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Electric Sector Policy, Technological Change, and U.S. Emissions Reductions Goals: Results 

from the EMF 32 Model Intercomparison Project 

John E. Bistlinea, Elke Hodsonb, Charles G. Rossmannc, Jared Creasond, Brian Murraye, Alex Barronf 

 

Abstract 

The Energy Modeling Forum (EMF) 32 study compares a range of coordinated scenarios to explore 

implications of U.S. climate policy options and technological change on the electric power sector. 

Harmonized policy scenarios (including mass-based emissions limits and various power-sector-only 

carbon tax trajectories) across 16 models provide comparative assessments of potential impacts on 

electric sector investment and generation outcomes, emissions reductions, and economic implications. 

This paper compares results across these policy alternatives, including a variety of technological and 

natural gas price assumptions, and summarizes robust findings and areas of disagreement across 

participating models. Under a wide range of policy, technology, and market assumptions, model results 

suggest that future coal generation will decline relative to current levels while generation from natural 

gas, wind, and solar will increase, though the pace and extent of these changes vary by policy scenario, 

technological assumptions, region, and model. Climate policies can amplify trends already under way 

and make them less susceptible to future market changes. The model results provide useful insights to a 

range of stakeholders, but future research focused on intersectoral linkages in emission reductions (e.g., 

the role of electrification), effects of energy storage, and better coverage of bioenergy with carbon 

capture and storage (BECCS) can improve insights even further. 

Keywords: climate policy; energy-economic modeling; model intercomparison; market-based 

environmental policy; technology; electric sector 
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1. Introduction 

Technological change and evolving regulatory landscapes at state, federal, and international levels have 

generated significant transformations in the U.S. electric power sector in recent years. Previous studies 

have examined questions related to electric sector climate policies (e.g., Wiser et al., 2017; White 

House, 2016; Fiertz and Lawson, 2016; McKibbin et al., 2014; Fischer and Newell, 2008) and 

technological innovation (e.g., Creutzig et al., 2017; EIA, 2016a; Cole et al., 2016; Sanchez et al., 2015; 

Shearer et al., 2014), but few studies have analyzed a range of policies, technologies, and market 

conditions across a diverse set of energy-economic models. The Energy Modeling Forum (EMF) 24 study 

(Clarke et al., 2014; Fawcett et al., 2014) was the most recent large-scale multi-model comparison using 

U.S. energy models. With rapid changes in emerging technologies, lower natural gas prices, and 

uncertainty about future policy directions, an updated analysis is needed to allow stakeholders to take 

stock of model assessments of alternate market and planning scenarios and to understand how 

expectations about the power sector’s future have shifted in the last few years. 

This study brings together 16 state-of-the-art analytical models of the U.S. electric sector and economy. 

Comparing insights across models, scenarios, and technological assumptions can inform the design of 

U.S. power-sector policy and tradeoffs between environmental ambition and economic outcomes. 

Motivating questions driving this work include: 

 How do market-based climate policies transform the electricity sector, and how do policy 

impacts compare with impacts of key uncertainties such as technological costs, fuel costs, and 

economic growth? 

 How does policy stringency affect emissions and technology pathways in the electricity sector? 

Which policies appear consistent with near- and long-term emissions reduction targets? 

 What are the electricity price impacts and system costs of different approaches? 

These comparisons help to identify robust insights across models and possible planning environments, 

but also highlight areas of disagreement to guide research needs (both for technologies and analysis). It 

has long been a conclusion of the modeling community that these models are best used for insights into 

the design of policies and future research questions, instead of tools to offer quantitative forecasts of 

policy impacts (Huntington et al., 1982). 

Questions also remain about whether expected policy and technological trajectories will allow the U.S. 

to reach its stated greenhouse gas emissions reduction goals, or whether new technological advances 

(e.g., in availability, cost, and performance) and policy support (e.g., on regional or federal levels) will be 

required. These disagreements can be clarified by critically examining the assumptions and dynamics 

behind models used to make statements about possible electric sector futures. 

Perhaps the most significant changes in electric sector model projections since the last major U.S. model 

intercomparison of technology and climate policy strategies for the U.S. electric power sector (the EMF 

24 study, see Fawcett et al., 2014) are updated forecasts for variable renewable energy costs and 

natural gas prices, which are lower than previous estimates. Despite this rapid technological progress, 

uncertainty remains about future costs and how these changes will translate into market outcomes; 
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sophisticated energy-economic models are required to evaluate these potential outcomes. This 

uncertainty is reflected in analyst claims about future wind and solar generate shares, with some 

suggesting that variable renewable energy will comprise nearly all energy demand even without 

supporting policies and others claiming that these technologies will not be deployed without subsidies. 

Another motivation for this study is the shift in state and federal policies from economy-wide market-

based approaches to regulatory ones with partial sectoral or geographical coverage. Many existing (e.g., 

the Regional Greenhouse Gas Initiative) or previously issued (e.g., Clean Power Plan) U.S. regulations 

focus on the power sector, which raises questions about the economic and environment impacts of this 

sectoral emphasis and the implications for electric sector planning and technology strategy.  

The EMF 32 model intercomparison project explores these questions by assessing results from 16 

models across six standardized climate policy scenarios, which are discussed in Section 2. Modeling 

teams provide a range of outputs related to energy system impacts, emissions, and economic metrics. 

Murray et al. (2018) provide an introduction to the EMF 32 study and papers in the Energy Economics 

special issue, and Creason et al. (2018) synthesize technological insights from EMF 32. In addition to 

updated assumptions about technologies and markets, this study differs from EMF 24 in the increased 

number and breadth of participating models (EMF 24 included 9 models) and greater detail on 

implications for the power sector and specific technological categories. Another important function of 

the EMF 32 analysis is to identify research and analysis needs based on the evolving technology and 

policy landscapes, which are summarized in Section 4. 
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2. Description of Policy Sensitivities 

2.1. Scenario Design 

The scenarios in the EMF 32 study explore a range of sectoral approaches to U.S. federal climate policy 

with an emphasis on market-based, technology-neutral instruments. Due to the large number of 

possible combinations of policy scenarios and technological sensitivities, this study develops a tractable 

set of scenarios for all participating models. 

Table 1. EMF 32 scenario matrix and number of models submitting data for each scenario. Sensitivities 

span alternate assumptions about technologies (columns) and policies (rows). 

 

Six policy variants are explored in this study: 1. Reference (i.e., business-as-usual) scenario with existing 

on-the-books policies only; 2. National mass-based cap-and-trade on the power sector; 3. Power-sector-

only carbon tax starting in 2020 of $25 per metric ton CO2 increasing at 5% per year; 4. $50 electric-only 

tax at 5%; 5. $25 electric-only tax at 1%; 6. $50 electric-only tax at 1%.1 The levels of the mass-based cap 

are chosen to align with aggregate levels from EPA’s final Clean Power Plan Regulatory Impact Analysis 

(EPA, 2015). Tax trajectories span a range of proposed starting values and escalation rates, though these 

policy scenarios are necessarily stylized due to the variety of assumptions about timing, stringency, and 

provisions of proposed policies. Detailed scenario assumptions are described in Table 2 and tax 

trajectories are shown in Figure 14 in Appendix A. All technological and natural gas price sensitivities run 

by participating models are plotted for each of the policy variants shown in the following figures to test 

whether insights about policy impacts are robust to variations across models, technological costs, and 

fuel prices. 

                                                           
1
 Note that these scenarios are not intended to reflect specific federal administrative or legislative policy proposals but instead 

represent stylized sectoral policies. 

Reference  

AEO '16 

Assumptions

Nuclear 

Lifetimes

Renew. 

Energy 

Costs

Electricity 

Demand

Low High Low High Low Low High

Reference 16 14 15 6 6 12 10 12

Power Sector National Mass 

Based Cap ("Mass Cap")
13 7 9 3 3 6 7 7

Power Sector Carbon Tax $25 

@5% ("$25 Tax, 5%")
11 4 5 2 2 3 4 4

Power Sector Carbon Tax $50 

@5% ("$50 Tax, 5%")
11 4 5 2 2 3 4 4

Power Sector Carbon Tax $25 

@1% ("$25 Tax, 1%")
10 4 4 2 2 3 4 3

Power Sector Carbon Tax $50 

@1% ("$50 Tax, 1%")
11 4 4 2 2 3 4 3

Technology Sensitivities

Natural Gas End-Use EE Costs

P
o
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cy

 S
e

n
si

ti
vi

ti
e

s
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For all scenarios, it is assumed that international climate policies for countries other than the U.S. reflect 

current commitments without additional climate policies beyond those levels in the future. These 

scenarios assume no new international or domestic offsets. 

Table 2. EMF 32 policy scenario assumptions. Detailed scenario assumptions and tax trajectories are 

shown in Appendix A. 

Policy Scenario Description 
Reference The reference scenario approximates the Energy Information Administration’s 

2016 Annual Energy Outlook (AEO) reference scenario without EPA’s Clean Power 
Plan. It assumes a “business-as-usual trend estimate” with all other on-the-books 
federal and state policies, including state-level renewable mandates, federal 
production tax credit for wind, and federal investment tax credit for solar. AEO 
2016 fuel prices and demand projections are assumed. 

Power Sector Mass-Based 
Cap (“Mass Cap”) 

The national power sector mass cap scenario is extrapolated from the EPA’s final 
Clean Power Plan Regulatory Impact Analysis for the rate-based approach (EPA, 
2015), which results in emissions caps of 1,891, 1,754, 1,644 million metric tons of 
CO2 in the years 2020, 2025, and 2030, respectively, from the electricity sector. 
From 2030 to 2050, this scenario applies a constant mean annual reduction in 
power sector emissions of 1.8% based the average annual reduction from 2020 to 
2030. Full banking and borrowing of emissions allowances between 2020 to 2030 
is allowed (to reflect the policy target as a decadal average), but such temporal 
flexibility is limited between 2030 and 2050. Overall, the mass cap reaches 55% 
below 2005 levels by 2050. 

Power Sector Only CO2 Tax 
Trajectories (“$X Tax, Y%”) 

These scenarios model two initial tax rates ($25 and $50 per metric ton of CO2 in 
2010 U.S. dollars) and two rates of annual increase over inflation (1% and 5%), for 
a total of four tax trajectories (Figure 14 in Appendix A). The $X tax is imposed 
beginning in 2020 and increased Y% annually through 2050. To the extent feasible, 
models assume that the carbon tax is anticipated. In years after 2050, the carbon 
tax rate is held constant at its 2050 level. The tax is applied only to power sector 
fossil CO2. Tax credits are applied to biomass CO2 sequestered geologically with 
carbon capture technology. Coal and gas units that deploy carbon capture and 
storage pay a tax on uncaptured emissions only. 

 

2.2. Modeling Teams 

These comparisons employ a range of models with different characteristics, which reflects alternate 

assumptions about the future planning environment, decision-making processes, system dynamics, and 

technological cost and performance assumptions. Table 3 lists key characteristics of the 16 models 

participating in the EMF 32 study.2 For instance, some models assume perfect foresight in their 

intertemporal optimization of management decisions (e.g., DIEM, NEMS, NewERA, US-REGEN), whereas 

other models use recursive-dynamic formulations or other approaches with more myopic decision-

making (e.g., FACETS, GCAM, ReEDS, ReEDS-USREP). 

                                                           
2
 Some models have additional capabilities and versions that are not used in this analysis. Refer to individual model 

documentation for details. In the “Covered Sectors” column, “demand” refers to structural models of end-use demand and not 
stylized representations of energy efficiency or demand response. 
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Table 3. Overview of key characteristics of participating models in the EMF 32 study. More detailed 

model comparisons are provided in Creason et al. (2018). 

Model Name Covered Sectors Number of 
U.S. Regions 

Supporting 
Organization(s) 

AMIGA3 Electricity, other energy supply, 
100 IO sectors 

6 Argonne National 
Laboratory 

DIEM Electricity, other energy supply, 
non-energy, demand 

48 Duke University 

E4ST_v6 Electricity 6,670 Resources for the 
Future; Cornell 

ENERGY_2020 Electricity, other energy supply, 
non-energy, demand 

24 Systematic Solutions 

EPSA-NEMS Electricity, other energy supply, 
demand 

22 OnLocation 

FACETS Electricity, other energy supply, 
demand 

41 KanORS-EMR; SEE 

GCAM-USA Electricity, other energy supply, 
demand 

51 Pacific Northwest 
National Laboratory 

Haiku Electricity 26 Resources for the 
Future 

MARKAL_NETL Electricity, other energy supply, 
demand 

9 National Energy 
Technology Laboratory 

NEMS_AEO2016 Electricity, other energy supply, 
demand 

22 Energy Information 
Administration 

NewERA Electricity, other energy supply, 
non-energy, demand 

61 NERA Economic 
Consulting 

NewERAele Electricity 61 NERA Economic 
Consulting 

ReEDS Electricity 134 National Renewable 
Energy Laboratory 

ReEDS-USREP Electricity, other energy supply, 
non-energy, demand 

134 National Renewable 
Energy Laboratory; MIT 

RHG-NEMS Electricity, other energy supply, 
demand 

22 Rhodium Group 

US-REGEN Electricity 48 Electric Power 
Research Institute 

 

Comparing variations across models (i.e., intermodel comparisons) along with variations across 

scenarios for the same model (i.e., intramodel comparisons) offer a variety of plausible outcomes that 

account both for alternate scenario and model assumptions as well as for alternative model structures. 
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2.3. Limitations of the Analysis 

Readers should keep in mind the following limitations when interpreting model results: 

 This study includes alternate policy and technology scenarios, not forecasts or predictions 

(Weyant, 2017).3 

 Many additional sources of uncertainty and implementation details are not explored in this 

analysis and are left for future work. These unknowns become more pronounced over longer 

timescales, making out-year results particularly uncertain (Barron et al., 2018). 

 Assumptions about technological costs/performance and markets are not fully harmonized 

across models. Differences in model structures prevent such harmonization, especially for 

variable renewable energy (NREL, 2017). 

 There is an underrepresentation of interactions between the electric power sector and other 

sectors, which may be especially important for aggressive policies that have more prominent 

general equilibrium effects (Barron et al., 2018). In particular, economy-wide decarbonization 

strategies likely entail extensive electrification of end uses, such as transportation, industrial 

production, and household services such as heating and air conditioning (Bistline and de la 

Chesnaye, 2018; White House, 2016; Williams et al., 2014; Clarke et al., 2014), and few models 

capture details of consumer adoption or potential changes in load shapes. 

 Not all models included in this synthesis completed all scenarios, which means that some 

conclusions may reflect sampling biases rather than robust insights, especially for scenarios with 

few reporting models (Tavoni and Tol, 2010). 

 The scenario design was locked down in late 2016, so the runs do not reflect more recent 

changes in federal or state policies. As noted in Table 2, the reference scenario does not assume 

implementation of the Clean Power Plan. 

Notwithstanding these caveats and uncertainties for future exploration, many clear insights emerge 

from this analysis, as described in the following sections. 

 

 

  

                                                           
3
 Models used for energy and climate policy analysis are not designed for forecasting specific economic variables. Economic 

predictions involve considerable uncertainty due to long time horizons, human behavior, technology, evolving policies, and 
difficult-to-forecast conditions such as interest rates, economic growth, factor prices, and population. Instead, models provide 
illustrative comparisons of one economic projection (the reference scenario) with another (the policy scenario). 
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3. Results 

3.1. Effect of Policy Scenarios on Individual Technologies 

In nearly all scenarios and all models, there is high agreement that future coal generation will decrease 

from historical levels. As shown in Figure 1, most models project flat or declining coal generation under 

reference policy conditions, though a significant amount of coal capacity remains online without further 

policy (Figure 16 in Appendix B).4 Under reference policy conditions with certainty about no additional 

climate policies or performance standards, almost all models show less coal generation over time and no 

new builds. This outlook differs considerably from planning a decade ago (EIA, 2007) or even EMF 24 

(Clarke et al., 2014), which envisioned new coal builds in the absence of climate policy. Such differences 

are driven primarily by changing expectations about natural gas prices (Bistline, 2015; Burtraw et al., 

2012) and lower wind and solar costs (Cole et al., 2016). 

 

Figure 1. Annual coal generation (TWh/yr) for all models and technology scenarios, grouped by policy 

scenario and time period. Generation is the sum of all U.S. coal units without and with carbon capture. 

Historical average generation comes from EIA (2016b).  

Assumptions about implementation of the Clean Air Act (CAA) § 111(b) CO2 performance standards for 

new fossil units were not harmonized across models. Roughly half of the participating models included 
                                                           
4
 Note how the number of scenarios vary across policy cases, which reflects differences in the number of scenarios submitted 

across models (see Table 1). Figure 15 in Appendix B illustrates how these qualitative insights hold when variations across 
models and policies are examined under the reference technological scenario only. Lower coal generation in the reference case 
largely corresponds to the low natural gas price scenario. 
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these standards, though many teams reported that these constraints were not binding. However, for the 

models that allowed new coal additions without carbon capture, coal investments were observed only in 

the high gas price sensitivity and were less than 10 GW nationally. 

The downside risk for coal generation is larger under the policy scenarios than the reference, as many 

tax scenarios drive coal generation to near-zero levels by midcentury. As the highest CO2 emissions 

intensive resource, coal is the most responsive fuel to carbon taxes imposed on those emissions, and 

even the least stringent tax trajectory ($25 rising at 1% per year) lowers coal generation by more than 

50% on average below current levels by 2050. More stringent carbon tax policies lead to lower coal 

generation (Figure 1) and higher capacity retirements (Figure 16 in Appendix B). 

In the carbon tax scenarios, relative costs of low-carbon technologies suggest that the availability of new 

carbon capture and storage (CCS) technologies applied to coal generation does not markedly alter these 

trends under most conditions, as shown in Figure 1. Many models indicate that least-cost low-carbon 

scenarios involve CCS-equipped gas generation rather than CCS-equipped coal, as discussed in Section 

3.2 (Figure 7). These findings imply that the transition away from coal generation in the U.S. power 

sector is likely to continue, barring coal-specific CCS advances, substantially higher natural gas prices, or 

direct subsidization of coal use. These results differ considerably from previous model intercomparison 

studies, which indicated increased coal use in reference scenarios and coal with CCS under carbon 

pricing scenarios (e.g., Figures 4 and 15 in Clarke et al., 2014). 

 

Figure 2. Annual natural gas generation (TWh/yr) for all models and technology scenarios, grouped by 

policy scenario and time period. Generation is the sum of all U.S. gas units without and with CCS. 
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In contrast to coal, generation from natural-gas-fired units is likely to increase relative to historical 

values in the reference (i.e., no-policy) case. Natural gas generation is expected to rise over time under 

the reference scenario, with 2035–2050 values higher than 2020–2030 values.5 Variation in gas 

generation is significant across models, technological sensitivities, and gas prices, as some models 

exhibit a more than doubling of gas generation above the 2005–2015 historical average through 2050 

while others anticipate more modest growth.6 

Under the CO2 policy sensitivities, most models indicate that gas generation will likely increase over the 

2005–2015 historical average. However, the medians for the CO2 policy scenarios are not appreciably 

different from the median in the reference scenario. Gas generation increases most in the $25 tax 

scenarios. Relative price effects from the carbon tax are smaller for gas than for coal owing to the lower 

carbon intensity of gas, which is roughly half of coal on a CO2 combustion emissions per output basis. 

Nevertheless, tax scenarios with the higher escalation rates (5% per year) are stringent enough to 

decrease gas generation below reference levels in the long run for many models. 

 

Figure 3. Annual wind and solar generation (TWh/yr) for all models and technology scenarios, grouped 

by policy scenario and time period. Generation is the sum of all U.S. solar and wind technologies (i.e., 

not including hydropower, geothermal, or biomass). While the 2005–2015 average is 179 TWh/yr, 2017 

generation from wind and solar was approximately 330 TWh/yr. 

                                                           
5
 Exceptions in Figure 2 are scenarios with high gas prices, represented in the lowest points in each scenario. 

6
 Agreement is higher for total gas capacity (Figure 17 in Appendix B), as many scenarios exhibit capacity growth even when 

generation changes are more modest. 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

11 
 

Levels of wind and solar generation are expected to increase significantly from current values under all 

scenarios, though the magnitude varies based on the policy environment and model-specific cost-

effectiveness relative to substitute technologies. Variable renewable deployment increases over time as 

costs fall and is highest for the stringent carbon tax cases, especially policies with higher escalation rates 

(Figure 3), since variable renewable resources face no carbon tax and will further benefit from any 

increase in electricity price caused by the tax on other generators. Wind and solar generation by 2050 

are higher than previous model intercomparison studies, though the qualitative trends are similar across 

policy scenarios (Clarke et al., 2014).  

Figure 4 shows the wide range in projections of the total share of wind and solar as a fraction of 

generation nationally (top panel) and regionally (bottom panel). The national results are qualitatively 

similar to Figure 3 with the generation fraction increasing with higher carbon taxes over time (reaching 

as high as 60% of national generation by 2050 with the $50/t-CO2 tax scenario and 5% escalation rate). 

Underlying national results are significant differences at the regional level (Fell and Linn, 2013), as 

shown in the bottom panel of Figure 4. Regional heterogeneity means that some grids have near-zero 

levels of variable renewables in some scenarios (e.g., the Southeastern U.S.) and others have almost 

60% even without carbon policies (e.g., the West). Drivers of regional differences include renewable 

resource bases, technology costs, existing fleet mixes, market regimes, load shapes, and regulations. 

Another area of agreement across models and scenarios is that the generation share of wind is likely to 

exceed solar absent future technological surprises (Figure 5). Drivers of this split include relative cost 

declines, capacity factors, and changes in marginal value at higher levels of deployment (e.g., Bistline, 

2017; Gowrisankaran et al., 2016; Hirth, 2013).7 Models suggest that a majority of wind capacity will 

likely be onshore and that solar will largely come from utility-scale photovoltaic (PV) capacity. Figure 19 

in Appendix B shows how wind and solar generation are typically higher under scenarios with higher gas 

prices. It is important to note that, under alternate cost assumptions where solar capital costs are 

roughly 50% lower than wind, some models show that solar generation can significantly exceed wind 

generation, but other models still indicate wind generation dominating across the range of costs 

examined in this study (Figure 5).8 

                                                           
7
 Note that the relative competitiveness of wind and solar depends strongly on relative cost and value declines across time and 

cumulative penetration (Figure 5 in Appendix B). 
8
 Here, the low-renewable cost scenario is based on NREL’s Annual Technology Baseline costs from 2016, where solar capital 

costs are roughly 50% lower than onshore wind after 2030. 
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Figure 4. Variable renewable energy (wind and solar) generation share (% of in-region generation) by 

year and scenario. The top panel shows national results (where individual points represent outputs 

from different models), and the bottom panel shows regional results (where points represent different 

model and different regions). 

Note that model representations of variable renewable technologies and complementary flexibility 

options vary across models (Santen et al., 2017; Sullivan et al., 2014). Temporal and spatial resolution 

decisions in model construction may materially affect their ability to represent these technologies, 

which may understate deployment of specific assets and overstate others. For instance, capturing 

drivers and impacts of higher-than-anticipated cost reductions for solar and storage would increase 

deployment (ceteris paribus), but there are also questions about whether models are adequately 

representing endogenous value deflation at higher penetrations (i.e., declining economic value of added 

capacity), which would decrease deployment (Blanford et al., 2018). 
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Figure 5. Comparison of average annual U.S. wind and solar generation (TWh/yr) between 2035–2050 

with reference and lower wind and solar costs. Points represent individual model runs with colors 

corresponding to the policy scenarios. Reference wind and solar cost scenarios are represented by 

circles and lower-cost scenarios by triangles. Values above (below) the dotted line indicate higher solar 

(wind) generation for a given model and scenario. 

Generation from existing and new nuclear plants depends on the policy environment but is not as 

sensitive as other technologies (Figure 6). Without additional policy, nuclear generation remains close to 

current levels through 2030 with planned uprates for existing units approximately offsetting 

retirements. However, nuclear retirements increase across many models after 2030 under the reference 

policy scenario, and models disagree about the extent of potential impacts. Under the carbon tax 

scenarios (even at the lower price trajectories that begin at $25), revenues to nuclear plants increase, 

which lowers the downside risk of premature retirements for existing facilities and incents investments 

in new nuclear plants in some models. New nuclear capacity installations generally occur later in the 

time horizon and only under the scenarios with higher CO2 tax escalation rates.9 The extent of nuclear 

                                                           
9
 Note that several models include new investments in nuclear capacity and uprates for existing plants (both endogenous and 

exogenous) in the reference, which are reflected in Figure 6. Since the study was conducted in late 2016, several companies 
have announced plans to stop or forego new construction. 
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deployment under climate policy scenarios is lower in this study relative to previous model 

intercomparisons, as most models in EMF 34 rely more heavily on renewables and gas with CCS under 

low-carbon scenarios (Clarke et al., 2014). 

 

Figure 6. Annual nuclear generation (TWh/yr) for all models and technology scenarios, grouped by 

policy scenario and time period. Generation is the sum of all existing and new U.S. nuclear generation. 

For scenarios with early nuclear retirements, Figure 18 in Appendix B shows how the generation mix 

that replaces nuclear depends strongly on the policy environment. Without additional policies, nuclear 

retirements generally lead to more gas generation (and more limited increases in wind, coal, and solar 

generation) after 2030 depending on the region-specific marginal technology. Early nuclear retirements 

also lead to higher CO2 emissions across all scenarios, but these emissions impacts are much smaller 

under the CO2 tax scenarios, where lower-carbon-intensity technologies are more likely to be on the 

margin. Under the mass-based cap where emissions are constrained, nuclear retirements are 

accompanied by additional reductions in coal generation. 

3.2. Effect of Policy Scenarios on Decarbonization Pathways 

The evolution of the electric sector absent further CO2 policy entails two technological shifts, as shown 

in the first column of Figure 7. First, coal-to-gas switching occurs for most models, though the extent of 

coal retirements by 2050 depends on expectations for the gas price path combined with costs of 

maintaining units (see Appendix B). Second, variable renewable deployment (specifically wind) increases 

over time; however, lower natural gas prices in the reference limit national penetration without 

continued policy support or more aggressive cost declines for variable renewables. Figure 20 in 
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Appendix B shows relative generation from natural gas and renewables in 2035–2050 under different 

policy and technology assumptions. 

Under the $25 and 50/t-CO2 tax scenarios with 5% escalation, near-term emissions reductions are 

achieved through redispatch toward existing natural gas capacity, minimizing the share of generation 

from coal by 2030 (though some models lean heavily on wind and energy efficiency as well). As shown in 

Figure 9, the median rate of near-term capacity additions across all models is similar to the historical 

rate in all but the most stringent tax scenarios. Post-2030 mitigation takes place on the investment 

margin (i.e., changes in new capacity) and varies based on model-specific cost and performance 

assumptions, which underscores the importance of technological changes in shaping long-run 

transformation pathways (Creason et al., 2018). 

2050 generation portfolios are diverse under many policy scenarios owing to regional heterogeneity, 

supply-curve-like system dynamics (e.g., upward-sloping fuel supply curves, decreasing marginal value of 

variable renewables), sunk costs, different function attributes and system needs (e.g., energy, capacity, 

flexibility), and other model-specific factors. Models vary in their treatment of technology-specific cost 

and value profiles, and portfolio mixes reflect differences in how dispatchable (e.g., natural gas 

generators) and non-dispatchable (e.g., wind, solar PV) options are assessed relative to total system 

benefits and costs (Creason et al., 2018). 

 

Figure 7. National generation (TWh/yr) by technology under different years (rows) and policy 

scenarios (columns). Individual bars represent different models. 2015 generation shown on left. Note 

how models omit some policy scenarios and/or have time horizons that do not extend to 2050. 
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Comparisons across models indicate disagreement about load growth over time in the reference and 

policy scenarios. Total generation in Figure 8 tends to increase in the reference, though growth through 

2050 varies from the model average by almost 1,500 TWh across models (almost 40% of current 

generation levels). Demand tends to decrease under the power-sector-only taxes for most trajectories 

and models, but the degree of feedback with end uses and representation of endogenous energy 

efficiency also varies across models. Note that, unlike the sectoral policies examined here, studies that 

examine stringent economy-wide cap scenarios (e.g., 80% reduction in all greenhouse gas across all 

sectors) typically entail considerable electrification of end uses in addition to offsetting price-responsive 

demand.10 Higher load growth under deep decarbonization scenarios is consistent with other studies 

(Bistline and de la Chesnaye, 2018; White House, 2016; Williams et al., 2014; Clarke et al., 2014). In 

contrast, the partial coverage of the power-sector-only policies increases electricity prices relative to 

other fuels and induces end-use fuel switching. For instance, Figure 21 in Appendix B.1 illustrates how 

electricity demand decreases across nearly all models, sectors, and carbon pricing scenarios. 

 

Figure 8. Total U.S. electricity generation (TWh/yr) for all models and technology scenarios, grouped 

by policy scenario and time period. All scenarios refer to power-sector-only policies. 

                                                           
10

 Economy-wide CO2 pricing has countervailing impacts on electricity load growth due to induced energy efficiency (which 
ceteris paribus lowers demand) and electrification of end uses (which increases demand). The total impact on load is ambiguous 
and depends on factors like the policy design, overall stringency, and technological assumptions (Clarke et al., 2014; Fawcett et 
al., 2014). 
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Annual installations of new capacity provide one metric for measuring the rate of sectoral 

transformation across scenarios. The oversupply of capacity in many regional grids, measured through 

metrics like reserve margins, suppresses wholesale prices and leads to slower-paced near-term 

investments relative to the 2005–2015 average. Most models and scenarios suggest an inflection point 

after 2030 toward higher investment, as deployment and mitigation strategies transition from fuel 

switching (from existing coal to gas) toward new capital investments. Annual additions are higher under 

more stringent policy scenarios, both due to higher capital turnover of carbon-intensive plants and to 

higher variable renewable deployment (which has lower output per unit of installed capacity). 

 

Figure 9. Total annual capacity additions (GW/yr) for all models and technology scenarios, grouped by 

policy scenario and time period. Dashes represent individual model outputs, and circles represent 

averages for given policies. 

3.3. Effect of Policy on Emissions Outcomes 

How close are emissions under reference trajectories (i.e., the current business-as-usual without the 

Clean Power Plan or increased state ambitions beyond on-the-books policies) to stated short- and long-

run emissions reduction targets? Under the Obama administration’s Clean Power Plan (soon to be re-

proposed), EPA estimated that electric sector emissions would decrease nationally by approximately 

32% relative to 2005 levels (EPA, 2015). 

With respect to the national Clean Power Plan goals, models suggest that reference trends are likely to 

meet early emissions targets but that 2030 targets are significantly less likely to be met if current 
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technological cost and demand projections hold.11 Figure 10 indicates that emissions trajectories vary 

significantly by model, as 2030 reductions are between 9 and 30% below 2005 levels under reference 

technological assumptions (this range increases to 2–37% under alternate technological assumptions). 

Despite increasing renewable deployment and coal-to-gas switching, further emissions reductions in the 

reference case face headwinds from demand growth, declining marginal returns from pursuing 

gas/renewable strategies, and nuclear retirements. 

 

Figure 10. Historical and projected U.S. electric sector CO2 emissions (million metric tons) across 

models (2000–2050) under reference policy conditions. Lines represent individual models. Values are 

shown for the reference technological scenario only. 

Figure 11 underscores how technological and market trends alone are unlikely to reach identified 

longer-run emissions targets, though short-run goals may be met without additional policy in some 

cases. This figure illustrates the relative impacts of levels and trajectories for market-based CO2 policies 

on power sector emissions over time. 

Which CO2 tax trajectories would be likely to achieve the emissions objectives of proposed Clean Power 

Plan, Nationally Determined Contribution (NDC), and notional 2050 80% goal?12 Model results suggest 

that, with a carbon tax starting in 2020, there is a high likelihood that the 2030 reduction goals would be 

exceeded under all stringencies studied here. Because the 2050 goal is economy-wide, power-sector-

                                                           
11

 Emissions calculations include electric sector emissions only and do not account for emissions changes in other sectors, 
including upstream emissions in fuel production. Also, regional variation in investments and dispatch lead to important 
differences in reference emissions. 
12

 On June 1, 2017, the President of the United States announced that the country “will withdraw from the Paris climate 
accord… but begin negotiations to reenter either the Paris Accord or a really entirely new transaction…” The scenarios in this 
paper examine greenhouse gas emissions from the electricity sector and place those emissions in context by comparing them to 
the range of emissions that would have been required under the original U.S. NDC submission. Although the original intent of 
this analysis was to inform policymakers efforts to meet the U.S. NDC goal, the analysis is equally informative for policymakers’ 
efforts to reach any future mitigation targets. 
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only carbon taxes cannot achieve the target (Barron et al., 2018). For the narrower question of how 

much the electricity sector reduces emissions by 2050, models show less agreement which depends 

largely on the tax trajectory, specifically the growth rate over time. Very few models reach an 80% 

reduction under the 1% tax escalation cases even with optimistic technological assumptions, but median 

model emissions for the 5% escalation cases are well below 80%. 

The most stringent tax trajectories lead to net negative emissions in the power sector in the models that 

employ bioenergy with carbon capture and storage (BECCS), which on net can remove CO2 from the 

atmosphere. These power sector reductions are especially beneficial under stringent economy-wide 

policies due to higher abatement costs in other sectors of the economy. Combined with electrification, 

very low or net negative power sector emissions are a common feature of decarbonization strategies 

(e.g., Muratori et al., 2016; Krey et al., 2014; Azar et al., 2013), which means that scenarios meeting an 

80-by-50 target for the power sector alone are unlikely to be low enough to meet emissions reductions 

consistent with economy-wide targets. 

Despite its significance in global integrated assessment model scenarios of stringent temperature 

targets, BECCS has received comparatively little treatment in analyses of U.S. deep decarbonization 

scenarios. Only two models participating in this study include the option for BECCS investments; 

however, both models that include BECCS (MARKAL_NETL and US-REGEN) indicate that it will play a role 

under the tax cases with 5% escalation rates (Figure 7). BECCS and other negative emissions 

technologies are notable for the significant revenue streams they would receive from captured CO2 

under carbon-constrained scenarios, which other categories of low-carbon technologies (e.g., nuclear, 

renewables, gas with CCS) would not. For instance, assuming a biomass emissions factor of 0.09 t-

CO2/MMBtu, carbon-neutral feedstock, heat rate of 12 MMBtu/MWh, and a 90% capture rate, a BECCS 

unit would receive a $210 subsidy for each MWh it generated under the $25/t-CO2 tax at 5% in 2050 

(i.e., approximately a $X/MWh subsidy for a $X/t-CO2 tax). Such CO2 sequestration subsidies are many 

times the revenues from electricity sales in typical models, which means that BECCS may be 

economically competitive even with high capital and operating costs. 
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Figure 11. U.S. electric sector CO2 emissions (million metric tons) for all models and technology 

scenarios, grouped by policy scenario and time period. All scenarios refer to power-sector-only policies. 

Note how the variation in emissions outcomes across models and technological sensitivities does not 

differ considerably across policy scenarios in Figure 11.13 As in the EMF 24 modeling exercise (Fawcett et 

al., 2014), model differences in CO2 pathways are smaller if initial model conditions in the reference 

scenario are considered. 

While the primary goal of climate policy is to reduce greenhouse gas emissions and the associated 

impacts on human society and the environment, these policies also produce significant benefits by 

reducing other forms of pollution from fossil fuels. Fossil fuel use generates pollution associated with 

resource extraction (e.g., Alvarez et al., 2012; Epstein et al., 2011), fuel handling (e.g., Jha and Muller, 

2017), combustion (e.g., Muller et al., 2011; National Research Council, 2010), and waste disposal (e.g., 

Lemly, 2015; Lemly and Skorupa, 2012). In particular, the co-benefits of reductions in particulate matter 

(i.e., PM2.5), nitrogen oxides (NOx), and sulfur dioxide (SO2) as a result of climate policy have been widely 

studied. 

                                                           
13

 The notable exception is for the mass-based cap scenario, where cumulative emissions targets are specified as part of the 
scenario construction. Emissions in 2030 above (below) the cap indicate borrowing (banking) of emissions allowances to lower 
compliance costs through temporal (“when”) flexibility (Bistline and de la Chesnaye, 2018). Figure 22 in Appendix B shows how 
these cap scenarios employ banking across most models and scenarios. 
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Consistent with relatively flat coal use, SO2 emissions from the electricity sector remain relatively flat in 

the reference case, as shown in Figure 23 in Appendix B. Reference case SO2 emissions break down into 

two distinct groups based on model calibration. The lower estimates more closely match 2016 SO2 

emissions from the electricity sector of 1.5 Mt SO2 (EPA, 2017a). Under the mass cap, some models 

show near-zero reductions in SO2 by 2030 (for cases where the cap is non-binding in the short term), 

while others show larger responses with a median reduction of 24%. All carbon tax scenarios show 

significant reductions in SO2. The median reduction in SO2 under a $25@1% tax is 64% in 2030, and 

carbon prices greater than this level reduce SO2 emissions to near zero in most models. 

Nitrogen oxide emissions (NOx) are also relatively constant in the reference case (Figure 24 in Appendix 

B). As with SO2, some models under the mass cap show near-zero reductions in NOx by 2030, while 

others show larger responses with a median reduction of 24%. Because NOx is emitted by both coal and 

gas-fired facilities, it might be expected to reduce by smaller amount than SO2, but most models also 

show strong reductions in NOx. The median reduction in NOx under a $25 at 1% tax is 50% in 2030, while 

a $50 at 5% trajectory reduces emissions by 91%. 

The health benefits of reductions in SO2 and NOx are often substantial, with the short-term health 

benefits often similar in magnitude to, or greater than, the near-term abatement costs (e.g., Woollacott, 

2018; Buonocore et al., 2016; Thompson et al., 2014; West et al., 2013; Nemet et al., 2010). 

3.4. Effect of Policy on Economic Outcomes 

The effect of alternative power-sector-only CO2 tax trajectories on emissions is shown in Figure 12. Such 

visualizations provide first-order approximations for marginal abatement cost functions, and the 

reference-scenario-based metric partially controls for differences in baseline emissions across models 

(as opposed to using 2005 levels).14 Even when technological and market uncertainties are taken into 

account (the “Reference Technology” points), models exhibit significant variation in emissions 

abatement for the same CO2 tax trajectories. The technological sensitivities indicate that many 

developments increase abatement for a given CO2 price (e.g., lower renewables costs), but other market 

uncertainties may decrease abatement for a given price (e.g., higher gas prices). 

                                                           
14

 Note that the scenarios depicted in Figure 12 use different initial CO2 taxes and escalation rates, as discussed in Table 2. 
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Figure 12. 2050 electric sector CO2 emissions reduction (% reference) for different 2050 tax levels ($/t-

CO2). Lines represent individual model runs. Purple values are for “Reference Technology” assumptions, 

and green values show the full variation in outcomes across all scenarios. 

It can be challenging to compare economic and environmental outcomes across scenarios with 

drastically different assumptions (especially for price-based instruments that do not generally result in 

similar emissions paths), and comparing scenarios across models with different emissions levels further 

exacerbates these difficulties. Figure 13 compares economic and emissions outcomes across models and 

scenarios by plotting cumulative CO2 reductions relative to the reference scenario against the net 

present value (NPV) of incremental electric sector costs,15 assuming a 5% real discount rate. Individual 

models and scenario assumptions in these figures loosely correspond to efficiency frontiers with higher 

emission reductions coming at greater sectoral costs. 

An important limitation of these results is that, given the partial equilibrium structure of many 

participating models, an NPV metric that only covers electric sector costs provides an incomplete 

portrait of the economic impacts of policies. These scenarios would be expected to affect other sectors, 

consumer welfare, and monetized impacts of emissions. For instance, if revenue generated by market-

based policies (either from a carbon tax or the sale of allowances under a cap) were used to lower 

preexisting taxes on capital and labor, the efficiency frontier would shift down and to the right, which 

means that overall costs to the economy would be lower (Barron et al., 2018). 

                                                           
15

 Total electric sector costs include capital, fuel, operations, and maintenance expenditures. Note how these values represent a 
small component of total costs for models with energy system or economy-wide scopes. Using an aggregated NPV-based metric 
removes the time component of calculations and helps to standardize outputs across models with different time horizons. 
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Figure 13. Comparison of cumulative CO2 reductions (billion metric tons) and incremental electric 

sector costs (billion $ NPV 2020–2050) relative to the reference scenario. Dots represent individual 

model runs. Green circles show electric-sector-only models, and orange values show economy-wide 

models. The average NPV under reference scenarios is $2.77 trillion. 

Figure 13 illustrates that, although increases in cumulative abatement generally create incremental 

electric sector costs, there are many models that suggest relatively low power sector economic impacts 

across scenarios. Almost all of these low- or negative-cost scenarios are associated with economy-wide 

models that that represent other sectors in addition to the power sector. The partial coverage of the 

power-sector-only policies induce end-use fuel switching and ultimately shift costs and emissions to 

other sectors. For instance, Figure 21 in Appendix B.1 illustrates how electricity demand decreases 

across nearly all models, sectors, and carbon pricing scenarios. Cost and emissions leakage beyond the 

regulated segment is a broader concern for policies with only partial geographical or sectoral coverage. 

Additionally, some models rely extensively on the adoption of energy efficiency measures, which reduce 

capital and fuel costs in the power sector while reducing demand and emissions. The actual cost-

effectiveness of energy efficiency measures ex post (versus expected ex ante) is a source of great debate 

in the energy economics literature (Fowlie et al., 2015), which may add to the uncertainty of results here 

driven by energy efficiency measures. However, the most significant cost reductions come through the 

advanced technological scenarios. Technological substitution possibilities (e.g., cost assumptions) are a 

major driver of economic impact assessments, and these scenarios underscore how technological 

progress reduces economic impacts across policy environments, especially under the most stringent 

policy scenarios.16  

                                                           
16

 It should be noted that these social costs are accompanied by social benefits, principally in the form of reduced climate 
damages from CO2 and in improved welfare from reductions in conventional air pollution (e.g., SO2 and NOx). As noted above, 
short-term health benefits are often similar in magnitude to, and often greater than, the near-term abatement costs. 
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4. Research Needs 

Most of the power sector models used in this study have a strong research foundation and have been 

used extensively in policy and technology assessment of the energy sector. That said, all models are 

abstractions and require exclusive choices on structure, scope, technology options and costs, and 

expectations of future demand and market conditions for fuel inputs. These modelers’ choices create 

uncertainty in model projections and can identify areas where further research may reduce these 

uncertainties (Morgan, 2015). An important function of the EMF 32 analysis is to identify future research 

and analysis needs, which are summarized in this section. 

The two most significant omissions in the technological coverage of the power sector are energy storage 

and bioenergy with carbon capture and storage (BECCS). Costs of battery storage have been falling 

rapidly in recent years, but it is unclear how this pace will continue in the future or how much 

developments will translate into changes in the power sector and beyond (Kittner et al., 2017). 

However, many capacity planning models do not capture storage investments endogenously, and 

models that do represent storage simplify technological characteristics of its operations (Cole et al., 

2017). These simplifications are often motivated by computational requirements of multidecadal 

capacity planning and dispatch problems, which require tradeoffs between spatial resolution, temporal 

resolution, treatment of end uses, and uncertainty (Santen et al., 2017). Future work should prioritize 

computationally efficient methods for incorporating storage in capacity planning models. 

Likewise, as discussed in Section 3.3, BECCS is underrepresented in participating models in this study, 

especially given its significance for deep decarbonization scenarios. There is a disconnect between global 

integrated assessment model scenarios of stringent temperature targets, where negative emissions 

technologies like BECCS are prominent features (Krey et al., 2014), and strategies suggested by U.S. 

decarbonization analyses with national models, where BECCS has received relatively little treatment. 

The 2 of 16 models participating in this study that include BECCS indicate that it will play a role under 

the tax cases with 5% escalation rates (Figure 7). BECCS and other negative emissions technologies are 

notable for the significant revenue streams they would receive from captured CO2 under carbon-

constrained scenarios, which other categories of low-carbon technologies (e.g., nuclear, renewables, gas 

with CCS) would not. Future efforts should incorporate BECCS and other negative emissions options and 

investigate their relative roles under alternate policy scenarios, especially for economy-wide 

decarbonization scenarios with high abatement costs in non-electric sectors. 

Other future research needs based on this analysis include: 

 Cross-sectoral impacts of increasingly integrated energy systems: Few models are capable of 

representing deep decarbonization scenarios and interactions across sectors (e.g., 

electrification) and hourly load shape impacts while still maintaining a sufficient degree of 

planning and operational detail in the power sector. 

 Value of a full technological portfolio (and costs of limited one): The results of these model 

comparisons of climate policies are broadly consistent with the EMF 24 study in that emissions 

reduction goals can be met through many different technological pathways, and costs are higher 
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when options are more limited (Clarke et al., 2014). The specific mix of technologies differs in 

this study based on updated costs and model representations of generation options and other 

technologies. Models of the power system under low-carbon futures are increasingly required 

to balance appropriate levels of temporal, spatial, and technical complexity with computational 

demands to accurately capture and evaluate economic and technical dimensions of energy 

transitions. Future work to understand the relative roles of low-carbon technologies should 

systematically evaluate tradeoffs in electric sector and energy system models between the 

accuracy of simplifications and computational tractability (Bistline et al., 2017). 

 Drivers of retirements of the existing coal and nuclear fleet: Model results suggest that carbon 

policy can drive retirements of these two generation sources in opposite directions – increasing 

coal retirements and decreasing nuclear ones. Future work should explore these drivers 

systematically and in greater depth. It would be useful to understand retirement implications of 

policy approaches that provide subsidies for “clean” technologies rather than taxing “dirty” 

ones, as each provide different entry, exit, and utilization incentives for generators (Paul et al., 

2015). Nuclear plants are now feeling market pressure from low natural gas prices and 

renewable generation subsidies that are together keeping power prices low. For instance, the 

state of New York passed a law in 2017 to provide subsidies for nuclear generation in the form 

of “Zero Emission Credits” or ZECs issued per MWh of nuclear power generated (New York 

Senate Bill S. 6651). Additionally, coal-fired electric generation is more exposed than other 

technologies to regulatory risk from internalizing currently unpriced negative externalities 

(Muller et al., 2011; Epstein et al., 2011; NRC, 2010), which suggests that a thorough assessment 

of drivers and impacts of coal retirements should include a broader range of policy sensitivities 

not related to CO2 emissions. 

 Role of energy storage and other flexibility options: Since the value of dispatchable assets on 

the grid grows as the share of non-dispatchable resources such as wind and solar increases. 

Additionally, states are increasingly exploring approaches to integrate not only generation-side 

resources but also distributed energy resources, efficiency, and flexible demand. It is 

increasingly important for models to assess potential roles of balancing and flexibility options 

such as energy storage, combustion turbines, and demand-side management. This modeling 

requires not only detailed temporal resolution and chronology to capture operational detail but 

also multi-decadal time horizons to evaluate potential impacts on investments. Modeling 

challenges are compounded by the complexity of possible cost and revenue streams for these 

technologies, which are not likely to be captured endogenously within any single model. The 

role of storage and flexibility is important not only for low-carbon scenarios but also for 

potential impacts on revenues of more inflexible units like existing coal and nuclear under less 

stringent policy environments. 

 Ex-post analysis of model intercomparisons and backcasting exercises: The EMF 32 study 

provides a snapshot about the current state of knowledge and analysis about power sector 

futures; however, further insights may be gained with more analysis. Future work should use 

this study to understand best practices and ex-post techniques for improving model 
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development and utilization. Such analyses should evaluate how model architectures and 

assumptions affect results and areas where model projections are consistently out of line with 

observed outcomes to identify areas for improvement. 

 Greater range of technological sensitivities: Favorable and unfavorable technological surprises 

may emerge, but model results indicate that many general insights will hold nevertheless. 

Technological and market surprises may provide unexpected benefit but also could bring new 

challenges, which are important for decision-makers to understand. For instance, realized wind 

and solar costs have been lower than many past projections (Cole et al., 2016), which suggests 

that a broader range of low-cost sensitivities for these technologies should be explored. 

 Consistent approaches to electricity price comparisons: In compiling this study, we found it 

challenging to compare electricity price impacts across models given a lack of comparability in 

reporting (e.g., retail versus wholesale prices) and model structures (e.g., different geographical 

resolutions). This is unfortunate as regional electricity price changes are the most politically 

salient price impact for policies in this sector. Further work to create apples-to-apples 

comparisons of electricity price impacts and total system costs (including accounting for changes 

across sectors given different model structures) would be of great use. 
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5. Discussion 

For the electric sector policy-related scenarios and technological sensitivities considered here, models 

suggest that future climate policies have the potential to be the leading determinant of the extent and 

pace of future electric sector transformations and emissions trajectories in the United States. Existing 

environmental regulations, cost reductions of low-carbon technologies, and energy market trends alone 

are unlikely to reach emissions reductions targets identified in recent U.S. policy declarations (especially 

for more ambitious mid- to long-run goals), but these baseline trends may reduce the cost of adopting 

policies to achieve emission reduction targets. The near-term power sector transformation comes 

primarily in the form of substitution of natural gas and renewables for coal generation, a trend that has 

already started without a national policy in place, but would be amplified considerably if the types and 

levels of carbon pricing policies studied here were enacted. More stringent long-run policies lead to a 

broader range of investments in renewables, gas, carbon-capture-equipped units, and nuclear (with the 

mix depending on cost assumptions and economic value of different technologies). 

The policy-induced outcomes are more pronounced after 2030 due to rising policy stringency, though 

subject to much greater uncertainty (Barron et al., 2018). Emissions, new capacity deployment, and 

generation shares exhibit wider variation across models and scenarios between 2035 and 2050 than 

they do prior to 2030. This reflects greater uncertainty about technological and market developments 

but also the dynamics of investment and capital stock turnover. When viewing individual policy 

scenarios, models can vary greatly in terms of their generation responses; for example, a $25/t-CO2 tax 

(rising at 1% annually) reduces coal generation anywhere from 20 and 90% by 2035 depending on the 

model. Although previous model intercomparison projects have suggested variation in generation 

responses, this study suggests higher variable renewable energy and natural gas shares than multi-

model studies from even a few years ago (Fawcett et al., 2014). These variations depend on the type of 

model (i.e., perfect foresight versus recursive dynamic), technological cost assumptions, regional 

specificity, whether they incorporate endogenous energy efficiency responses, and other factors. 

Technological strategies and electric sector deployment depend jointly on the policy environment and 

technological developments over time. Results across models largely agree that trends of coal-to-gas 

substitution and renewables deployment are likely to continue, but the extent varies by model and 

scenario. There is robust agreement across models that coal’s generation share is the most sensitive to 

the policy context due to relative price effects of a carbon tax on higher-carbon-intensity fuels. 

However, the pace and extent of decreases in coal generation and the composition of replacement 

capacity depends on policy, market uncertainties (e.g., gas prices), technological costs, and region. For 

natural gas generation, variation of 2050 generation is significant, as models span the range from nearly 

no gas generation to almost 4,000 TWh (roughly the same as total generation in 2015). For nuclear 

generation, carbon taxes can reduce the likelihood of retirements for existing nuclear plants since they 

are an emissions-free resource at the point of generation. 

The carbon tax trajectories examined here appear to reduce emissions at relatively modest costs (with 

models showing incremental electric sector costs between -$200 to +$1,200 billion net present value 

through 2050), though cost impacts vary across policy scenarios and models and are sensitive to 
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technology cost assumptions. However, the power-sector-only policies addressed here do not 

necessarily align with economy-wide deep decarbonization pathways either in the level of total 

electricity generation or the pace of capacity deployment. While these models generally project the 

least-cost approach for the power sector to respond to carbon pricing policies, including in some 

instances energy efficiency investments, they largely ignore options in the rest of the economy. In fact, 

these power-sector-only policies lead to greater increases in electricity prices relative to other fuels and 

decreases in electricity consumption across nearly all sectors and carbon pricing scenarios (as shown in 

Figure 21 discussed in Appendix B.1). Economy-wide decarbonization strategies, however, likely entail 

extensive electrification of end uses, such as transportation, industrial production, and household 

services such as heating and air conditioning (Bistline and de la Chesnaye, 2018; White House, 2016; 

Williams et al., 2014; Clarke et al., 2014). These economy-wide decarbonization strategies would likely 

increase electricity consumption, generation, and the nature and pace of capacity build-outs over time 

relative to power-sector-only policies. 
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Appendix A: Scenario and Model Assumptions 

As described in Section 2.1, the policy sensitivities for this study examine four tax trajectories that are 

applied to the power sector only. Figure 14 shows that these taxes are assumed to start in 2020 at either 

$25 or $50/t-CO2 and escalate at either 1% or 5% per year. For context, the social cost of carbon with 3% 

discount rate developed by the U.S. Government Interagency Working Group (IWG) is most similar to 

the $50/t-CO2 tax with 1% escalation, starting slightly lower at $43/t-CO2 in 2020 but ending slightly 

higher at $71/t-CO2 in 2050.* 

 

Figure 14. Electricity sector tax trajectories ($ per metric ton CO2) over time. Starting value and 

escalation rates for the CO2 tax are shown above. 

As described in Creason et al. (2018), there are many differences across models: structure, foresight, 

demand response, price feedbacks with other economic sectors (e.g., gas prices), assumptions (e.g., tech 

cost/performance, financing), geographical scope (e.g., Lower 48 only, all U.S., linkages with other 

countries), spatial and temporal resolution, and grid representations (e.g., transmission expansion). 

 

 

  

                                                           
*
 Note that Rose et al. (2014) identify consistency, comparability, and uncertainty issues with the IWG approach utilizing three 

models. NAS (2017) also found the multi-model approach problematic and recommended an alternative framework. The IWG 
values were withdrawn from federal regulatory use and replaced with alternative guidance for monetizing changes in 
greenhouse gases through the Executive Order “Promoting Energy Independence and Economic Growth” on March 28, 2017. 
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Appendix B: Additional Model Results 

B.1. Technological Outputs 

Figure 15 illustrates how the qualitative insights about coal generation in Section 3.1 across models and 

policies also hold when examined under the reference technological scenario only (Figure 1 plots values 

across technological sensitivities as well). Although there is disagreement about the magnitude, models 

suggest that there is significant disagreement about the amount of coal generation approaching 

midcentury without additional CO2 policy, as shown in Figure 16. 

 

Figure 15. Annual coal generation (TWh/yr) for all models and technology scenarios, grouped by policy 

scenario and time period. Generation is the sum of all U.S. coal units without and with CCS. Values 

shown for the reference technological scenario only. Historical average generation from EIA (2016b). 
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Figure 16. Coal capacity (GW) by model and time under alternate policy scenarios. Values shown for 

the reference technological scenario only. 

Note that there are many unresolved market uncertainties that may influence the near- and long-term 

competitiveness of coal, including gas prices, rising operation and maintenance costs, refurbishment 

costs, and additional environmental policies. Many features that may impact coal costs are stylistically 

mimicked or are absent from capacity expansion models, such as cycling-related commitment costs and 

local transmission congestion, which are difficult to capture given the structures of these models 

(Santen et al., 2017). Coal-fired generation is more exposed than other technologies to regulatory risk 

from internalizing currently unpriced negative externalities (Muller et al., 2011; Epstein et al., 2011; 

NRC, 2010). These caveats should inform interpretation of the results and directions for future work. 

Although Figure 2 indicates significant variation in gas generation across models and scenarios, models 

agree more about total gas capacity, as shown in Figure 17 in Appendix B. Scenarios principally exhibit 

increases in gas capacity over time, even though dispatch of these assets varies significantly by region 

and scenario. Gas assets are used to provide energy, capacity, and flexibility in models and, under 

certain conditions, may have a high system value even with modest generation. 
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Figure 17. Total natural gas capacity (GW) for all models and technology scenarios, grouped by policy 

scenario and time period. Capacity is the sum of all U.S. gas units without and with CCS. 

The low nuclear lifetime scenario assumes that existing units retire after 60-year lifetimes and do not 

receive license renewals thereafter. Under reference policy conditions, early nuclear retirements lead to 

increases primarily in natural gas generation after 2030 with smaller increases in wind, coal, and solar 

(Figure 18). The region-specific marginal technology depends on the policy conditions, which differs 

across models. Note that replacement capacity needs are generally higher than displaced nuclear 

capacity owing to nuclear’s high capacity factors (unlike generation where total changes across all 

technologies are roughly zero). All scenarios indicate that early nuclear retirements lead to increases in 

CO2 emissions and system costs, though the magnitudes of these impacts differ across models and 

scenarios. Policies that price CO2 emissions exhibit smaller emissions increases with earlier nuclear 

retirements, though these scenarios also decrease the likelihood of early nuclear retirements due to 

higher revenues in wholesale power markets to these units (Figure 6). 
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Figure 18. Generation difference (TWh/yr) between the low nuclear lifetime scenario and reference in 

2050 by technology under different policy scenarios (left axis). Individual bars represent different 

models. The change in 2050 CO2 emissions (million metric tons) is shown in the blue line (right axis). 

Figure 19 shows the relative economic competitiveness of wind and solar across different policy 

contexts and different natural gas price scenarios. Although there are some models and scenarios where 

solar generation exceeds wind, many models suggest that wind is more economically competitive 

nationally owing to its higher capacity factors and less severe value erosion at high penetration levels. 
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Figure 19. Comparison of average annual U.S. wind and solar generation (TWh/yr) between 2035–

2050. Points represent individual model runs with colors corresponding to the policy scenarios. 

Reference natural gas price scenarios are represented by circles and high gas prices by triangles. Values 

above (below) the dotted line indicate higher solar (wind) generation for a given model and scenario. 

Figure 20 compares total variable renewable generation with gas generation across models and 

scenarios in this study. Although perhaps complementary from a system perspective given cost 

structures and functional attributes, gas and renewables show little evidence across these scenarios of 

being complementary goods in an economic sense (i.e., demand for one good increases as the price of 

another decreases). Many models and scenarios suggest that renewables and gas compete on the build 

margin, and market shares differ considerably across regions.  
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Figure 20. Comparison of average annual U.S. variable renewable and gas generation (TWh/yr) 

between 2035–2050 with reference and high gas prices. Points represent individual model runs with 

colors corresponding to the policy scenarios. 

EMF 32 scenarios focus on electric-sector-only carbon pricing, and this limited sectoral coverage could 

work against the electrification that is expected to be incentivized under economy-wide decarbonization 

strategies, though the ability of current models to capture electrification and end-use decisions may 

vary (Barron, 2018). To evaluate these potential impacts using the participating EMF 32 models with 

detailed representations of end-use demand (Table 3), Figure 21 shows changes in electricity demand in 

the policy scenarios relative to the reference across the residential, commercial, industrial, and other 

sectors. Electricity demand decreases across nearly all sectors and scenarios, though the magnitude of 

change varies by sector, model, year, and policy stringency. More stringent power-sector-only policies 

lead to greater increases in electricity prices relative to other fuels, which leads to greater declines in 

electricity demand. Models differ in their translation between wholesale and retail prices, which 

accounts for some of the response heterogeneity. 
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Figure 21. Change in sectoral electricity demand (% of reference) under the policy scenario relative to 

the reference. Solid (hollow) points show 2030 (2050) values. 

B.2. Emissions 

Figure 22 shows emissions over time for the mass-based cap. Emissions trajectories indicate that 

banking emissions allowances is the least-cost strategy for most models and scenarios, where emissions 

reductions are “front loaded” in early compliance periods (creating a reserve of credits when abatement 

is relatively cheap) and emissions are above the cap in later periods as the bank is drawn down. Banking 

is an especially valuable form of “when” flexibility “when expectations of higher marginal abatement 

costs in the future outweigh discounting and capital stock effects, which encourage early effort when 

costs are comparably low” (Bistline and de la Chesnaye, 2018). In this case, fuel switching from coal to 

gas is an especially low-cost emissions reduction strategy in the early 2020s. The use of banking in 

power-sector-only cap-and-trade policies is qualitatively similar to economy-wide deep decarbonization 
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strategies, though the drivers behind these trends and magnitudes of their impacts differ (Bistline and 

de la Chesnaye, 2018; Fawcett et al., 2014). Note that the net atmospheric impact will also include 

changes in non-CO2 greenhouse gas emissions and uncapped emissions in other sectors (e.g., upstream 

emissions in fuel production). 

 

Figure 22. Historical and projected U.S. electric sector CO2 emissions (million metric tons) across 

models (2000–2050) under mass-based policy conditions. Blue lines represent individual models, and 

the orange line shows the cap value (i.e., without banking and borrowing). 

Figure 23 and Figure 24 show SO2 and NOx emissions (respectively) across the policy scenarios. 
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Figure 23. U.S. electric sector SO2 emissions (million metric tons) for all models and technology 

scenarios, grouped by policy scenario and time period. All scenarios refer to power-sector-only policies. 

 

Figure 24. U.S. electric sector NOx emissions (million metric tons) for all models and technology 

scenarios, grouped by policy scenario and time period. All scenarios refer to power-sector-only policies. 
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Highlights 

 EMF 32 compares electric sector policy and technology scenarios for 16 U.S. models 

 Technology change lowers costs, but long-run emissions targets require policy 

 Declines in coal use are expected to continue and would accelerate with CO2 pricing 

 Most models and scenarios suggest generation from gas and renewables will rise 

 Research needs include cross-sector linkages, battery storage, bioenergy with CCS 
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