614 research outputs found

    Cytosolic Phospholipase A2α and Eicosanoids Regulate Expression of Genes in Macrophages Involved in Host Defense and Inflammation

    Get PDF
    Acknowledgments: We thank Dr. Robert Barkley and Charis Uhlson for mass spectrometry analysis. Funding: This work was supported by grants from the National Institutes of Health HL34303 (to C.C.L., R.C.M. and D.L.B), DK54741 (to J.V.B.), GM5322 (to D.L.W.) and the Wellcome Trust (to N.A.R.G. and G.D.B.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Social Difficulties in Youth with Autism With and Without Anxiety and ADHD Symptoms

    Get PDF
    Social difficulties inherent to autism spectrum disorder are often linked with co‐occurring symptoms of anxiety and attention deficit hyperactivity disorder (ADHD). The present study sought to examine the relation between such co‐occurring symptoms and social challenges. Parents of adolescents with autism (N = 113) reported upon social challenges via the social responsiveness scale (SRS) and anxiety and ADHD symptomatology via the Child Behavior Checklist. Results revealed differences in SRS scores across co‐occurring symptom subgroups (Anxiety, ADHD, Both, Neither)—namely, adolescents with autism and anxiety as well as those with autism, anxiety, and ADHD showed greater scores on the SRS than the other groups. Implications for research and clinical practice are discussed and recommendations are offered. Lay Summary Anxiety and attention deficit hyperactivity disorder (ADHD) symptoms are related to greater social challenges for adolescents with autism spectrum disorder. The present study found that autism with anxiety and autism with anxiety and ADHD, was related to greater social difficulties than autism alone. Findings provide further support for the intertwined nature of anxiety and ADHD symptoms in autism. What this may mean for research and clinical practice is considered and recommendations are suggested

    Social Difficulties in Youth with Autism With and Without Anxiety and ADHD Symptoms

    Get PDF
    Social difficulties inherent to autism spectrum disorder are often linked with co‐occurring symptoms of anxiety and attention deficit hyperactivity disorder (ADHD). The present study sought to examine the relation between such co‐occurring symptoms and social challenges. Parents of adolescents with autism (N = 113) reported upon social challenges via the social responsiveness scale (SRS) and anxiety and ADHD symptomatology via the Child Behavior Checklist. Results revealed differences in SRS scores across co‐occurring symptom subgroups (Anxiety, ADHD, Both, Neither)—namely, adolescents with autism and anxiety as well as those with autism, anxiety, and ADHD showed greater scores on the SRS than the other groups. Implications for research and clinical practice are discussed and recommendations are offered. Lay Summary Anxiety and attention deficit hyperactivity disorder (ADHD) symptoms are related to greater social challenges for adolescents with autism spectrum disorder. The present study found that autism with anxiety and autism with anxiety and ADHD, was related to greater social difficulties than autism alone. Findings provide further support for the intertwined nature of anxiety and ADHD symptoms in autism. What this may mean for research and clinical practice is considered and recommendations are suggested

    Reconstruction of the repetitive antifreeze glycoprotein genomic loci in the cold-water gadids Boreogadus saida and Microgadus tomcod.

    Get PDF
    Abstract Antifreeze glycoproteins (AFGPs) are a novel evolutionary innovation in members of the northern cod fish family (Gadidae), crucial in preventing death from inoculative freezing by environmental ice in their frigid Arctic and sub-Arctic habitats. However, the genomic origin and molecular mechanism of evolution of this novel life-saving adaptive genetic trait remained to be definitively determined. To this end, we constructed large insert genomic DNA BAC (bacterial artificial chromosome) libraries for two AFGP-bearing gadids, the high-Arctic polar cod Boreogadus saida and the cold-temperate Atlantic tomcod Microgadus tomcod, to isolate and sequence their AFGP genomic regions for fine resolution evolutionary analyses. The BAC library construction encountered poor cloning efficiency initially, which we resolved by pretreating the agarose-embedded erythrocyte DNA with a cationic detergent, a method that may be of general use to BAC cloning for teleost species and/or where erythrocytes are the source of input DNA. The polar cod BAC library encompassed 92,160 clones with an average insert size of 94.7 kbp, and the Atlantic tomcod library contained 73,728 clones with an average insert size of 89.6 kbp. The genome sizes of B. saida and M. tomcod were estimated by cell flow cytometry to be 836 Mbp and 645 Mbp respectively, thus their BAC libraries have approximately 10- and 9.7-fold genome coverage respectively. The inclusiveness and depth of coverage were empirically confirmed by screening the libraries with three housekeeping genes. The BAC clones that mapped to the AFGP genomic loci of the two gadids were then isolated by screening the BAC libraries with gadid AFGP gene probes. Eight minimal tiling path (MTP) clones were identified for B. saida, sequenced, and assembled. The B. saida AFGP locus reconstruction produced both haplotypes, and the locus comprises three distinct AFGP gene clusters, containing a total of 16 AFGP genes and spanning a combined distance of 512 kbp. The M. tomcod AFGP locus is much smaller at approximately 80 kbp, and contains only three AFGP genes. Fluorescent in situ hybridization with an AFGP gene probe showed the AFGP locus in both species occupies a single chromosomal location. The large AFGP locus with its high gene dosage in B. saida is consistent with its chronically freezing high Arctic habitats, while the small gene family in M. tomcod correlates with its milder habitats in lower latitudes. The results from this study provided the data for fine resolution sequence analyses that would yield insight into the molecular mechanisms and history of gadid AFGP gene evolution driven by northern hemisphere glaciation

    ORBIT: a new paradigm for genetic engineering of mycobacterial chromosomes [preprint]

    Get PDF
    Current methods for genome engineering in mycobacteria rely on relatively inefficient recombination systems that require the laborious construction of a long double-stranded DNA substrate for each desired modification. We combined two efficient recombination systems to produce a versatile method for high-throughput chromosomal engineering that obviates the need for the preparation of double-stranded DNA recombination substrates. A synthetic targeting oligonucleotide is incorporated into the chromosome via homologous recombination mediated by the phage Che9c RecT annelase. This oligo contains a site-specific recombination site for the directional Bxb1 integrase (Int), which allows the simultaneous integration of a payload plasmid that contains a cognate recombination site and selectable marker. The targeting oligo and payload plasmid are co-transformed into a RecT- and Int- expressing strain, and drug-resistant homologous recombinants are selected in a single step. A library of reusable target-independent payload plasmids is available to generate knockouts and promoter replacements, or to fuse the C-terminal-encoding regions of target genes with tags of various functionalities. This new system is called ORBIT (Oligo-mediated Recombineering followed by Bxb1 Integrase Targeting) and is ideally suited for the creation of libraries consisting of large numbers of deletions, insertions or fusions in a target bacterium. We demonstrate the utility of ORBIT by the construction of insertions or deletions in over 100 genes in M. tuberculosis and M. smegmatis. The report describes the first genetic engineering technique for making selectable chromosomal fusions and deletions that does not require the construction of target- or modification-specific double-stranded DNA recombination substrates

    Spatio-Temporal Variability of Harbor Porpoise Life History Parameters in the North-East Atlantic

    Get PDF
    Harbor porpoises exhibit early maturation, relatively short gestation/lactation periods and a faster rate of reproduction as compared to other cetacean species. Intrinsic and extrinsic factors can influence both population vital rates and population structure, which ultimately cause changes in dynamics within and between populations. Here, we undertook a retrospective analysis of mortality data collected over a 24-year period for assessing life history traits of the North-east Atlantic harbor porpoise population. We use time-period specific models for key life history relationships that considered cause of death of individuals (as a proxy for health status), sex and management unit (MU). Sexual variation in asymptotic length, asymptotic age, average length at 50% maturity (L50) and average age at 50% maturity (A50) were observed, with females attaining a larger asymptotic length, larger L50, and delaying attainment of both sexual and physical maturity, compared to males. While females are constrained in their minimum body size due to giving birth to proportionally larger offspring, males exhibited more plasticity in size at sexual maturity, enabling re-allocation of available energy resources toward reproduction. Data were then used to compare biological parameters among two porpoise MUs in United Kingdom waters, both of which in the current study exhibited reduced reproductive rates compared to other geographic regions. In both MUs, females significantly increased their A50 and males significantly declined in their L50. An increase in the age at asymptotic length was also observed in both sexes, along with a significant decline in the Gompertz growth rate parameter that was more apparent in the female data. While availability of suitable prey resources may be a limiting factor, a combination of other factors cannot be ruled out. Porpoises in the Celtic and Irish Seas MU were significantly larger in their maximum length, asymptotic length and L50 compared to porpoises in the North Sea MU throughout the study period, suggesting limited gene flow between these two MUs. These results justify the maintenance of these harbor porpoise MUs or assessment units, as two separate units, within the range of the North-east Atlantic population, and for indicator assessments under the EU’s Marine Strategy Framework Directive

    Pathways Regulating Cytosolic Phospholipase a\u3csub\u3e2\u3c/sub\u3e Activation and Eicosanoid Production in Macrophages by Candida Albicans

    Get PDF
    Resident tissue macrophages are activated by the fungal pathogen Candida albicans to release eicosanoids, which are important modulators of inflammation and immune responses. Our objective was to identify the macrophage receptors engaged by C. albicans that mediate activation of group IVA cytosolic phospholipase A2 (cPLA2α), a regulatory enzyme that releases arachidonic acid (AA) for production of prostaglandins and leukotrienes. A comparison of peritoneal macrophages from wild type and knock-out mice demonstrates that the β-glucan receptor Dectin-1 and MyD88 regulate early release of AA and eicosanoids in response to C. albicans. However, cyclooxygenase 2 (COX2) expression and later phase eicosanoid production are defective in MyD88-/- but not Dectin-1-/- macrophages. Furthermore, C. albicans-stimulated activation of MAPK and phosphorylation of cPLA2α on Ser-505 are regulated by MyD88 and not Dectin-1. In contrast, Dectin-1 mediates MAPK activation, cPLA 2α phosphorylation, and COX2 expression in response to particulate β-glucan suggesting that other receptors engaged by C. albicans preferentially mediate these responses. Results also implicate the mannan-binding receptor Dectin-2 in regulating cPLA2α. C. albicans-stimulated MAPK activation and AA release are blocked by D-mannose and Dectin-2-specific antibody, and overexpression of Dectin-2 in RAW264.7 macrophages enhances C. albicans-stimulated MAPK activation, AA release, and COX2 expression. In addition, calcium mobilization is enhanced in RAW264.7 macrophages overexpressing Dectin-1 or -2. The results demonstrate that C. albicans engages both β-glucan and mannan-binding receptors on macrophages that act with MyD88 to regulate the activation of cPLA2α and eicosanoid production

    A new method to quantify mineral dust and other aerosol species from aircraft platforms using single particle mass spectrometry

    Get PDF
    Single-particle mass spectrometry (SPMS) instruments characterize the composition of individual aerosol particles in real time. Their fundamental ability to differentiate the externally mixed particle types that constitute the atmospheric aerosol population enables a unique perspective into sources and transformation. However, quantitative measurements by SPMS systems are inherently problematic. We introduce a new technique that combines collocated measurements of aerosol composition by SPMS and size-resolved absolute particle concentrations on aircraft platforms. Quantitative number, surface area, volume, and mass concentrations are derived for climate-relevant particle types such as mineral dust, sea salt, and biomass burning smoke. Additionally, relative ion signals are calibrated to derive mass concentrations of internally mixed sulfate and organic material that are distributed across multiple particle types. The NOAA Particle Analysis by Laser Mass Spectrometry (PALMS) instrument measures size-resolved aerosol chemical composition from aircraft. We describe the identification and quantification of nine major atmospheric particle classes, including sulfate–organic–nitrate mixtures, biomass burning, elemental carbon, sea salt, mineral dust, meteoric material, alkali salts, heavy fuel oil combustion, and a remainder class. Classes can be sub-divided as necessary based on chemical heterogeneity, accumulated secondary material during aging, or other atmospheric processing. Concentrations are derived for sizes that encompass the accumulation and coarse size modes. A statistical error analysis indicates that particle class concentrations can be determined within a few minutes for abundances above ∼10 ng m−3. Rare particle types require longer sampling times. We explore the instrumentation requirements and the limitations of the method for airborne measurements. Reducing the size resolution of the particle data increases time resolution with only a modest increase in uncertainty. The principal limiting factor to fast time response concentration measurements is statistically relevant sampling across the size range of interest, in particular, sizes D \u3c 0.2 µm for accumulation-mode studies and D \u3e 2 µm for coarse-mode analysis. Performance is compared to other airborne and ground-based composition measurements, and examples of atmospheric mineral dust concentrations are given. The wealth of information afforded by composition-resolved size distributions for all major aerosol types represents a new and powerful tool to characterize atmospheric aerosol properties in a quantitative fashion

    Transcription profiling reveals potential mechanisms of dysbiosis in the oral microbiome of rhesus macaques with chronic untreated SIV infection.

    Get PDF
    A majority of individuals infected with human immunodeficiency virus (HIV) have inadequate access to antiretroviral therapy and ultimately develop debilitating oral infections that often correlate with disease progression. Due to the impracticalities of conducting host-microbe systems-based studies in HIV infected patients, we have evaluated the potential of simian immunodeficiency virus (SIV) infected rhesus macaques to serve as a non-human primate model for oral manifestations of HIV disease. We present the first description of the rhesus macaque oral microbiota and show that a mixture of human commensal bacteria and "macaque versions" of human commensals colonize the tongue dorsum and dental plaque. Our findings indicate that SIV infection results in chronic activation of antiviral and inflammatory responses in the tongue mucosa that may collectively lead to repression of epithelial development and impact the microbiome. In addition, we show that dysbiosis of the lingual microbiome in SIV infection is characterized by outgrowth of Gemella morbillorum that may result from impaired macrophage function. Finally, we provide evidence that the increased capacity of opportunistic pathogens (e.g. E. coli) to colonize the microbiome is associated with reduced production of antimicrobial peptides
    corecore