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Abstract

The role of Group IVA cytosolic phospholipase A2 (cPLA2α) activation in regulating macrophage transcriptional
responses to Candida albicans infection was investigated. cPLA2α releases arachidonic acid for the production of
eicosanoids. In mouse resident peritoneal macrophages, prostacyclin, prostaglandin E2 and leukotriene C4 were
produced within minutes of C. albicans addition before cyclooxygenase 2 expression. The production of TNFα was
lower in C. albicans-stimulated cPLA2α+/+ than cPLA2α-/- macrophages due to an autocrine effect of prostaglandins
that increased cAMP to a greater extent in cPLA2α+/+ than cPLA2α-/- macrophages. For global insight, differential gene
expression in C. albicans-stimulated cPLA2α+/+ and cPLA2α-/- macrophages (3 h) was compared by microarray.
cPLA2α+/+ macrophages expressed 86 genes at lower levels and 181 genes at higher levels than cPLA2α-/-

macrophages (≥2-fold, p<0.05). Several pro-inflammatory genes were expressed at lower levels (Tnfα, Cx3cl1, Cd40,
Ccl5, Csf1, Edn1, CxCr7, Irf1, Irf4, Akna, Ifnγ, several IFNγ-inducible GTPases). Genes that dampen inflammation
(Socs3, Il10, Crem, Stat3, Thbd, Thbs1, Abca1) and genes involved in host defense (Gja1, Csf3, Trem1, Hdc) were
expressed at higher levels in cPLA2α+/+ macrophages. Representative genes expressed lower in cPLA2α+/+

macrophages (Tnfα, Csf1) were increased by treatment with a prostacyclin receptor antagonist and protein kinase A
inhibitor, whereas genes expressed at higher levels (Crem, Nr4a2, Il10, Csf3) were suppressed. The results suggest
that C. albicans stimulates an autocrine loop in macrophages involving cPLA2α, cyclooxygenase 1-derived
prostaglandins and increased cAMP that globally effects expression of genes involved in host defense and
inflammation.

Citation: Suram S, Silveira LJ, Mahaffey S, Brown GD, Bonventre JV, et al. (2013) Cytosolic Phospholipase A2α and Eicosanoids Regulate Expression of
Genes in Macrophages Involved in Host Defense and Inflammation. PLoS ONE 8(7): e69002. doi:10.1371/journal.pone.0069002

Editor: Alix Therese Coste, Institute of Microbiology, Switzerland

Received March 4, 2013; Accepted June 3, 2013; Published July 25, 2013

Copyright: © 2013 Suram et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from the National Institutes of Health HL34303 (to C.C.L., R.C.M. and D.L.B), DK54741 (to J.V.B.), GM5322
(to D.L.W.) and the Wellcome Trust (to N.A.R.G. and G.D.B.). The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

* E-mail: lesliec@njhealth.org

Introduction

The oxygenated metabolites of arachidonic acid comprise a
large family of bioactive lipids that have diverse roles in
regulating homeostatic processes and in modulating
inflammation and immune responses [1]. The production of
eicosanoids is initiated by the release of arachidonic acid that
is metabolized through the 5-lipoxygenase pathway to
leukotrienes and by cyclooxygenases (COX) to prostanoids
and thromboxane. Eicosanoids are secreted and act locally in
an autocrine or paracrine fashion through interaction with

specific G-protein coupled receptors (GPCR) to exert their
biological effects [2–4]. Leukotrienes are pro-inflammatory
mediators but prostaglandins (PG) have pro- and anti-
inflammatory effects depending on the cell type-specific GPCR-
dependent signal transduction pathways that are triggered [1].

Macrophages are an important source of eicosanoids that
are produced rapidly in response to stimulation by bacterial and
fungal pathogens [5–8]. Resident tissue macrophages are a
first line of defense against invading microorganisms that are
recognized by pattern recognition receptors that engage
microbial surface structures. We have used resident mouse
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peritoneal macrophages (RPM) to study the regulation of
eicosanoid production in response to the model fungal agonist
zymosan, cell wall particles of Saccharomyces cerevisiae
[9–11]. Zymosan stimulates activation of the Group IVA
cytosolic phospholipase A2 (cPLA2α), the first key regulatory
enzyme in RPM that releases arachidonic acid for eicosanoid
production [12]. To identify the pattern recognition receptors on
RPM that mediate cPLA2α activation and eicosanoid
production, the more medically relevant fungal pathogen
Candida albicans was studied [13,14]. We found a role for
dectin-1 and -2 that engage β-glucan and mannans on the C.
albicans cell wall that, together with a MyD88-dependent
pathway, promote cPLA2α activation and eicosanoid production
[13,14]. Although C. albicans is a normal commensal organism,
it is an opportunistic pathogen that is a leading cause of
mycoses particularly in the immunocompromised and critically
ill [15]. There has been considerable interest in elucidating the
mechanisms regulating immune responses to C. albicans
because of the prevalence of fungal infections [16].

Eicosanoids affect immune regulation by modulating cellular
differentiation, phagocytic potential, migration and cytokine/
chemokine production [5,17–19]. The types and balance of
cytokines produced during the early responses of innate
immune cells to infection influence the macrophage phenotype,
differentiation of lymphocytes and adaptive immune responses
[20–23]. In this study, we compared cPLA2α+/+ and cPLA2α-/-

RPM to investigate the functional consequences of cPLA2α
activation and the effect of endogenously produced
eicosanoids on gene expression in response to C. albicans.
Our results demonstrate that C. albicans-stimulated cPLA2α
activation and the early production of prostanoids promotes an
autocrine pathway in RPM that affects the expression of genes
involved in host defense and to dampen inflammation.

Materials and Methods

Ethics Statement
The work with mice in this study was approved by the

National Jewish Health Institutional Animal Care and Use
Committee (IACUC) and conducted in accordance with their
guidelines.

Materials
DMEM was from Cambrex BioScience. FBS (Gemini Bio-

Products) was heat inactivated at 56°C for 30 min before use.
Human serum albumin was obtained from Intergen. Polyclonal
antibodies to murine COX1 and COX2, the protein kinase A
inhibitor H-89, the COX inhibitor NS-398, the IP receptor
antagonist CAY10441, the IP receptor agonist iloprost and the
EP2 receptor agonist butaprost were from Cayman Chemical
Co. Antibodies to β-actin were from Cell Signaling. The stable
cAMP analogue 8-Br-cAMP was from Santa Cruz
Biotechnology, Inc. The mouse TNFα cytoset ELISA kit was
from Invitrogen. cAMP was quantified in macrophage lysates
using the cAMP Biotrak EIA (non-acetylation protocol) from GE
Healthcare according to the manufacturer’s protocol. RNA was
isolated using the on-column DNase treatment with the
RNeasy mini kit from Qiagen.

Mouse Strains
Pathogen-free Balb/c mice were obtained from Harlan

Sprague Dawley. cPLA2α-/- mice were generated as previously
described and backcrossed onto a Balb/c background for 10
generations [24]. The TLR4 mutant mouse strain C3H/HeJ and
control strain C3H/HeOuJ were obtained from The Jackson
Laboratory. TLR2-/- (C57BL/6) and MyD88-/- mice (C57BL/
6/129) were generated as previously described [25]. MyD88+/-

C57BL/6/129 mice were crossed to generate MyD88-/- mice
and MyD88+/+ littermate controls. C57BL/6 control mice were
obtained from The Jackson Laboratory. Dectin-1-/- mice
(129sv/ev) were produced as described previously [26], and
age and strain matched controls obtained from Taconic. Mice
were used for macrophage isolation at 7-12 wk of age.

C. albicans Strains and Culture
C. albicans (ATCC 10261) was used for experiments unless

otherwise indicated. The C. albicans Capmr1∆ null mutant
defective in glycosylation, the re-integrant strain (Capmr1∆
+CaPMR1) and parental wild-type control were generated as
previously described [27]. C. albicans strains were grown on
Sabouraud dextrose agar plates and maintained at 4°C.

RPM Infection
The day before the experiment, the strains were streaked

onto fresh Sabouraud dextrose agar plates and incubated
overnight at 37°C. C. albicans was scraped from the plate and
washed twice in endotoxin-free PBS. Live C. albicans at a
multiplicity of infection (moi) of 2 was used for all experiments.

RPM Isolation
RPM were obtained by peritoneal lavage as previously

described [13]. Cells were plated at a density of 5 x 105/cm2 (48
well plate) and incubated for 2 h at 37°C in a humidified
atmosphere of 5% CO2 in air. After washing the cultures to
remove non-adherent cells, the adherent macrophages were
incubated in DMEM containing 10% heat inactivated FBS, 100
µg/ml streptomycin sulfate, 100 units/ml penicillin G, 0.29
mg/ml glutamine for 16-18 h at 37°C. The cells were washed
twice with serum-free DMEM containing 0.1% human serum
albumin (stimulation medium) and then infected with C.
albicans.

C. albicans Uptake and Killing assays
The ability of cPLA2α+/+ and cPLA2α-/- RPM to bind and

internalize C. albicans was compared using an in vitro
recognition assay as described previously with modifications
[26]. RPM were incubated for 30 min with Alex Fluor 488-
labeled C. albicans (m.o.i. 10) prepared as described [28].
RPM were washed 3 times with stimulation media and
incubated further for 1 h. Cells were lysed with 3% Triton X-100
and the fluorescence intensity was measured. The killing assay
involved incubating cPLA2α+/+ and cPLA2α-/- RPM with C.
albicans (m.o.i. 5) for 30 min, followed by 3 washes and further
incubation for 1 and 4 h. Cells were lysed with 3% Triton X-100
and the lysates streaked on Sabouraud dextrose agar plates to
measure colony forming units (CFU).

cPLA2α Regulates Gene Expression in Macrophages
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Cytokine Measurement
The culture medium was removed at the indicated times after

infection of RPM with C. albicans and stored at -80°C for
cytokine measurement and eicosanoid analysis (see below).
TNFα in the culture medium was quantified by ELISA and by
Luminex assay, which gave similar results.

Mass Spectrometry Eicosanoid Analysis
The samples of culture media were thawed and mixed with

an equal volume of cold methanol. Just prior to analysis they
were diluted in water to a final methanol concentration of <15%
and then extracted using a solid phase extraction cartridge
(Strata Polymeric Reversed Phase 60 mg/ml, Phenomenex,
Torrance, CA). The eluate (1 ml of methanol) was dried and
reconstituted in 75 µl of HPLC solvent A (8.3 mM acetic acid
buffered to pH 5.7 with NH4OH) and 25 µl of solvent B
(acetonitrile/methanol, 65/35, v/v). An aliquot of each sample
(50 µl) was injected into an HPLC and metabolites separated
on a C18 column (Ascentis 15 cm x 2.1 mm, 5 µm, Supelco)
eluted at a flow rate of 200 µl/min with a linear gradient from
25% to 75% solvent B in 13 min then increased to 98% in 2
min and held for 11 min. The HPLC system was directly
interfaced into the electrospray ionization source of a triple
quadrapole mass spectrometer (Sciex API 3000, PE-Sciex,
Thornhill Ontario, Canada). Mass spectrometric analyses were
performed in the negative ion mode using multiple reaction
monitoring (MRM) for specific analytes. Deuterated internal
standards were detected using the following transitions: m/z
355→275 for [d4]PGE2, m/z 373→167 for [d4]6-keto-PGF1α, mz
311→213 and mz 629→272 for [d4]LTC4. Eicosanoids were
detected centered in specific retention time (RT) windows using
the following transitions and limits of quantitation: PGE2, RT 9.3
min, m/z 351→271, 8 pg/ml; 6-keto-PGF1α, RT 6.4 min, m/z
369→163, 40 pg/ml and LTC4, RT 10.1 min, m/z 624→272, 40
pg/ml. MRM chromatograms using a similar analytic scheme
have previously been described [29]. Quantitative results were
calculated by determining the ratio of the signal of an analyte to
that for an internal standard and comparing to a standard
isotope dilution curve [30].

Western Blots
To prepare lysates for western blots, cell monolayers were

washed twice in ice cold PBS and then scraped in lysis buffer:
50 mM Hepes, pH 7.4, 150 mM sodium chloride, 10% glycerol,
1% Triton X-100, 1 mM EGTA, 1 mM EDTA, 200 µM sodium
vanadate, 10 mM tetrasodium pyrophosphate, 100 mM sodium
fluoride, 300 nM p-nitrophenyl phosphate, 1 mM
phenylmethylsulfonylfluoride, 10 µg/ml leupeptin, and 10 µg/ml
aprotinin. After incubation on ice for 30 min, lysates were
centrifuged at 15,000 rpm for 15 min and protein concentration
in the supernatant determined by the bicinchoninic acid
method. Lysates were boiled for 5 min after addition of
Laemmli electrophoresis sample buffer, and then proteins were
separated on 10% SDS-polyacrylamide gels. After transfer to
nitrocellulose membrane, samples were incubated in blocking
buffer (20 mM Tris-HCl, pH 7.6, 137 mM NaCl, 0.05% Tween
(TTBS)) containing 5% nonfat milk for 1 h, and then incubated
overnight at 4°C with primary antibodies in TTBS. The

membranes were incubated with anti-rabbit IgG horseradish
peroxidase antibody (1:5000) in TTBS for 30 min at room
temperature. The immunoreactive proteins were detected using
the Amersham ECL system.

Microarray Analysis
RPM cultured and stimulated with C. albicans for 3 h as

described above were washed twice with endotoxin-free PBS
and total RNA isolated. Template RNA quality was assessed
with the Agilent Bioanalyzer 2100 and an Agilent Nano RNA
6000 kit per the Agilent protocol. RNA quality ranged from a
RNA Integrity Number (RIN) of 8.1 to 10.0. An Agilent Quick
Amp Labeling kit was used to generate Cy3 labeled RNA.
Yields of 3.7-6.8 µg were obtained with specific activities of
7.5-9.4 pmol/µg. Fragmentation followed by hybridization was
performed (Agilent Gene Expression Hybridization Kit) on
Agilent Whole Mouse Genome kit 4x44 microarray slides at
65°C for 16 hr. Slides were washed according to the Agilent
Quick Amp Labeling Kit protocol and scanned immediately on
an Agilent G2505B scanner. The microarray results were log
base 2 transformed and data normalization was applied using
the 75% percentile shift method to adjust for experimental
variability. Boxplots of resulting expression were examined for
consistency and all quality control metrics were within
acceptable ranges. Filtering was performed to exclude gene
expression probes that did not reach a relative expression
value of ≥35 across all groups. Microarray samples were
grouped by unstimulated cPLA2α-/- RPM, C. albicans-stimulated
cPLA2α-/- RPM, unstimulated cPLA2α+/+ RPM and C. albicans-
stimulated cPLA2α+/+ RPM. Differences between C. albicans-
stimulated cPLA2α+/+ and C. albicans-stimulated cPLA2α-/- RPM
were compared using Student’s unpaired t-tests, while
comparisons for unstimulated cPLA2α+/+ and C. albicans-
stimulated cPLA2α+/+ RPM were evaluated using paired t-tests.
For evaluating differential gene expression between C.
albicans-stimulated cPLA2α+/+ and C. albicans-stimulated
cPLA2α-/- RPM, genes that were not significantly affected by C.
albicans treatment (p<0.05) in both cPLA2α+/+ and cPLA2α-/-

RPM were excluded from the analysis. All processing and
analyses were performed in Genespring GX 11.5 (Agilent
Technologies, Santa Clara, CA). The data were analyzed using
the DAVID bioinformatics resource to evaluate the functional
clustering of genes [31]. The complete microarray results can
be accessed in the Gene Expression Omnibus (GEO;
www.ncbi.nlm.nih.gov/geo/) of the National Center for
Biotechnology Information using the GEO Series accession
number GSE46533.

Real-time PCR
RPM were isolated from cPLA2α+/+ and cPLA2α-/- mice,

cultured as described above, and RNA isolated at 1, 3 and 6 h
after stimulation with C. albicans. RNA concentration and purity
were determined by UV spectrophotometry, and RNA integrity
verified using an Agilent Bioanalyzer 2100. cDNA was
synthesized from RNA (200 ng) using RT2 First Strand kit (SA
Biosciences). Real-time PCR was performed using RT2 qPCR
Mastermix and custom-made RT2 Profiler PCR Array System
according to the manufacturer’s protocol using the

cPLA2α Regulates Gene Expression in Macrophages
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StepOnePlus Real-Time PCR System (Applied Biosystems).
PCR arrays in a 96-well format were used containing pre-
validated primers tested for efficiency (SA Biosciences). The
RT2 Profiler PCR Array System included a reverse transcription
control preloaded into the primer buffer of the RT2 First Strand
cDNA synthesis kit that measured the relative efficiency of the
reverse transcription for all the samples. A genomic DNA
control and a positive PCR control were also included in the
system. The RT2 Profiler PCR Array data were normalized to
two housekeeping genes Gapdh and Hprt and the relative gene
expression level (2^(-ΔCt) was calculated using the formula
ΔCt= Ct (gene of interest)-Ct (housekeeping gene). The data
were analyzed on the PCR array data analysis SA Biosciences
web portal (http://pcrdataanalysis.sabiosciences.com/pcr/
arrayanalysis.php).

Real-time PCR was also performed with cDNA synthesized
with random hexamer primers (Superscript III polymerase,
Invitrogen) using TaqMan fast universal PCR master mix.
TaqMan assay probes used were:

Csf1 (1Mm00432686_m1),
Csf3 (Mm00438335_g1),
Tnf� (Mm99999068_m1),
Il10 (Mm00439614_m1),
Nr4a2 (Mm00443060_m1),
Crem (Mm00516346_m1),
Stat3 (Mm01219775_m1) and

Gapdh (Mm99999915_g1). The housekeeping gene Gapdh
and a calibrator containing mRNA from unstimulated cPLA2α+/+

and cPLA2α-/- RPM were used for normalization. Threshold
cycle values (CT) were determined and used for ∆∆CT analysis
of gene expression [32].

Results

The production of eicosanoids by RPM is initiated by the
activation of cPLA2α, which occurs rapidly in response to C.
albicans or zymosan due to post-translational processes
[9–12]. The major arachidonic acid metabolites produced by
RPM in response to C. albicans and zymosan are PGI2, PGE2,
and LTC4, and their production is dependent on cPLA2α
activation to provide arachidonic acid substrate [12–14]. As
shown in Figure 1A, eicosanoids were produced most rapidly
during the first 30 min after C. albicans addition. Prostaglandin
production occurred before the increase in COX2 expression
stimulated by C. albicans, which was detected 3 h after
addition of C. albicans but not at 1 h (Figure 1B). In contrast,
COX1 was constitutively expressed in RPM and expression
was not affected by C. albicans infection. Microarray data also
confirmed that COX2 expression was very low compared to
COX1 in unstimulated cPLA2α+/+ RPM, but there was a
significant increase in expression of COX2 (Ptgs2) but not
COX1 (Ptgs1) in cPLA2α+/+ RPM treated with C. albicans for 3 h
(Table 1). The results suggest that cPLA2α-mediated release of
arachidonic acid couples to COX1 for early production of
prostaglandins.

Role of cPLA2α in regulating TNFα production
The initial focus was to determine if cPLA2α activation

regulates TNFα production in C. albicans-stimulated RPM
since prostaglandins can suppress production of this pro-
inflammatory cytokine as we reported for L. monocytogenes-
stimulated RPM [8,33,34]. First we investigated if TNFα
production was mediated by similar PRRs that promote cPLA2α
activation in response to C. albicans. We reported that dectin-1
and MyD88, but not TLR2 or TLR4, play a role in the activation
of cPLA2α in response to C. albicans [13,14]. We found that
production of TNFα 6 h after addition of C. albicans was
reduced in dectin-1-/- and MyD88-/- RPM compared to dectin-1+/+

and MyD88+/+ RPM (Figure 2A and 2B). The requirement for
MyD88 suggested a role for TLRs. A comparison of RPM from
TLR2+/+ and TLR2-/- mice showed that TNFα production was not
mediated by TLR2 (data not shown). However, TLR4 partially
contributed to C. albicans-mediated TNFα production, which
was reduced by approximately 50% in TLR4-/- RPM (Figure
2C). Since mannans of C. albicans cell wall engage TLR4 we
tested the ability of the C. albicans glycosylation mutant
(Capmr1∆ null mutant), which is devoid of phosphomannans
and has defective N- and O-linked mannans, to stimulate TNFα
production in TLR4+/+ and TLR4-/- RPM [27,35]. Compared to
TLR4+/+ RPM treated with wild type C. albicans, TNFα
production in TLR4+/+ RPM treated with Capmr1∆ null mutant
was reduced by about 50% similar to the level observed in
TLR4-/- RPM stimulated with wild type C. albicans (Figure 2C).
TNFα production by TLR4+/+ RPM was restored when the
CaPMR1 gene was reintegrated into the mutant strain
(Capmr1∆+CaPMR1). Therefore PRRs on RPM that engage
cell wall mannans and β-glucans contribute to TNFα
production. Since cPLA2α+/+ and cPLA2α-/- RPM were used to
determine the role of cPLA2α in regulating gene expression in
response to C. albicans (as described below), we compared
their levels of expression of PRRs involved in C. albicans
recognition. Microarray data showed that cPLA2α+/+ and
cPLA2α-/- RPM express similar levels of PRRs Clec7a
(dectin-1), Clec4n (dectin-2), Tlr4 and Tlr2 (Gene Expression
Onmibus, www.ncbi.nlm.nih.gov.geo/, GSE46533). We also
compared the ability of cPLA2α+/+ and cPLA2α-/- RPM to bind
and internalize C. albicans. Results of a recognition assay
demonstrated no differences in the uptake of Alex Fluor-
labeled C. albicans by cPLA2α+/+ and cPLA2α-/- RPM (data not
shown). A C. albicans killing assay was also carried out by
incubating RPM with C. albicans and then measuring the
recovery of CFU from RPM after further incubation for 1 and 4
h. There were no differences in CFU recovered at 1 h in WT
and cPLA2α-/- RPM. However at 4 h there was a small but
significantly higher level of C. albicans CFU recovered from
cPLA2α-/- RPM. In three independent experiments the CFU in
cPLA2α-/- RPM was 172%±32%, p<0.002 compared to cPLA2α
+/+ RPM (100%). The results suggest that the cPLA2α+/+ RPM
have a slightly greater ability to kill internalized C. albicans.

The role of cPLA2α activation and prostanoid production in
regulating the production of TNFα in response to C. albicans
was investigated by comparing RPM from cPLA2α+/+ and
cPLA2α-/- mice, and by treating the macrophages with a
cyclooxygenase inhibitor NS398 (Figure 3A). The production of
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Figure 1.  Time course of C. albicans-stimulated eicosanoid production.  (A) RPM were incubated with C. albicans for the
indicated times. The culture medium from unstimulated (open squares) or C. albicans-stimulated (closed squares) RPM was
analyzed for eicosanoids by mass spectrometry. The data are the average of triplicate samples (±S.D.) from a representative
experiment. (B) Cell lysates from unstimulated RPM (US) or RPM stimulated with C. albicans (CA) for 1, 3 and 6 h were analyzed
for COX1 and COX2 expression by Western blotting. Sample loading was evaluated by probing with antibodies to β-actin.
doi: 10.1371/journal.pone.0069002.g001

Figure 2.  Role of PRRs in regulating C. albicans-stimulated TNFα production.  Wild type (open bars) and Dectin-1-/- (A),
MyD88-/- (B) and TLR4-/- (C) RPM (shaded bars) were incubated with C. albicans for 6 h. In panel C, RPM were stimulated with the
parental wild type C. albicans (WT), the Capmr1∆ null mutant and the re-integrant strain (Capmr1∆+CaPMR1). The data are the
average of 3 experiments ±S.E. (*p<0.05). Levels of TNFα in the culture medium were determined by ELISA.
doi: 10.1371/journal.pone.0069002.g002
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TNFα was lower in cPLA2α+/+ RPM compared to cPLA2α-/- RPM
measured 6 h after C. albicans addition. NS398 treatment
enhanced TNFα production in cPLA2α+/+ but not in C. albicans-
stimulated cPLA2α-/- RPM suggesting that prostanoids suppress
TNFα expression. NS398 completely blocked production of
PGE2 and PGI2 in RPM stimulated with C. albicans for 6 h (data
not shown), and at the concentration used (10 µM) inhibits both
murine COX1 and COX2 [36]. To further investigate the role of
prostanoids in the autocrine regulation of TNFα production,
RPM were treated with agonists for the PGE2 receptor EP2

(butaprost) and the PGI2 receptor IP (iloprost) (Figure 3B).
Microarray data showed that RPM express the IP receptor
(Ptgir), the EP2 (Ptger2) and EP4 (Ptger4) receptors (Table 1).
The agonists had no effect on the levels of TNFα produced by
cPLA2α+/+ RPM that produce endogenous prostaglandins in
response to C. albicans (Figure 3B). However, the higher level

Table 1. Relative expression values of cyclooxygenases
and prostaglandin receptors in RPM.

Official Symbol Entrez_Gene_ID Unstimulated C. albicans-treated
  Mean Expression Mean Expression
Ptgs2* 19225 67 ± 14 11243 ± 2938
Ptgs1 19224 4694 ± 2731 2027 ± 655
Ptger2 19217 204 ± 18 177 ± 65
Ptger4 19219 257 ± 24 248 ± 50
Ptgir* 19222 589 ± 217 1168 ± 179

cPLA2α+/+ RPM were stimulated with C. albicans for 3 h and gene expression
determined by microarray analysis. The * denotes a significant (p<0.05) increase in
expression by C. albicans treatment.

of TNFα produced by C. albicans-stimulated cPLA2α-/- RPM,
which do not produce endogenous prostaglandins, was
reduced by the receptor agonists to the level produced by
cPLA2α+/+ RPM. The data suggest that prostaglandins acting
through the EP2 and IP receptors suppress TNFα production
since it is enhanced by inhibiting prostaglandin production in C.
albicans-stimulated cPLA2α+/+ RPM and suppressed by
prostaglandin receptor agonists in cPLA2α-/- RPM.

The EP2 and IP receptors mediate increases in cAMP, which
is implicated in regulating Tnfα gene expression [37,38]. As
shown in Figure 4A, the stable cAMP analogue 8-Br-cAMP
suppressed C. albicans-stimulated TNFα production in
cPLA2α-/- RPM, as observed for the prostanoid receptor
agonists, but had no effect on the lower level of TNFα
produced by cPLA2α+/+ RPM. The results suggest that
prostaglandins produced by C. albicans-stimulated cPLA2α+/+

RPM act in an autocrine manner through prostaglandin
receptors that increase cAMP to suppress TNFα production.
This is supported by results showing that levels of cAMP were
higher in cPLA2α+/+ RPM than cPLA2α-/- RPM within 5-30 min
after C. albicans addition (Figure 4B).

Effect of C. albicans on gene expression in RPM
We next determined the effect of C. albicans on global gene

expression in RPM by microarray and then evaluated how
cPLA2α activation modulates the transcriptional response. C.
albicans stimulated an increase in expression of 427 genes
(≥4.0-fold, p<0.05, n=3) in cPLA2α+/+ Balb/c RPM at 3 h.
Relative expression levels for these genes and the fold change
in response to C. albicans are shown in Table S1A. Many of
the genes that increase in response to C. albicans represent

Figure 3.  Role of prostaglandins in regulating C. albicans-stimulated TNFα production.  cPLA2α+/+ and cPLA2α-/- RPM were
incubated with (A) NS-398 (10 µM), or (B) iloprost (1 µM) or butaprost (10 µM) for 30 min followed by incubation with C. albicans for
6 h. Levels of TNFα in the culture medium were determined by ELISA. The data are the average of 3 experiments ±S.E. (*p<0.05).
doi: 10.1371/journal.pone.0069002.g003
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the common host-response that is induced in many cell types
by a variety of infectious agents [39]. The data were analyzed
using the DAVID bioinformatics resource to evaluate the
functional clustering of genes that were increased in RPM in
response to C. albicans [31]. The most highly enriched clusters
contained genes in apoptosis, cytokines, wound and
inflammatory responses, regulation of phosphorylation and
protein kinase activity, cell motion, vascular development,
regulation of cytokine production, MAP kinase phosphatase
activity, regulation of transcription and growth factor activity
(Table 2). Csf3 was the most highly induced gene by C.
albicans (>600-fold) (Table S1A). The cytokine CSF3 regulates
the production and function of neutrophils and is important for
host defense against C. albicans [40,41]. As discussed below,
the expression of Csf3 was regulated by cPLA2 activation.
There were 110 genes down-regulated in RPM at 3 h by C.
albicans (≥4-fold, p<0.05, n=3) (Table S1B). The clusters for
the down-regulated genes had very low enrichment scores
compared to the up-regulated genes when subject to DAVID
analysis (data not shown).

Genes expressed at lower levels in C. albicans-
stimulated cPLA2α+/+ than cPLA2α-/- RPM

Differential gene expression was compared in cPLA2α+/+ and
cPLA2α-/- RPM treated with C. albicans for 3 h. We chose to
study the effect of C. albicans infection on gene expression at 3
h in order to evaluate the role of cPLA2α activation and

eicosanoids in regulating early responses during the acute
phase of infection. The regulation of gene expression at later
times becomes more complicated due to autocrine effects of
the products of early response genes that promote induction of
a second wave of gene induction. In cPLA2α+/+ RPM, 86 genes
were expressed at lower levels and 181 genes at higher levels
than cPLA2α-/- RPM (≥2-fold, p<0.05, n=3) (Tables S2A and
S2B, respectively). When genes expressed at lower levels in
cPLA2α+/+ RPM were analyzed using DAVID, they grouped into
functional clusters involving GTP binding, regulation of cytokine
production/cytokine receptor interaction and regulation of
proliferation (Table 3). The expression of genes for GTP
binding proteins included several IFNγ-inducible GTPases
(guanylate binding proteins (Gbp) 1, 2, 3, 5, 6 and 7; immunity-
related GTPase family M members (Irgm) 1 and 2; IFNγ-
inducible protein (Ifi) 47 and IFNγ-inducible GTPase (Iigp) 1).
Some of these genes regulate host defense to microbial
infection although their function is poorly understood [42–45].
Several genes expressed lower in C. albicans-stimulated
cPLA2α+/+ than cPLA2α-/- RPM in the cytokine cluster (Table 3)
are pro-inflammatory such as the chemokine Cx3cl1
(fracktalkine), Cd40, Tnfα and Ifnγ [46–48]. The lower
expression of Ifnγ in cPLA2α+/+ RPM correlated with the
reduced expression of the IFNγ regulated GTPases, although
its level of expression in RPM was very low (Table S2A).
Genes for the transcription factors, interferon regulatory factors
(Irf) 1 and Irf4 (Cytokine cluster), and the AT-hook transcription

Figure 4.  cAMP production is enhanced by cPLA2α activation and suppresses TNFα production.  (A) cPLA2α+/+ and cPLA2α-/-

RPM were incubated with 8-Br-cAMP (1 mM) for 30 min followed by incubation with C. albicans for 6 h. Levels of TNFα in the
culture medium were determined by ELISA. (B) cPLA2α+/+ (WT, squares) and cPLA2α-/- RPM (KO, circles) were incubated with
(closed symbols) or without (open symbols) C. albicans (CA) for the indicated times. Cell lysates were processed for cAMP
determinations as described in Experimental Design. The data are the average of 3 experiments ±S.E. (*p<0.05). In panel B, CA
treated WT vs. CA treated KO at 5 and 15 min are compared for significance.
doi: 10.1371/journal.pone.0069002.g004
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factor (Akna) were also expressed at lower levels in cPLA2α+/+

than cPLA2α-/- RPM (Table S2A). AKNA promotes Cd40
expression suggesting a correlation between low expression of
Akna and Cd40 in cPLA2α+/+ RPM [49]. AKNA functions in
inflammation and cancer [50]. There was also a correlation with
the lower expression of genes for guanylate binding proteins
(Gbp) and Tnfα in cPLA2α+/+ RPM and their transcriptional
regulator Irf1 [51]. IRF transcription factors play important roles
in host defense and regulating immune responses [52].

cPLA2α+/+ RPM expressed lower mRNA levels of the
chemokine Ccl5 (Cytokine cluster), which promotes the
trafficking of cells to sites of inflammation [53]. PGE2

suppresses CCL5 production in macrophages and dendritic
cells thus dampening inflammation and immune responses
[54]. Colony stimulating factor 1 (Csf1, Cytokine cluster) was
induced to a greater extent in cPLA2α-/- RPM (10-fold) than
cPLA2α+/+ RPM (3-fold) (Table S2A). It promotes macrophage-
lineage development but also recruits myeloid cells during

Table 2. Functional annotation clusters of genes induced in
C. albicans-stimulated RPM.

Annotation Clusters Official Symbol

Apoptosis

Bcl2l11, Cflar, Cd24a, Chac1, Ddit4, Egin3, Epha2,

Rybp, Traf1, Traf5, Ahr, F2r, Csrnp1, Fem1b, Gzmb,

Gadd45b, Gadd45g, Id1, Il6, Jmjd6, Malt1, Myc, Niacr1,

Nfκb1, Nr4a2, Osm, Phlda1, Bnip3, Blcap, Ppp1r15a,

Srgn, Siah2, Mcl1, Trib3, Trim69, Tnf, Tnfrsf12a,

Tnfaip3, Unc5b, Zc3h12a

Cytokines, Response to
wounding, and
Inflammatory response

Areg, Cd24a, Kdm6b, Bmp2, Bmp6, Ccl2, Ccl3, Ccl4,

Ccl7, Ccr1, Cxcl1, Cxcl2, Cxcl3, Csf2, Csf3, F2r,

F3,Gdf15, Gja1, Hbegf, Id3, Il1a, Il1b, Il1f6, Il10, Il23a,

Il6, Nfkbid, Olr1, Osm, Plaur, Plek, Procr, Proz, Slc7a2,

Sphk1, Tnf, Tnfsf9

Regulation of
phosphorylation and
protein kinase activity

Cd24a, Adora2a, Bmp2, F2r, Cdkn1a, Cish, Dgkg,

Dusp16, Edn1, Ereg, Gadd45b, Gadd45g, Il1b, Il6, Lrp8,

Laper1, Nrg1, Osm, Reln, Spag9, Sphk, Spry2, Socs3,

Trib3, Tnf

Cell motion
Cd24a, Epha4, Alcam, Ccr1, Cxcl2, Cxcl3, Egr2, Gja1,

Hbegf, Il1b, Lrp8, Nrg1, Nr4a2, Plau, Pdpn, Pvr, Reln,

Runx3, Zfand5, Tes, Tnf, Tnfrsf12a, Vegfa

Vascular development
Epha2, Junb, Smad7, Edn1, Efnb2, Ereg, Gja1, Hbegf,

Id1, Itgav, Il1b, Jmjd6, Pdpn, Prok2, Zfand5, Sphk1,

Socs3, Tgm2, Tnfrsf12a, Vegfa, Zc3h12a, Zfp36l1

Regulation of cytokine
production

Cd24a, Cd83, Adora2a, Adora2b, F2r, Edn1, Ereg, Fst,

Inhbb, Irf4, Il1a, Il1b, Il10, Il6, Nfκb1, Prok2, Rel, Srgn,

Sphk1, Tnf

MAP kinase
phosphatase activity

Dusp1, Dusp2, Dusp4, Dusp8, Dusp10, Dusp14,

Dusp16

Regulation of
transcription from RNA
polymerase II promoter

Eaf1, Kdm6b, Mxi1, Pou3f1, Rybp, Skil, Atf4, Ahr,

Bmp2, Csrnp1, Egr1, Egr2, Fosl1, Hes1, Inhba, Id1, Id2,

Id3, Irf4, Il6, Jarid2, Med13, Myc, Nfκb1, Nufip1, Nr4a1,

Nr4a2, Nr4a3, Osm, Plagl1, Pbx1, Sap30, Tnf, Vegfa

Growth factor activity
Areg, Bmp2, Bmp6, Cxcl1, Csf2, Csf3, Ereg, Gdf15,

Hbegf, Inhba, Inhbb, Il1b, Il6, Vegfa

Genes expressed at higher levels (427 genes, ≥4-fold, <0.05) in C. albicans-
stimulated cPLA2α+/+ RPM were analyzed using DAVID bioinformatics resource.

inflammation and infection, and promotes their survival [55].
Another pro-inflammatory gene expressed at lower levels in
cPLA2α+/+ RPM was the vasoactive peptide endothelin 1 (Edn1,
Regulation of proliferation cluster), which stimulates myeloid
and mast cells at sites of inflammation [56] (Table S2A).
Overall the results implicate cPLA2α activation and eicosanoid
production in suppressing the expression of pro-inflammatory
genes, and transcription factors that regulate their expression.

We corroborated the microarray results by real-time PCR for
representative genes expressed lower in cPLA2α+/+ than
cPLA2α-/- RPM. Their expression was preferentially enhanced
by C. albicans in cPLA2α-/- RPM compared to cPLA2α+/+ RPM
suggesting that products of cPLA2α activation suppress their
expression (Figure 5). Results of real time PCR showed that
expression of these genes was transient in cPLA2α-/- RPM
occurring maximally 3 h after stimulation with C. albicans.

Genes expressed at higher levels in C. albicans-
stimulated cPLA2α+/+ than cPLA2α-/- RPM

A larger number of genes were expressed at higher levels in
cPLA2α+/+ RPM than cPLA2α-/- RPM (181 genes, ≥2-fold,
p<0.05, n=3) (Table S2B). From DAVID analysis, genes
clustered in functional groups involving vascular development,
embryonic morphogenesis, sexual reproduction, response to
wounding, inflammatory and defense responses, growth factors
and growth factor activity, DNA binding and transcription
regulation, and disulfide bond (Table 4). Several genes in these
clusters are associated with cancer development consistent
with a role for prostaglandins in promoting carcinogenesis
[57,58]. These include the Eph receptor A2 tyrosine kinase
(EphA2, Vascular development cluster), the epidermal growth
factor receptor (EGFR) ligands epiregulin (Ereg) and
amphiregulin (Areg) (Growth factor cluster), the
transmembrane glycoprotein podoplanin (Pdpn) and its
transcriptional regulator the homeobox protein Prox1 (Vascular
development cluster), the chemokine receptor 7 (CxCr7,
Disulfide bond cluster), matrix metalloproteinase 13 (Mmp13,
Embryonic morphogenesis cluster) and its transcriptional
regulators Runx2 and nuclear receptor subfamily 4, group A,
member 2 (Nr4a2). These genes expressed at higher levels in

Table 3. Functional annotation clusters of genes expressed
at lower levels in C. albicans-stimulated cPLA2α+/+ than
cPLA2α-/- RPM.

Annotation Clusters Official Symbol

GTP binding
Rab33A, Rasd2, Gbp1, Gbp2, Gbp3, Gbp5, Gbp6,

Gbp7, Irgm1, Irgm2, Ifi47, Iigp1, Ak4

Regulation of cytokine
production, Cytokine
receptor interaction

Cd40, Ccl5, Cx3cl1, Csf1, Infg, Irf1, Irf4, Il15ra,

Ticam2, Il20rb, Tnfrsf14, Tnf

Regulation of proliferation
Cd40, Adm, Csf1, Edn1, Igf1, Infg, Il20rb, Lst1, Plau,

Smo, Tnfrsf14, Tnf

Genes expressed at lower levels (86 genes, ≥2-fold, <0.05) in cPLA2α+/+ than
cPLA2α-/- RPM stimulated for 3 h with C. albicans were analyzed using DAVID
bioinformatics resource.
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cPLA2α+/+ RPM promote angiogenesis, tumor growth and
invasion, and are regulated by prostaglandins and cAMP
[59–66].

Of particular interest were the large number of genes
expressed at higher levels in C. albicans-stimulated cPLA2α+/+

 RPM that function to dampen inflammation. C. albicans
induced high expression of suppressor of cytokine signaling 3
(Socs3, Vascular development and Embryonic morphogenesis
clusters) in cPLA2α+/+ RPM (16-fold) and to a lesser extent in
cPLA2α-/- RPM (6-fold) (Table 4, Table S2B). SOCS proteins

Figure 5.  Time course of expression of genes expressed at lower levels in C. albicans-stimulated cPLA2α+/+ than cPLA2α-/-

RPM.  cPLA2α+/+ (WT, circles) and cPLA2α-/- (KO, triangles) RPM were incubated with (CA) or without (US) C. albicans for the
indicated times. RNA was isolated and gene expression determined by real-time PCR using the RT2 Profiler PCR Array System (SA
Bioscience) as described in Experimental Design. The data were normalized to the housekeeping genes Gapdh and Hprt. The
results are the average of 3 experiments ±S.E. Gene expression in C. albicans infected WT at 3 h was compared to C. albicans
infected KO at 3 h to determine significance (*p<0.05).
doi: 10.1371/journal.pone.0069002.g005
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function as negative feedback inhibitory pathways to control
immune cell activation and inflammation [67]. Socs3
expression is also regulated by STAT3 (Table 4, Sexual
reproduction and response to wounding clusters), which was
induced 4-fold in C. albicans-stimulated cPLA2α+/+ RPM but not
significantly affected in cPLA2α-/- RPM (Table S2B). One of the
most differentially expressed genes was Il10 (Embryonic
morphogenesis cluster) that was induced 78-fold by C. albicans
cPLA2α+/+ RPM and 7-fold in cPLA2α-/- RPM (Table 4, Table
S2B). The expression of Il10 is regulated in macrophages by
the transcription factor PBX1 [68], also expressed at higher
levels in C. albicans-stimulated cPLA2α+/+ than cPLA2α-/- RPM.
The anti-inflammatory response (AIR) in macrophages induced
by IL10 is mediated by STAT3 through induction of the helicase
family co-repressor, Strawberry notch homologue 2 (Sbno2)
[69–71]. Expression of Sbno2 (Table 4, DNA binding,
Transcription regulation cluster) was increased in C. albicans-
stimulated cPLA2α+/+ RPM but not in cPLA2α-/- RPM (Table
S2B).

Several genes implicated in suppressing Tnfα expression
were expressed at higher levels in cPLA2α+/+ than cPLA2α-/-

RPM. One of these genes, the zinc finger protein 36, C3H type-
like 1 (Zfp36l1, DNA binding cluster), was increased by C.
albicans in cPLA2α+/+ but not cPLA2α-/- RPM (Table 4, Table
S2B), and inhibits TNFα production in macrophages by
destabilizing its mRNA [72]. The cAMP responsive element
modulator (Crem, also called Icer) (Table 4, Sexual

Table 4. Functional annotation clusters of genes expressed
at higher levels in C. albicans-stimulated cPLA2α+/+ than
cPLA2α-/- RPM.

Annotation Clusters Official Symbol

Vascular development
Eph2, Chd7, Ereg, Foxc1, Gja1, Itgav, Lepr, Nus1,

Pdpn, Prox1, S1pr1, Socs3, Zfp36l1

Embryonic
morphogenesis

Eph2, Chd7, Chst11, Foxc1, Hes1, Il10, Mmp13, Pbx1,

Prox1, Socs3, Spry2, Jag2

Sexual reproduction
Bcl6, Bcl2l11, Crem, Calca, Cadm1, Ereg, Fst, Foxc1,

Jag2, Lepr, Pvrl3, Rgs2, Stat3

Response to wounding,
Inflammatory and
Defense responses

Bmp6, Cd14, Calca, Ddah2, Entpd1, Gja1, Hdac5, Il1f6,

Il10, Saa1, Saa2, Stat3, Thbd, Thbs1

Growth factors, GF
activity

Areg, Bmp6, Chst11, Csf3, Ereg, Foxc1, Gja1, Hgf,

Inhbb, Jag2

DNA binding,
Transcription regulation

Arid3b, Bcl6, Bach2, Gata2, Lhx8, Mxd1, Mxi1, Setbp1,

Thap2, Crem, Chd7, Dedd2, Foxc1, Hes1, Hdac5,

Lrrfip1, Nr4a2, Pbx1, Prox1, Runx2, Stat3, Fosl2,

Sbno2, Tshz3, Tle1, Mafb, Zfp36, Zfp36l1

Disulfide bond

Nt53, Abca1, Cd14, Cd80, Edil3, Eph2, Gpr35, Areg,

Antxr2, Bmp6, Calca, Cacna1d, Cadm1, Cbln3, CxCr7,

Csf3, Entpd1, Ereg, Fst, Gja1, Havcr2, Hgf, Inhbb, Itgav,

Il10, Jag2, Lepr, Lifr, Man1a, Mmp13, Mmp3, Mpzl1,

Niacr1, Pla1a, Pvrl3, Ptger2, Lpar6, Ramp3, Sema6d,

Tnfaip6, Thbd, Thbs1, Trem1, Tnfrsf9

Genes expressed at higher levels (181 genes, ≥2-fold, <0.05) in cPLA2α+/+ than
cPLA2α-/- RPM stimulated for 3 h with C. albicans were analyzed using DAVID
bioinformatics resource.

reproduction and DNA binding cluster), was highly induced in
cPLA2α+/+ RPM (16-fold) in response to C. albicans but not
significantly affected in cPLA2α-/- RPM (Table S2B). CREM
suppresses expression of pro-inflammatory genes including
Tnfα [73]. The anti-inflammatory and immunosuppressive
neuropeptide calcitonin gene-related peptide (Calca, Sexual
reproduction cluster) that is higher in cPLA2α+/+ than cPLA2α-/-

RPM suppresses Tnfα through induction of Crem [74,75]. C.
albicans also induces expression of the cAMP-regulated
nuclear receptor Nr4a2 to a greater extent in cPLA2α+/+ RPM
(81-fold) than in cPLA2α-/- RPM (10-fold) (Table S2B). NR4A2
suppresses Tnfα expression in microglia and astrocytes [76].

Several other genes that are expressed at higher levels in
cPLA2α+/+ RPM than cPLA2α-/- RPM have diverse functions but
also act to dampen inflammation (Table 4). Follistatin (Fst)
(Sexual reproduction cluster) curbs inflammation by inactivating
the inflammatory actions of activin [77]. Expression of the anti-
inflammatory genes Thbs1 and Thbd are also expressed higher
in C. albicans-stimulated cPLA2α+/+ RPM than cPLA2α-/- RPM
(Table S2B) [78,79].

Several genes expressed higher in cPLA2α+/+ than cPLA2α-/-

RPM are involved in host defense such as the gap junction
protein, alpha 1 (Gja1, Vascular development cluster) (Table 4,
Table S2B). GJA1 promotes phagocytosis and host survival to
bacterial infection [80]. Csf3 (Growth factor cluster) is highly
upregulated in response to C. albicans in cPLA2α+/+ RPM (640-
fold) but to a lesser extent in cPLA2α-/- PM (140-fold) (Table
S2B). The orphan receptor triggering receptor expression on
myeloid cells (Trem1, Disulfide bond cluster) is upregulated to
a greater extent in C. albicans-stimulated cPLA2α+/+ (11-fold)
than cPLA2α-/- RPM (2.7-fold) (Table S2B). TREM1 couples
with the signaling adaptor DAP12 and has complex effects to
enhance or dampen responses to TLR activation [81]. Histidine
decarboxylase (Hdc), the encodes the rate-limiting enzyme for
histamine synthesis, is another highly differentially expressed
gene that is 20-fold higher in cPLA2α+/+ than cPLA2α-/- RPM
(Table S2B). Hdc is transcriptionally induced in myeloid cells in
response to cytokines and TLR agonists leading to immediate
secretion of newly synthesized histamine [82]. Prostaglandins
induce Hdc expression and also greatly potentiate the
vasoactive effects of histamine [83–85].

The microarray results were corroborated by real-time PCR
analysis for several representative genes expressed at higher
levels in cPLA2α+/+ than cPLA2α-/- RPM (Figure 6). When
analyzed 1-6 h after C. albicans addition, several early
response genes (Crem, Nr4a2, Cxcr7) showed highest
expression in cPLA2α+/+ RPM at 1 h. The early induction of the
transcriptional regulators Crem and Nr4a2 due to cPLA2α
activation suggests that they play a role in regulating gene
expression to increases in cAMP. The expression of most
genes peaked 3 h after C. albicans addition with some
decreasing to near baseline by 6 h (Hdc, Map4k4, Il10, Stat3,
Thbs1, Trem1) while others remained elevated (Csf3,
Adamts9, Gja1).
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Role of the IP receptor and PKA in regulating gene
expression

We investigated the role of prostacyclin production (the
prostanoid produced at the highest level in RPM) and PKA, the
downstream mediator of cAMP, in regulating gene expression
by treating cPLA2α+/+ RPM with the IP receptor antagonist
CAY10441 and the PKA inhibitor H89 (Figure 7).
Representative genes expressed at lower levels in C. albicans-
stimulated cPLA2α+/+ than cPLA2α-/- RPM (Tnfα and Csf1) were
enhanced by blocking the action of PGI2 and inhibiting PKA. In
contrast, genes expressed at higher levels in cPLA2α+/+ than

cPLA2α-/- RPM (Crem, Il10, Csf3, Nr4a2) were suppressed by
the IP receptor antagonist and by the PKA inhibitor. The results
suggest that cPLA2α-mediated prostaglandin production
promotes an autocrine loop to increase cAMP and PKA
activation for regulating expression of these genes.

Discussion

In this study we describe the changes in gene expression
that occur in RPM during infection with C. albicans, and how
gene expression is influenced by the activation of cPLA2α and

Figure 6.  Time course of expression of genes expressed at higher levels in C. albicans-stimulated cPLA2α+/+ than cPLA2α-/-

RPM.  cPLA2α+/+ (WT, circles) and cPLA2α-/- (KO, triangles) RPM were incubated with (CA) or without (US) C. albicans for the
indicated times. RNA was isolated and gene expression determined by real-time PCR using the RT2 Profiler PCR Array System (SA
Bioscience) as described in Experimental Design. The data were normalized to the housekeeping genes Gapdh and Hprt. The
results are the average of 3 experiments ±S.E. Gene expression in C. albicans infected WT at 3 h was compared to C. albicans
infected KO at 3 h to determine significance (*p<0.05).
doi: 10.1371/journal.pone.0069002.g006
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endogenously produced lipid mediators. Resident tissue
macrophages are sentinel cells that are important in first
sensing and responding to microbial invasion. Therefore our
study investigates how cPLA2α activation modulates
macrophage responses during the initial stages of infection to
affect the balance of host defense and inflammation. The
production of eicosanoids in RPM is dependent on cPLA2α
activation to provide arachidonic acid [12,14]. They are
released within minutes of activation by C. albicans to rapidly
engage eicosanoid receptors for regulating transcriptional
responses. Although there have been a number of studies
investigating the effect of adding exogenous eicosanoids to
cells, by comparing cPLA2α+/+ and cPLA2α-/- RPM we are

probing the primary mechanism for production of eicosanoids
in macrophages at levels expected to occur locally in tissues in
response to microbial infection. Our analysis provides global
insight into the extensive changes in gene expression that are
initiated by activation of cPLA2α and endogenously produced
eicosanoids in resident tissue macrophages early in response
to microbial infection.

The recognition of C. albicans by macrophages is complex
since the fungal cell wall contains several chemical
components that differentially engage a number of receptors
including a variety of TLRs and lectins [86]. These receptors
promote unique signaling pathways that preferentially induce
distinct cellular responses. In RPM C. albicans triggers rapid

Figure 7.  Effect of IP receptor antagonist and PKA inhibitor on gene expression.  cPLA2α+/+ RPM were incubated with the IP
receptor antagonist CAY10441 (1 µM) (light gray bars) and the PKA inhibitor H89 (10 µM) (black bars) for 30 min followed by
stimulation with C. albicans for 3 h. RNA was isolated and gene expression determined by real-time PCR. Gene expression values
are presented as the % of control values (set at 100%), which is C. albicans-stimulated RPM not treated with CAY10441 or H89.
The results are the average of 3 experiments ±S.E. (*p<0.05).
doi: 10.1371/journal.pone.0069002.g007
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activation of mitogen-activated protein kinases and calcium
mobilization necessary for cPLA2α activation through dectin-1,
dectin-2 and MyD88 pathways [13,14]. The results of this study
suggest that the differential expression of many genes
observed in cPLA2α+/+ and cPLA2α-/- RPM is due to an autocrine
loop involving cPLA2α, prostaglandins and increased cAMP
production, which is significantly higher in C. albicans-
stimulated cPLA2α+/+ than C. albicans-stimulated cPLA2α-/-

RPM. This is illustrated by results showing that TNFα
production is suppressed by prostaglandins through increases
in cAMP. Expression of TNFα occurs in part through dectin-1
and TLR4 in RPM that activate NF-κB and transcription [86]. In
RPM the rapid production of prostanoids, particularly PGI2 that
acts through the IP receptor, increases cAMP and PKA
activation that suppresses transcription by mechanisms that
are not fully understood. In addition to TNFα we observed
differential expression of several genes previously reported to
be regulated by prostaglandins and increases in cAMP in a
variety of cell types. These include Ccl5, Socs3, Il10, Gja1,
Crem, Thbd, Abca1, Csf3, Trem1 [33,69,73,87–93]. Similar to
our results in C. albicans-stimulated RPM, an autocrine loop
pathway involving cPLA2α, prostacyclin and cAMP has been
shown to enhance expression of Areg, Ereg and Fst, Cre-
dependent genes involved in vascular remodeling and
angiogenesis [94]. This autocrine loop involving prostaglandins
and cAMP is triggered in many cell types in response to a
variety of agonists indicating that it is an important, widely used
pathway for regulating gene expression.

The rapid increase in cAMP that occurs in C. albicans-
stimulated cPLA2α+/+ RPM is consistent with functional coupling
of cPLA2α activation and metabolism of arachidonic acid to
prostanoids by constitutively expressed COX1 since the
response occurs before the expression of COX2. A role for
COX1 in mediating prostaglandin production in LPS-stimulated
RPM has previously been reported [34]. COX1 provides
prostaglandins that regulate normal physiological processes
and can regulate the early phases of inflammation [17]. RPM
express the EP2, EP4 and IP receptors that mediate increases
in cAMP, and our results show that EP2 or IP receptor agonists
suppress TNFα production. It is likely that PGI2 and PGE2 both
contribute to the regulation of transcription through increases in
cAMP. However, PGI2 is produced at higher amounts than
PGE2 during the first 15-30 min after activation by C. albicans.
We were not successful in testing the EP2 receptor antagonist
due to adverse effects on RPM. Although not addressed in this
study, other eicosanoids such as LTC4 and arachidonic acid
itself released by RPM in response to C. albicans could also
influence macrophage activation. Arachidonic acid has been
shown to suppress the expression of the complement receptor
immunoglobulin (CRIg) during maturation of human monocytes
to macrophages resulting in a decrease in the phagocytosis of
opsonized C. albicans [95]. LTC4 could act through the
CYSLT1 and CYSLT2 receptors expressed on RPM. For
example these receptors promote calcium mobilization that
may influence transcriptional responses due to cross-talk with
cAMP signaling, and by potentiating cPLA2α activation [96].
Leukotrienes have been shown to promote uptake of C.
albicans by alveolar macrophages and to enhance fungicidal

activity [97]. It is possible that leukotrienes contribute to the
enhanced C. albicans killing we observed in cPLA2α+/+ RPM
compared to cPLA2α-/- RPM.

Microbial pathogens engage PRRs on macrophages that
induce extensive effects on gene expression as we observed in
C. albicans-stimulated RPM [39]. A characteristic of the
"common host response" is increased expression of a large
number of pro-inflammatory cytokines and chemokines that is
important for the recruitment and activation of myeloid cells
during infection [39]. Pro-inflammatory host defense responses
are balanced by the activation of negative feedback loops that
are important in dampening inflammation and potential tissue
damage [21]. Our data suggest that cPLA2α activation and lipid
mediator production represents one of the negative feedback
loops since cPLA2α+/+ RPM exhibit lower expression of select
pro-inflammatory genes such as Tnfα, Csf1, Ccl5, Cd40,
Cx3cl1, Edn, Ifnγ and several IFNγ regulated GTP binding
proteins, and higher expression of anti-inflammatory genes
such as Il10, Socs3, Stat3, Fst, Thbd, Thsp1, Calca and CxCr7
than cPLA2α-/- RPM. Historically there has been an emphasis
on the role of prostaglandins in mediating the cardinal signs of
inflammation that is supported by the clinical effects of non-
steroidal anti-inflammatory drugs. However, prostaglandins
play an important role in suppressing inflammation and immune
responses by acting through prostanoid receptors that increase
cAMP resulting in PKA activation as supported by our results
[18]. This pathway has immunosuppressive effects by inhibiting
the differentiation of antigen presenting cells, lymphocyte
activation and production of Th1 cytokines.

Our results show that the activation of cPLA2α and coupling
to COX1 is an early response to C. albicans infection of RPM
that can regulate the amplitude and timing of inflammation and
host defense mechanisms as exemplified by the decrease in
expression of Tnfα and increase of Il10. ERK activation and
calcium mobilization are the signaling cascades activated by
PRRs that are important for promoting IL10 production [69,98].
These are the signals required for optimal cPLA2α activation
and eicosanoid production [99]. This cytokine signature is also
a characteristic of resolution phase macrophages that
contribute to restoration of normal tissue function by
dampening inflammatory signals and the clearance of apoptotic
neutrophils [100,101]. Resolution phase macrophages are
characterized by the expression of COX2, decreased TNFα
and increased IL10 production controlled by cAMP production.
Prostaglandins and increases in cAMP contribute to the
resolution phase by enhancing the ability of macrophages to
phagocytose apoptotic neutrophils [102,103]. Activated and
apoptotic neutrophils produce lyso-phosphatidylserine that acts
through the macrophage G2A receptor to trigger an autocrine
loop involving cPLA2α activation, PGE2 production, EP2
receptor-dependent increases in cAMP and PKA activation to
enhance efferocytosis [102,104]. Therefore cPLA2α activation
and prostaglandin production play a role in balancing host
defense responses and the extent of inflammation in both the
initiation and resolution phases of infection.

The results also indicate that cPLA2α-mediated prostaglandin
production enhances the expression of certain pro-
inflammatory genes, such as Csf3, that are important for host

cPLA2α Regulates Gene Expression in Macrophages

PLOS ONE | www.plosone.org 13 July 2013 | Volume 8 | Issue 7 | e69002



defense against C. albicans infection by promoting neutrophil
function [40,41]. Prostaglandins also contribute to Candidiasis
protection by promoting the Th17 response [105,106]. IL17
regulates neutrophil recruitment and is important for host
defense to mucocutaneous Candidiasis [107–110]. However if
pro-inflammatory responses go unchecked prostaglandins
contribute to chronic inflammation that is characteristic of
cancer, and vascular and autoimmune diseases [111]. The
ability of prostaglandins to promote the development of Th17
differentiation and production of IL17 contributes to chronic
inflammation associated with autoimmune diseases [111,112].
COX2 is overexpressed in cancers and prostaglandins promote
cancer development by regulating angiogenesis, cell migration,
adhesion and invasiveness in part through promoting receptor
specific increases in cAMP [57,58]. Several of the genes that
are differentially expressed in cPLA2α+/+ RPM and cPLA2α-/-

RPM (i.e. Gdf15, Eph2, Ereg, Areg, Lepr, Nr4a2, Runx2,
Mmp13, CxCr7, Pdpn, Prox1) are positively or negatively
regulated in cancers compared to normal tissue as a result of
prostaglandins [59–63,113]. Therefore, eicosanoids have
complex biological effects depending on the tissue context, the
specific receptors expressed on cells in the local environment
and the timing of their production contributing to both anti- and
pro-inflammation responses. Results from this study support an
important role for cPLA2α activation early in response to
microbial infection in resident tissue macrophages that helps to

balance the expression of genes important for host defense
and genes that contribute to inflammation.
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