10,402 research outputs found

    Emergency infrastructure and facilities.

    Get PDF
    This edition of Critical Infrastructure presents a culmination of ongoing research and real-work experience, building upon previous editions

    Critical Infrastructures

    Get PDF

    Shipping and the Spread of Infectious Salmon Anemia in Scottish Aquaculture

    Get PDF
    Long-distance transport of pathogens plays a critical role in the emergence of novel diseases. Shipping is a major contributor to such transport, and the role of ships in spreading disease has been recognized for centuries. However, statistical confirmation of pathogen spread by shipping is usually impractical. We present evidence of invasive spread of infectious salmon anemia in the salmon farms of Scotland and demonstrate a link between vessel visits and farm contamination. The link is associated with vessels moving fish between sites and transporting harvest, but not with vessels delivering food or involved in other work

    The effectiveness of fallowing strategies in disease control in salmon aquaculture assessed with an SIS model

    Get PDF
    Salmon production is an important industry in Scotland, with an estimated retail value >£1 billion. However, this salmon industry can be threatened by the invasion and spread of diseases. To reduce this risk, the industry is divided into management areas that are physically separated from each other. Pathogens can spread between farms by local processes such as water movement or by long-distance processes such as live fish movements. Here, network modelling was used to investigate the importance of transmission routes at these two scales. We used different disease transmission rates (beta), where infected farms had the probability of 0.10, 0.25 or 0.50 per month to infect each contacted farm. Interacting farms were modelled in such a way that neighbours within a management area could infect each other, resulting in two contacts per farm per month. In addition, non-local transmission occurred at random. Salmon are input to marine sites where they are raised to harvest size, the site is then fallowed; in the model the effects of different fallowing strategies (synchronised, partial synchronised and unsynchronised fallowing at the management area level) on the emergence of diseases were investigated. Synchronised fallowing was highly effective at eradicating epidemics when transmission rate is low (beta = 0.10) even when long distance contacts were fairly common (up to 1.5 farm−1 month−1). However for higher transmission rates, long distance contacts have to be kept at much lower levels (0.15 contacts month−1 where beta = 0.25) when synchronised fallowing was applied. If fallowing was partially synchronised or unsynchronised then low rates of long-distance contact are required (0.75 or 0.15 farm−1 month−1) even if beta = 0.10. These results demonstrate the potential benefits of having epidemiologically isolated management areas and applying synchronised fallowing

    Seasonality and heterogeneity of live fish movements in Scottish fish farms

    Get PDF
    Movement of live animals is a key contributor to disease spread. Farmed Atlantic salmon Salmo salar, rainbow trout Onchorynchus mykiss and brown/sea trout Salmo trutta are initially raised in freshwater (FW) farms; all the salmon and some of the trout are subsequently moved to seawater (SW) farms. Frequently, fish are moved between farms during their FW stage and sometimes during their SW stage. Seasonality and differences in contact patterns across production phases have been shown to influence the course of an epidemic in livestock; however, these parameters have not been included in previous network models studying disease transmission in salmonids. In Scotland, farmers are required to register fish movements onto and off their farms; these records were used in the present study to investigate seasonality and heterogeneity of movements for each production phase separately for farmed salmon, rainbow trout and brown/sea trout. Salmon FW-FW and FW-SW movements showed a higher degree of heterogeneity in number of contacts and different seasonal patterns compared with SW-SW movements. FW-FW movements peaked from May to July and FW-SW movements peaked from March to April and from October to November. Salmon SW-SW movements occurred more consistently over the year and showed fewer connections and number of repeated connections between farms. Therefore, the salmon SW-SW network might be treated as homogeneous regarding the number of connections between farms and without seasonality. However, seasonality and production phase should be included in simulation models concerning FW-FW and FW-SW movements specifically. The number of rainbow trout FW-FW and brown/sea trout FW- FW movements were different from random. However, movements from other production phases were too low to discern a seasonal pattern or differences in contact pattern

    Electric sector policy, technological change, and U.S. emissions reductions goals: Results from the EMF 32 model intercomparison project

    Get PDF
    The Energy Modeling Forum (EMF) 32 study compares a range of coordinated scenarios to explore implications of U.S. climate policy options and technological change on the electric power sector. Harmonized policy scenarios (including mass-based emissions limits and various power-sector-only carbon tax trajectories) across 16 models provide comparative assessments of potential impacts on electric sector investment and generation outcomes, emissions reductions, and economic implications. This paper compares results across these policy alternatives, including a variety of technological and natural gas price assumptions, and summarizes robust findings and areas of disagreement across participating models. Under a wide range of policy, technology, and market assumptions, model results suggest that future coal generation will decline relative to current levels while generation from natural gas, wind, and solar will increase, though the pace and extent of these changes vary by policy scenario, technological assumptions, region, and model. Climate policies can amplify trends already under way and make them less susceptible to future market changes. The model results provide useful insights to a range of stakeholders, but future research focused on intersectoral linkages in emission reductions (e.g., the role of electrification), effects of energy storage, and better coverage of bioenergy with carbon capture and storage (BECCS) can improve insights even further

    Electric Sector Policy, Technological Change, and U.S. Emissions Reductions Goals: Results from the EMF 32 Model Intercomparison Project

    Get PDF
    The Energy Modeling Forum (EMF) 32 study compares a range of coordinated scenarios to explore implications of U.S. climate policy options and technological change on the electric power sector. Harmonized policy scenarios (including mass-based emissions limits and various power-sector-only carbon tax trajectories) across 16 models provide comparative assessments of potential impacts on electric sector investment and generation outcomes, emissions reductions, and economic implications. This paper compares results across these policy alternatives, including a variety of technological and natural gas price assumptions, and summarizes robust findings and areas of disagreement across participating models. Under a wide range of policy, technology, and market assumptions, model results suggest that future coal generation will decline relative to current levels while generation from natural gas, wind, and solar will increase, though the pace and extent of these changes vary by policy scenario, technological assumptions, region, and model. Climate policies can amplify trends already under way and make them less susceptible to future market changes. The model results provide useful insights to a range of stakeholders, but future research focused on intersectoral linkages in emission reductions (e.g., the role of electrification), effects of energy storage, and better coverage of bioenergy with carbon capture and storage (BECCS) can improve insights even further

    AEGIS-X: The Chandra Deep Survey of the Extended Groth Strip

    Full text link
    We present the AEGIS-X survey, a series of deep Chandra ACIS-I observations of the Extended Groth Strip. The survey comprises pointings at 8 separate positions, each with nominal exposure 200ks, covering a total area of approximately 0.67 deg2 in a strip of length 2 degrees. We describe in detail an updated version of our data reduction and point source detection algorithms used to analyze these data. A total of 1325 band-merged sources have been found to a Poisson probability limit of 4e-6, with limiting fluxes of 5.3e-17 erg/cm2/s in the soft (0.5-2 keV) band and 3.8e-16 erg/cm2/s in the hard (2-10 keV) band. We present simulations verifying the validity of our source detection procedure and showing a very small, <1.5%, contamination rate from spurious sources. Optical/NIR counterparts have been identified from the DEEP2, CFHTLS, and Spitzer/IRAC surveys of the same region. Using a likelihood ratio method, we find optical counterparts for 76% of our sources, complete to R(AB)=24.1, and, of the 66% of the sources that have IRAC coverage, 94% have a counterpart to a limit of 0.9 microJy at 3.6 microns (m(AB)=23.8). After accounting for (small) positional offsets in the 8 Chandra fields, the astrometric accuracy of the Chandra positions is found to be 0.8 arcsec RMS, however this number depends both on the off-axis angle and the number of detected counts for a given source. All the data products described in this paper are made available via a public website.Comment: 17 pages, 9 figures. Accepted for publication in ApJS. Data products are available at http://astro.imperial.ac.uk/research/aegis
    • …
    corecore