 4
and 5. To avoid having to explore the instruction set more than once the prover
actually combines the theorems 1, 2 and 3 into one.

The proof systems do not provide rules for case and let statements. These
are easily handled using standard HOL4 simpli�cation. Other monadic expres-
sions are re�ned using the inference rules in Fig. 4 and 5 in a top down fashion.
The proofs for �write� primitives as well as register and memory accesses in user
mode are done manually, but the tool can handle some of the �read� computa-
tions directly, allowing to prove a large share of the workload automatically.

A particular di�culty concerns binding. When a binding expression f1�=nav

f2 is decomposed the return value of f1 becomes unbound in f2. To handle this
we simplify computations by embedding more information before calling the
prover, using some auxiliary lemmas. For example, the following formula states
that cpsr in computation H following read_cpsr can be substituted by the CPSR
in prestate s with mode m.

(mode s = m) ⇒ (read_cpsr �=nav (λcpsr. H(cpsr))) s =

(read_cpsr �=nav (λcpsr. H(s.psrs(CPSR) with M:=m))) s

For the case that an instruction leads to a privileged mode, the last execution
phase of the instruction, called switching phase, is in privileged mode. However,
the privileged constraints �rst have to be established over the course of several
steps and do not hold from the beginning. Since we can not use the ARM-prover
tool to prove them automatically, we prove the privileged constraints for the
switching phase manually.

Evaluation The Cambridge model of ARM is 9 kLOC. In addition to the ARM
model, we rely mainly on the relatively small inference kernel of the HOL4
theorem prover, our MMU extension (about 180 lines of de�nitions) and the
formulation of the discussed properties (about 290 lines). The entire proof script
has a length of about 13 kLOC and needs roughly an hour to run on an Intel(R)
Xeon(R) X3470 core. We invested about one person year of e�ort into this work.



7 Related Work

Several recent works address kernel veri�cation. Some target information �ow
properties [7,12,15,18], based on variants of noninterference [11]. Other work es-
tablishes a re�nement relation between kernel code, in some representation, and
an abstract speci�cation. For the seL4 microkernel this was �rst performed for
its C implementation [13] and is now extended to binary level [20]. As is the
case with most re�nement/simulation-based approaches, this work does not ad-
dress information �ow. In recent work on seL4 veri�cation, Murray et al. [14,15]
present an unwinding-style characterization of intransitive noninterference. They
introduce a proof calculus on nondeterministic state monads that is similar to
that of this work. Their assertions are more general, however our proof rules
cover several monadic operators and statements. In addition, we introduce rules
to prove properties about executions that relate the �nal state of a computation
to its initial state.

Alkassar et al. [6] describe the emulation of a simpli�ed MIPS machine in C.
The emulator allows the use of VCC to automatically check that every reachable
state of a guest on a hypervisor is also reachable when the guest is running on a
completely isolated machine. The C emulator has been adopted to verify parts of
the hypervisor that mix C and assembly [17], and allows unknown user processes
to be considered. Information �ow properties are not considered, however.

Wilding et al. [21] formally proved ex�ltration, in�ltration and mediation
theorems for the partitioning system of the AAMP7G microprocessor in ACL2.
The hardware architecture di�ers from the one of ARM in several points, such
as that there are no user-visible registers or that AAMP7G itself functions as
a separation kernel. Proofs were performed using abstraction/re�nement tech-
niques and address kernel microcode. The veri�cation led to a MILS certi�cate
on Evaluation Assurance Level 7.

The ARMor system [22] sandboxes applications on ARM and provides for-
mal veri�cation of memory safety and control �ow integrity, using the Cam-
bridge HOL4 ARM model. Its software fault isolation does not use hardware
features such as an MMU, but uses instead rewriting and subsequent veri�ca-
tion of the compiled programs. This implies performance overhead, limitations
on supported programs and veri�cation processes in the extend of hours for
each program. Furthermore, ARMor only establishes memory write protection;
neither con�dentiality nor protection of privileged registers is addressed.

Most works on kernel veri�cation address handler code only and do not con-
sider user mode execution. In a few cases [6,19] user mode execution is consid-
ered, but without justi�cation in terms of concrete processor access modalities.
The main contribution of our work, over and beyond the above works, is that we
attempt to justify the critical assumptions on processor level information �ow
in user mode execution through analysis at the level of a formalized ISA model.

Heitmeyer et al. [12] introduce non-ex�ltration, non-in�ltration, kernel in-
tegrity and data/control separation properties to verify a separation kernel. Since
we focus on user-mode execution, those properties apply only partially here. Our



non-in�ltration property is the same as in [12], but the non-ex�ltration property
in our work covers both their kernel integrity and non-ex�ltration.

8 Conclusion

We introduced and proved several security properties including a non-ex�ltration,
a non-in�ltration and a safe switching property for user mode executions on the
ARM architecture, using the Cambridge HOL4 ISA model. A logical framework
based on (relational) Hoare logic has been developed for the analysis, supported
by a tool, ARM-prover, which helps automate the proof. The ARM-prover can
be used to prove general invariants about the ARM model (i.e., statements that
need to hold at each execution point). We are planning to continue the devel-
opment of the ARM-prover to improve automation further and cater for more
general proof tasks.

Our results concerning register contents are generally valid and with small
adaptations applicable in isolation veri�cation of other hypervisors, separation
kernels, and operating systems. Statements on memory safety depend on our spe-
ci�c setup. A reformulation that is independent of concrete MMU con�gurations
should require a minor e�ort and is planned for future work.

The HOL4 model of ARM supports a partial coprocessor model. We made the
assumption that the access to coprocessors via dedicated instructions is always
denied in user mode. To have a more precise analysis and cover all possible side
channels, a more comprehensive model of the available coprocessors involving
all registers, the coprocessors' behavior and an acceptance/rejection-mechanism
for register reads and writes that follows the speci�cation is required. During
context switches kernels need to mediate coprocessor registers user-accessible by
dedicated coprocessor instructions. All other coprocessor registers are guaran-
teed to be non-modi�able in user mode. However, kernels must not introduce
information �ow from non-active processes to the coprocessor registers that are
part of the present ARMmodel, since those might in�uence user mode execution.

Instructions that are underspeci�ed (�unpredictable�) in the ARM Architec-
ture Reference Manual (ARMARM) are problematic. The ARM speci�cation
states that �unpredictable behavior must not perform any function that cannot
be performed at the current or lower level of privilege using instructions that are
not unpredictable�[3]. In one interpretation of this statement, theorems 2, 3 and
4 are valid on unpredictable instructions as well. In general, this is not true for
non-in�ltration. Yet, ARMARM requires further that �unpredictable behavior
must not represent security holes� [2]. This formulation is very vague. However,
we make the assumption that non-in�ltration is preserved. In fact, we argue
that the security properties we have presented provide manufacturers of ARM
processors with a precise description of secure behavior for unpredictable cases.

Acknowledgments. Work supported by framework grant "IT 2010" from the
Swedish Foundation for Strategic Research.



References

1. ARM TrustZone technology. http://www.arm.com/products/processors/

technologies/trustzone.php.
2. ARMv7-A architecture reference manual, issue B. http://infocenter.arm.com/

help/index.jsp?topic=/com.arm.doc.ddi0406b.
3. ARMv7-A architecture reference manual, issue C. http://infocenter.arm.com/

help/index.jsp?topic=/com.arm.doc.ddi0406c.
4. HOL4. http://hol.sourceforge.net/.
5. PROSPER project. http://prosper.sics.se/.
6. E. Alkassar, M. A. Hillebrand, W. J. Paul, and E. Petrova. Automated veri�cation

of a small hypervisor. In G. T. Leavens, P. W. O'Hearn, and S. K. Rajamani,
editors, VSTTE, volume 6217 of LNCS, pages 40�54. Springer, 2010.

7. G. Barthe, G. Betarte, J. D. Campo, and C. Luna. Formally verifying isolation and
availability in an idealized model of virtualization. In M. Butler and W. Schulte,
editors, FM, volume 6664 of LNCS, pages 231�245. Springer, 2011.

8. M. Dam, R. Guanciale, N. Khakpour, H. Nemati, and O. Schwarz. Formal veri�-
cation of information �ow security for a simple ARM-based separation kernel. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS'13), 2013.

9. L. Du�ot, D. Etiemble, and O. Grumelard. Using CPU system management mode
to circumvent operating system security functions. In Proc. CanSecWest, 2006.

10. A. C. J. Fox and M. O. Myreen. A trustworthy monadic formalization of the
ARMv7 instruction set architecture. In M. Kaufmann and L. C. Paulson, editors,
ITP, volume 6172 of LNCS, 2010.

11. J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE
Symposium on Security and Privacy, pages 11�20, 1982.

12. C. Heitmeyer, M. Archer, E. Leonard, and J. McLean. Applying formal methods to
a certi�ably secure software system. IEEE Trans. Softw. Eng., 34(1):82�98, 2008.

13. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
formal veri�cation of an os kernel. In J. N. Matthews and T. E. Anderson, editors,
SOSP, pages 207�220. ACM, 2009.

14. T. C. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried,
C. Lewis, X. Gao, and G. Klein. seL4: From general purpose to a proof of in-
formation �ow enforcement. In IEEE Symposium on Security and Privacy, pages
415�429. IEEE Computer Society, 2013.

15. T. C. Murray, D. Matichuk, M. Brassil, P. Gammie, and G. Klein. Noninterference
for operating system kernels. In C. Hawblitzel and D. Miller, editors, CPP, volume
7679 of LNCS, pages 126�142. Springer, 2012.

16. M. O. Myreen, A. C. J. Fox, and M. J. C. Gordon. Hoare logic for ARM machine
code. In F. Arbab and M. Sirjani, editors, FSEN, volume 4767 of LNCS, pages
272�286. Springer, 2007.

17. W. Paul, S. Schmaltz, and A. Shadrin. Completing the automated veri�cation
of a small hypervisor-assembler code veri�cation. In G. Eleftherakis, M. Hinchey,
and M. Holcombe, editors, SEFM, volume 7504 of LNCS, pages 188�202. Springer,
2012.

18. R. J. Richards. Modeling and security analysis of a commercial real-time operating
system kernel. In D. S. Hardin, editor, Design and Veri�cation of Microprocessor
Systems for High-Assurance Applications, pages 301�322. 2010.

http://www.arm.com/products/processors/technologies/trustzone.php
http://www.arm.com/products/processors/technologies/trustzone.php
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406b
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406b
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c
http://hol.sourceforge.net/
http://prosper.sics.se/


19. J. Rushby. Formally veri�ed hardware encapsulation mechanism for security, in-
tegrity, and safety. Technical report, DTIC Document, 2002.

20. T. Sewell, M. O. Myreen, and G. Klein. Translation validation for a veri�ed OS
kernel. In Proceedings of the 34th ACM SIGPLAN conference on Programming
Language Design and Implementation (PLDI), pages 471�482, 2013.

21. M. M. Wilding, D. A. Greve, R. J. Richards, and D. S. Hardin. Formal veri�ca-
tion of partition management for the AAMP7G microprocessor. In D. S. Hardin,
editor, Design and Veri�cation of Microprocessor Systems for High-Assurance Ap-
plications, pages 175�191. Springer US, 2010.

22. L. Zhao, G. Li, B. De Sutter, and J. Regehr. ARMor: Fully veri�ed software fault
isolation. In Proceedings of the International Conference on Embedded Software,
EMSOFT 2011, pages 289�298, 2011.


	Machine Assisted Proof of ARMv7 Instruction Level Isolation Properties

