59 research outputs found
Carter-Payne homomorphisms and Jantzen filtrations
We prove a q-analogue of the Carter-Payne theorem in the case where the
differences between the parts of the partitions are sufficiently large. We
identify a layer of the Jantzen filtration which contains the image of these
Carter-Payne homomorphisms and we show how these homomorphisms compose.Comment: 30 page
Mesenchymal chondroprogenitor cell origin and therapeutic potential
Mesenchymal progenitor cells, a multipotent adult stem cell population, have the ability to differentiate into cells of connective tissue lineages, including fat, cartilage, bone and muscle, and therefore generate a great deal of interest for their potential use in regenerative medicine. During development, endochondral bone is formed from a template of cartilage that transforms into bone; however, mature articular cartilage remains in the articulating joints, where its principal role is reducing friction and dispersing mechanical load. Articular cartilage is prone to damage from sports injuries or ageing, which regularly progresses to more serious joint disorders, such as osteoarthritis. Osteoarthritis is a degenerative joint disease characterized by the thinning and eventual wearing of articular cartilage, and affects millions of people worldwide. Due to low chondrocyte motility and proliferative rates, and complicated by the absence of blood vessels, cartilage has a limited ability to self-repair. Current pharmaceutical and surgical interventions fail to generate repair tissue with the mechanical and cellular properties of native host cartilage. The long-term success of cartilage repair will therefore depend on regenerative methodologies resulting in the restoration of articular cartilage that closely duplicates the native tissue. For cell-based therapies, the optimal cell source must be readily accessible with easily isolated, abundant cells capable of collagen type II and sulfated proteoglycan production in appropriate proportions. Although a cell source with these therapeutic properties remains elusive, mesenchymal chondroprogenitors retain their expansion capacity with the promise of reproducing the structural or biomechanical properties of healthy articular cartilage. As current knowledge regarding chondroprogenitors is relatively limited, this review will focus on their origin and therapeutic application
A smartphone intervention for adolescent obesity: study protocol for a randomised controlled non-inferiority trial
Background
There are few evidence-based mobile health solutions for treating adolescent obesity. The primary aim of this parallel non-inferiority trial is to assess the effectiveness of an experimental smartphone application in reducing obesity at 12 months, compared to the Temple Street W82GO Healthy Lifestyles intervention.
Methods/design
The primary outcome measure is change in body mass index standardised deviation score at 12 months. The secondary aim is to compare the effect of treatment on secondary outcomes, including waist circumference, insulin sensitivity, quality of life, physical activity and psychosocial health. Adolescents with a body mass index at or above the 98th percentile (12 to 17 years) will be recruited from the Obesity clinic at Temple Street Children’s University Hospital in Dublin, Ireland. W82GO is a family-based lifestyle change intervention delivered in two phases over 12 months. In the current study, participants will be randomised for phase two of treatment to either usual care or care delivered via smartphone application. One hundred and thirty-four participants will be randomised between the two study arms. An intention-to-treat analysis will be used to compare treatment differences between the groups at 12 months.
Discussion
The results of this study will be disseminated via open access publication and will provide important information for clinicians, patients and policy makers regarding the use of mobile health interventions in the management of adolescent obesity.
Trial registration
Clinicaltrials.gov NCT01804855
Hadrons at high temperature: an update from the FASTSUM collaboration
We present the most recent results from the FASTSUM collaboration for hadron
properties at high temperature. This includes the temperature dependence of the
light and charmed meson and baryon spectrum, as well as properties of heavy
quarkonia. The results are obtained using anisotropic lattices with a fixed
scale approach. We also present the status of our next generation gauge
ensembles.Comment: 8 pages, 8 figures. Contribution to the XVth Quark Confinement and
the Hadron Spectrum, 1-6 August 2022, Stavanger, Norwa
Human neutrophil clearance of bacterial pathogens triggers anti-microbial gamma delta T cell responses in early infection
Human blood Vc9/Vd2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vc9/Vd2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vc9/Vd2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-c and tumor necrosis factor (TNF)-a. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vc9/Vd2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-a dependent proliferation of Vc9/Vd2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting cd T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis – characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity – show a selective activation of local Vc9/Vd2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The cd T celldriven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of cd T cells and TNF-a and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive cd T cells in early infection and suggest novel diagnostic and therapeutic approaches.Martin S. Davey, Chan-Yu Lin, Gareth W. Roberts, Sinéad Heuston, Amanda C. Brown, James A. Chess, Mark A. Toleman, Cormac G.M. Gahan, Colin Hill, Tanya Parish, John D. Williams, Simon J. Davies, David W. Johnson, Nicholas Topley, Bernhard Moser and Matthias Eber
Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages.
Activated macrophages undergo metabolic reprogramming, which drives their pro-inflammatory phenotype, but the mechanistic basis for this remains obscure. Here, we demonstrate that upon lipopolysaccharide (LPS) stimulation, macrophages shift from producing ATP by oxidative phosphorylation to glycolysis while also increasing succinate levels. We show that increased mitochondrial oxidation of succinate via succinate dehydrogenase (SDH) and an elevation of mitochondrial membrane potential combine to drive mitochondrial reactive oxygen species (ROS) production. RNA sequencing reveals that this combination induces a pro-inflammatory gene expression profile, while an inhibitor of succinate oxidation, dimethyl malonate (DMM), promotes an anti-inflammatory outcome. Blocking ROS production with rotenone by uncoupling mitochondria or by expressing the alternative oxidase (AOX) inhibits this inflammatory phenotype, with AOX protecting mice from LPS lethality. The metabolic alterations that occur upon activation of macrophages therefore repurpose mitochondria from ATP synthesis to ROS production in order to promote a pro-inflammatory state
Effectiveness of a biopsychosocial e-learning intervention on the clinical judgements of medical students and GP trainees regarding future risk of disability in patients with chronic lower back pain: study protocol for a randomised controlled trial
Introduction Chronic lower back pain (CLBP) is a major healthcare problem with wide ranging effects. It is a priority for appropriate management of CLBP to get individuals back to work as early as possible. Interventions that identify biopsychosocial barriers to recovery have been observed to lead to successfully reduced pain-related work absences and increased return to work for individuals with CLBP. Modern conceptualisations of pain adopt a biopsychosocial approach, such as the flags approach. Biopsychosocial perspectives have been applied to judgements about future adjustment, recovery from pain and risk of long-term disability; and provide a helpful model for understanding the importance of contextual interactions between psychosocial and biological variables in the experience of pain. Medical students and general practitioner (GP) trainees are important groups to target with education about biopsychosocial conceptualisations of pain and related clinical implications. Aim The current study will compare the effects of an e-learning intervention that focuses on a biopsychosocial model of pain, on the clinical judgements of medical students and trainees. Methods and analysis Medical student and GP trainee participants will be randomised to 1 of 2 study conditions: (1) a 20 min e-learning intervention focused on the fundamentals of the flags approach to clinical judgement-making regarding risk of future pain-related disability; compared with a (2) wait-list control group on judgement accuracy and weighting (ie, primary outcomes); flags approach knowledge, attitudes and beliefs towards pain, judgement speed and empathy (ie, secondary outcomes). Participants will be assessed at preintervention and postintervention. Ethics and dissemination The study will be performed in agreement with the Declaration of Helsinki and is approved by the National University of Ireland Galway Research Ethics Committee. The results of the trial will be published according to the CONSORT statement and will be presented at conferences and reported in peer-reviewed journals
Hadrons at high temperature: An update from the FASTSUM collaboration
We present the most recent results from the FASTSUM collaboration for hadron properties at high temperature. This includes the temperature dependence of the light and charmed meson and baryon spectrum, as well as properties of heavy quarkonia. The results are obtained using anisotropic lattices with a fixed scale approach. We also present the status of our next generation gauge ensembles
Role of the repeat expansion size in predicting age of onset and severity in RFC1 disease
RFC1 disease, caused by biallelic repeat expansion in RFC1, is clinically heterogeneous in terms of age of onset, disease progression and phenotype. We investigated the role of the repeat size in influencing clinical variables in RFC1 disease. We also assessed the presence and role of meiotic and somatic instability of the repeat. In this study, we identified 553 patients carrying biallelic RFC1 expansions and measured the repeat expansion size in 392 cases. Pearson's coefficient was calculated to assess the correlation between the repeat size and age at disease onset. A Cox model with robust cluster standard errors was adopted to describe the effect of repeat size on age at disease onset, on age at onset of each individual symptoms, and on disease progression. A quasi-poisson regression model was used to analyse the relationship between phenotype and repeat size. We performed multi-variate linear regression to assess the association of the repeat size with the degree of cerebellar atrophy. Meiotic stability was assessed by Southern blotting on first-degree relatives of 27 probands. Finally, somatic instability was investigated by optical genome mapping on cerebellar and frontal cortex and unaffected peripheral tissue from four post-mortem cases. A larger repeat size of both smaller and larger allele was associated with an earlier age at neurological onset (smaller allele HR = 2.06, p < 0.001; larger allele HR = 1.53, p < 0.001) and with a higher hazard of developing disabling symptoms, such as dysarthria or dysphagia (smaller allele HR = 3.40, p < 0.001; larger allele HR = 1.71, p = 0.002) or loss of independent walking (smaller allele HR = 2.78, p < 0.001; larger allele HR = 1.60; p < 0.001) earlier in disease course. Patients with more complex phenotypes carried larger expansions (smaller allele: complex neuropathy RR = 1.30, p = 0.003; CANVAS RR = 1.34, p < 0.001; larger allele: complex neuropathy RR = 1.33, p = 0.008; CANVAS RR = 1.31, p = 0.009). Furthermore, larger repeat expansions in the smaller allele were associated with more pronounced cerebellar vermis atrophy (lobules I-V β=-1.06, p < 0.001; lobules VI-VII β=-0.34, p = 0.005). The repeat did not show significant instability during vertical transmission and across different tissues and brain regions. RFC1 repeat size, particularly of the smaller allele, is one of the determinants of variability in RFC1 disease and represents a key prognostic factor to predict disease onset, phenotype, and severity. Assessing the repeat size is warranted as part of the diagnostic test for RFC1 expansion
- …