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ABSTRACT 
 

Current methods for genome engineering in mycobacteria rely on relatively inefficient recombination 

systems that require the laborious construction of a long double-stranded DNA substrate for each desired 

modification.  We combined two efficient recombination systems to produce a versatile method for 

high-throughput chromosomal engineering that obviates the need for the preparation of double-stranded 

DNA recombination substrates.  A synthetic “targeting oligonucleotide” is incorporated into the 

chromosome via homologous recombination mediated by the phage Che9c RecT annelase.  This oligo 

contains a site-specific recombination site for the directional Bxb1 integrase (Int), which allows the 

simultaneous integration of a “payload plasmid” that contains a cognate recombination site and 

selectable marker.  The targeting oligo and payload plasmid are co-transformed into a RecT- and Int- 

expressing strain, and drug-resistant homologous recombinants are selected in a single step.  A library of 

reusable target-independent payload plasmids is available to generate knockouts and promoter 

replacements, or to fuse the C-terminal-encoding regions of target genes with tags of various 

functionalities.  This new system is called ORBIT (Oligo-mediated Recombineering followed by Bxb1 

Integrase Targeting) and is ideally suited for the creation of libraries consisting of large numbers of 

deletions, insertions or fusions in a target bacterium.  We demonstrate the utility of ORBIT by the 

construction of insertions or deletions in over 100 genes in M. tuberculosis and M. smegmatis.  The 

report describes the first genetic engineering technique for making selectable chromosomal fusions and 

deletions that does not require the construction of target- or modification-specific double-stranded DNA 

recombination substrates. 
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INTRODUCTION 
 
 Following the use of laborious plasmid co-integration schemes that dominated the early days of 

gene replacement in bacteria, recent advances in genetic engineering of bacterial strains have largely 

relied on phage recombination systems, both site-specific and homologous.  For example, it was 

recognized in 1994 that the use of non-replicating plasmids containing phage lambda attP sites could be 

incorporated into the E. coli chromosome via integration into the bacterial attB site.  Such an event was 

dependent on the expression of a phage Integrase 1.  Thus, genes expressed from endogenous or 

regulatable promoters could be delivered into the stable confines of the chromosome in single copy, 

without the worry of the physiological artifacts of excessive gene copy number or the instability of self-

autonomous replication vectors.  Site-specific recombination (SSR) systems were the basis for 

developing the Lambda InCh method for transferring exogenous genes to the E. coli attB site 2, the 

series of CRIM plasmids that take advantage of a variety of different phage attB sites in E. coli 3, and 

many technical modifications of these SSR systems and their substrates for use in a variety of metabolic 

and genetic engineering protocols in a variety of organisms 4-8. 

 In addition to these site-specific recombination systems, general homologous recombination 

(HR) systems of phage, such as the Red system of phage lambda, and the RecET systems of Rac 

prophage and MTb phage Che9c, have been widely used for genetic engineering in a variety of bacteria 

9-15; for reviews, see 16-18.  Termed “recombineering”, these procedures have used both dsDNA PCR 

substrates and ssDNA oligos for generating bacterial chromosomal modifications in E. coli, and in 

various bacterial pathogens including enterohemorrhagic E. coli., Salmonella enterica, Shigella flexneri, 

Pseudomonas aeruginosa, Yersinia pestis, and M. tuberculosis 14, 15, 19-26. These general phage 

recombination systems have also been used for the development of new methodologies for metabolic 

engineering of industrial microorganisms 27-36. The Red system annealase λ Beta protein, in particular, 
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has been employed in many protocols for the systematic modification of E. coli, for instance, by 

electroporation of oligos targeting the promoter regions of genomic targets allowing for accelerated 

evolution of E. coli for specific metabolic engineering purposes 37.  In concert with these homologous 

recombination systems, SSR systems described above have been employed to remove selectable drug 

cassettes for the construction of marker-less gene deletions and fusions 10, 12, 38.   

 The new system described in this report couples the recombinogenic annealing of an oligo and 

the site-specific insertion of a non-replicating plasmid into a one-step procedure for generating 

chromosomally tagged genes, deletions, or promoter replacements in M. smegmatis or M. tuberculosis 

(MTb). It is the first general chromosomal engineering technique that produces a drug-selectable 

recombinant that does not require the use of either target-specific dsDNA plasmids or PCR-generated 

recombination substrates.  The only target-specific substrate requirement for gene modification is a 

chemically synthesized oligo.  This “targeting oligo” carries the ssDNA version of the Bxb1 phage attP 

site (48 bases) flanked by 45-70 bases of homology to the chromosomal target, and is co-electroporated 

with a non-replicating “payload plasmid” that contains a Bxb1 attB site.  The host (M. smegmatis or M. 

tuberculosis) contains a plasmid that expresses both the Che9c phage RecT annealase and the Bxb1 

phage Integrase.  RecT promotes annealing of the targeting oligo to the lagging strand template of the 

replication fork, thus placing the attP site into a precise location in the chromosome dictated by the oligo 

sequence.  In the same outgrowth period, Bxb1 integrase promotes site-specific recombination between 

the co-electroporated attB-containing payload plasmid and the oligo-derived attP site.  In this system, 

the sequence of the oligo defines the position of the insertion site and the plasmid delivers the payload.  

For knockouts, the oligo is designed so that attP replaces the target gene.  For C-terminal tags, the oligo 

is designed to insert attP at the end of the coding sequence.  In this case, the type of C-terminal tag 

desired is defined by the selection of the plasmid to be co-electroporated with the oligo from a library of 
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pre-existing payload plasmids.  Inherent in this system, an oligo designed to create a C-terminal tag can 

be used with multiple plasmids to create fluorescent, degradation, and epitope tagged fusions. This new 

gene modification scheme is called ORBIT (for Oligo Recombineering followed by Bxb1-Integrase 

Targeting).  We describe the use of the system to generate over 100 gene knockouts and fusions in M. 

smegmatis and M. tuberculosis at high efficiency.  

 
RESULTS 
 
RecT-promoted Oligo-mediated Recombineering – 60 bp insertion 

 Two different types of recombineering methodologies have been applied to mycobacteria, but 

neither represents a broadly generalizable approach for genome engineering.  Target-specific dsDNA 

substrates can be used to make diverse and selectable mutations.  However, even the smallest useful 

recombination substrates consist of both a selectable marker and ~500 bp of flanking homology to the 

chromosome.  These dsDNA constructs are cumbersome to generate for each desired mutation, and even 

these large substrates recombine at relatively low-efficiency. In contrast, single-stranded oligos are 

easily synthesized and can be used to alter one or a few bases of the chromosome at high efficiency.  

However, these mutations are generally not selectable and therefore difficult to isolate. An ideal method 

would leverage easily synthesized and highly efficient oligonucleotide substrates to make selectable 

mutations.  We sought to accomplish this by encoding a phage attachment site (attP) in the oligo that 

could be used to integrate a selectable marker at a specific chromosomal site via site-specific 

recombination.     

 To test this idea, an assay was designed to measure the frequency of incorporation of an oligo 

containing an insertion of approximately the size of a 48 bp attP site into the mycobacterial 

chromosome.  For this purpose, a hygromycin resistance gene, with an internal 60 bp deletion, was 

integrated into the L5 phage attachment site of the M. smegmatis chromosome.  Oligos (180-mers) 
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targeting the lagging strand template of the impaired HygR marker and containing the missing 60 bases 

(as well as 60 bases flanking the deletion site) were electroporated into M. smegmatis expressing the 

Che9c RecT annealase from the anhydrotetracycline (ATc)-inducible Ptet promoter (pKM402) 39.  The 

frequency of oligo incorporation was determined as the number of HygR transformants among the 

survivors of electroporation.  The number of HygR transformants generated varied from less than 10 to 

over 300, depending on the amount of oligo used (Fig. 1b).  At about 1 μg of oligo, the total number of 

HygR recombinants plateaued at approximately 350 transformants per electroporation, which 

corresponds to a frequency of 2 x 10-6 recombinants per survivor of electroporation.  In an experiment 

where the target contained a 1 bp change creating a premature stop codon in the hyg-resistance gene, a 

60 base oligo was used to restore Hyg resistance at a frequency of 4 x 10-4 recombinants per survivor of 

electroporation.  Thus, the RecT annealase is capable of integrating an oligo that contains a 60 base 

insertion into the mycobacterial chromosome, albeit at a frequency which is ~500-fold lower relative to 

a single base pair change. 

 

Development of ORBIT 

 To convert the recombineering of an oligo into a selectable event, we determined if co-

electroporation of the attP–containing oligo with an attB-containing non-replicating vector (HygR) into a 

cell that expresses both the RecT annealase and the phage Bxb1 Integrase would allow for both 

homologous and site-specific recombination events to occur within the same outgrowth period.  Since 

the oligo is designed to direct the integration of the genetic information contained in the non-replicating 

plasmid, these elements were termed, “targeting oligo” and “payload plasmid”. 

 Two plasmids were generated to test this methodology (Fig. 2).  pKM444 produces the 

recombination functions.  This mycobacterial shuttle vector expresses both the Che9c phage RecT 
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annealase and the Bxb1 phage integrase (Int) from the Ptet promoter (Fig. 2a).  pKM446 is a payload 

plasmid that will not replicate in mycobacteria.  This vector encodes a hyg resistance marker for 

selection in mycobacteria and a Bxb1 attB site (Fig. 2b).  Adjacent to the attB site is a sequence 

encoding both a Flag tag and a DAS+4 peptide tag designed to be in frame with a targeted chromosomal 

gene following integration of the plasmid.  The DAS+4 tag directs a fusion protein for degradation via 

the ClpXP system upon expression of the SspB adapter protein 40, 41. Targeting oligos were designed to 

direct the integration of attP to the 3’ ends of the M. smegmatis recA, DivIVA and leuB genes, just in 

front of the stop codon.  A site-specific recombination event between the inserted attP and the co-

electroporated pKM446 would then generate a DAS+4 fusion to these target genes (see Supplementary 

Table 1 for the list of oligos used in this study).  Targeting oligos, which anneal to the lagging strand 

template of the replication fork, were co-electroporated with the pKM446 payload plasmid into M. 

smegmatis that expressed both Che9c RecT annealase and Bxb1 Integrase.  Among the HygR colonies 

resulting from these transformations, 9 out of 12 candidates tested by PCR contained the expected 

recombination structure, in which pKM446 was inserted between attR and attL sites at the predicted 

oligo-directed integration site (Fig. 2 c-e). The fusion of the target genes to the Flag-DAS+4 degradation 

tag was verified by sequencing the PCR products of the 5’ junctions.  The sequence of the recA-Flag-

DAS+4 fusion generated by ORBIT is shown in Supplementary Fig. 1.    

 To test the functionality of the tag and verify that the mutated locus was the only copy of the 

targeted gene in the cell, we took advantage of the protein degradation system for controlling the 

expression of DAS+4-tagged proteins in M. smegmatis and M. tuberculosis 42-44.  In this system, the 

degradation of the DAS+4 tagged protein is promoted by expression of the E. coli SspB protein. Two 

different sspB expression systems were used, which induce degradation of the target protein either by 

adding ATc (Tet-OFF) or removing ATc (Tet-ON).   
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 Cells containing the recA-DAS+4 fusion were transformed with pGMCgS-TetON-18, allowing 

the induction of SspB in the absence of ATc; RecA function was quantified using a UV resistance assay.  

When grown in the presence of ATc, the recA-DAS+4-tagged strain containing either the SspB-

expressing plasmid or control plasmid showed similar levels of UV sensitivity (Fig. 3a right).  In 

contrast, the sensitivity of the tagged strain with SspB was enhanced in the absence of ATc (Fig. 3a left).  

The divIVA and leuB DAS+4-tagged strains were transformed with pGMCgS-TetOFF-18, which 

produces SspB upon ATc addition.  In both cases, addition of ATc inhibited the growth of these 

mutants, consistent with the essentiality of these genes on the media used in this study (Fig. 3b & c).  

The defect of LeuB depletion could be reversed by the addition of leucine to the plates, verifying that 

that this phenotype was linked to the engineered mutation (not shown).  Thus, the ORBIT method could 

generate function-altering mutations without the need to construct either target-specific plasmids or long 

dsDNA recombineering substrates.   

 The scheme of using both RecT and Bxb1 Integrase simultaneously to promote modification of a 

chromosomal target gene is diagramed in Fig. 4; the process is called ORBIT (for Oligo-mediated 

Recombineering followed by Bxb1 Integrase Targeting).  In theory, targeting oligos could also be 

designed to delete a portion of the chromosome during the ORBIT reaction (Fig. 4, right side) to create 

deletions.  Demonstrations of such ORBIT-promoted knockouts are described bellow.   

 

Parameters of ORBIT-promoted gene targeting 

 Two features of ORBIT that were optimized are the length of the homologous arms (HAs) in the 

targeting oligo, and the relative amounts of oligo and non-replicating plasmid used for co-

electroporation.  The HAs of a polA-targeting oligo were varied from 50 to 70 bases (oligo lengths, 

including attP, were from 148 to 188 bases).  The oligos were mixed with 200 ng of pKM446 and 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/249292doi: bioRxiv preprint first posted online Jan. 16, 2018; 

http://dx.doi.org/10.1101/249292
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

transformed into M. smegmatis containing pKM444.  While there is variability in the number of Hyg-

resistant transformants from each electroporation, oligos containing longer HAs produced more 

transformants (Fig. 5a).  Below 40 base pair HAs, no HygR transformants are observed above the 

number seen in the no oligo control.   

 We also examined the optimal ratio of oligo to plasmid.  An optimal concentration of targeting 

oligo (1 μg) was co-electroporated with various amounts of the payload plasmid pKM446.  More HygR 

transformants are observed when more plasmid is used, but there is also a small increase in the number 

of oligo-independent transformants that presumably represent illegitimate recombinants (Fig. 5b).  PCR 

screening confirmed that 39/40 Hyg-resistant transformants recovered in this experiment (using 8 

candidates of each transformation), represented the desired oligo-directed recombination events.  As a 

rule, we generally combined 1 μg of oligo with 200 ng of plasmid in the transformations described 

below.   

 

ORBIT-promoted knockdowns and knockouts in M. smegmatis and M. tuberculosis 

 To determine if ORBIT-promoted modifications could be generally engineered throughout the 

chromosome, we targeted a variety of genes in M. tuberculosis and M. smegmatis.  For C-terminal tags, 

the attP site was placed just in front of the stop codon of the target gene.  For knockouts, the attP site 

was flanked by 60-70 bases, which included the first and last 10 codons of the target gene (including the 

start and termination codons), which is expected to result in the deletion of intervening chromosomal 

sequence.   Overall, we have made over 100 strains where the target genes have either been deleted or 

C-terminally tagged (see Fig. 6a & b and Tables 1 & 2).   For most of these targets, 5 to 50 colonies 

were typically observed after plating 0.5 ml of the overnight outgrowth.  Usually, only 2-4 HygR 

candidates needed to be analyzed by PCR to identify at least one strain that contained the payload 
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plasmid in the site designated by the targeting oligo.  Most of the targeting oligos used for these 

genomic modifications contained either 60 or 70 bases of flanking homology.  An oligo targeting the 

aceE gene containing only 45 bases homology on each side of attP also produced the desired 

recombinant in 4 of 6 clones.  However, lowering flanking homologies below 40 bases decreased the 

percentage of correct recombinants dramatically, largely as a result of an increased number of 

illegitimate recombination events. 

 In order to cure recombinants of the RecT-Int producing plasmid following modification, a sacB-

containing derivative of pKM444 was constructed (pKM461).  A number of genes were tagged in a 

pKM461-bearing strain (including recG, dnaN and ftsK), then plated directly on Hyg-sucrose plates to 

both select for the recombinant and to cure the strain of the RecT-Int  producer.  This process appears to 

produce fewer colonies than previously observed with pKM444, but can rapidly produce plasmid-free 

mutants.  

 Genetic modifications with ORBIT should be very stable.  An excision event promoted by the 

Bxb1 SSR system requires an additional factor called gp47 45, which is not present in the hosts used for 

these experiments.  The stability of ORBIT-mediated modifications was verified by observing that the 

integrated payload plasmid, in a number of M. smegmatis mutants generated in this study, was not lost 

after more than 100 generations of growth in the absence of drug selection.  The one exception was 

dnaK-Flag-DAS+4, a fusion that could be constructed, but was lost spontaneously in subsequent 

outgrowth periods, as evidenced by the loss of plasmid-chromosome junctions.  Apparently, this 

important chaperone cannot sustain the presence of the tag on its C-terminal end, especially during a 

stress period such as selection on sucrose for the curing of sacB-containing plasmids. 
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Expanding the library of ORBIT-mediated modifications 

 In order to expand the types of modifications that can be made via ORBIT, we built a set of 

payload plasmids all containing the Bxb1 attB site fused to different types of tags. In addition to the 

Flag-DAS+4 plasmids, we generated plasmids to create C-terminal targeted fusions with combinations 

of eGFP, mVenus, SNAP, CLIP, Myc and His epitopes, and TEV cleavage sites.  These tags facilitate 

both protein localization by fluorescence and tandem affinity purification (Table 3).  In addition, we 

created plasmids to generate chromosomal knockouts and promoter replacements using either 

hygromycin or zeocin resistance as a selection for the recombinant (see Table 3).   Any number of 

payload plasmids can be matched with a single targeting oligo to generate a variety of functional gene 

modifications.   

 As with any chromosomal engineering method, one must consider the effect of the modification 

on expression of downstream functions, especially if the target gene is within an operon.  The ORBIT 

knockout plasmid pKM464 was designed so that once integrated, the hyg gene is positioned at the 

junction of the insertion site allowing downstream genes to be transcribed by the hyg promoter.  In our 

experience, this is generally sufficient for the generation of most mutations (see Table 1 for knockouts 

generated in M. smegmatis). For additional options, variants of pKM446 (for Flag-DAS+4 tags) or 

pKM464 (for knockouts) are designed that contain a second promoter (PGroEL) to drive higher 

transcription downstream of the insertion site, if needed (Table 3).  Similar plasmids can be generated 

with promoters of varying strengths, as needed.   

 

GFP fusions 

 To demonstrate the functionality of these additional tags, ORBIT was used to construct eGFP 

fusions with a number of M. smegmatis genes.  We tagged MmpL3 (the essential mycolate transporter 
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suspected to reside at the pole) and DnaN (the beta subunit of DNA polymerase III), two proteins known 

to be located in discrete cytoplasmic foci, and three genes with unknown distribution patterns.  The 

eGFP payload plasmid pKM468 (Table 3) was used to tag each gene in situ at the endogenous 

chromosomal locus.  MmpL3-eGFP and DnaN-eGFP were concentrated at the predicted localization site 

of each protein (Fig. 7).  For DnaN-GFP, the punctate spots identify positions of the replication forks 

and are shown as occurring in non-polar regions of the cell (see Fig. 7), in accordance with previous 

observations 47.  eGFP-tagged alleles of MSMEG_3596,  SppA and ClpC were all found at distinct sites, 

which were different from the diffuse cytosolic distribution of unfused eGFP.  Overall, ORBIT is a 

quick and efficient way to tag native genes in the chromosome with different types of tags without 

having to create target- and modification-specific dsDNA recombination substrates. Also, by expressing 

each gene at its native level, aberrant localization or complex formation due to overexpression can be 

avoided.  

 

Promoter replacements 

 One can also integrate attB-containing ORBIT plasmids to change the endogenous levels of 

expression of a chromosomal gene.  We constructed a series of ORBIT plasmids containing promoters 

of different strengths that can be used to drive the expression of genes downstream of the plasmid 

insertion site (see Table 3).  For use of these plasmids, the ORBIT oligo is designed to replace the 

endogenous promoter with attP.   The target gene’s ribosome binding site, if recognized, can also be 

deleted, replaced, or left intact, depending on the final level of expression desired.  To test this scheme, 

we performed ORBIT in an M. smegmatis strain where a chromosomal lacZ gene is under control of the 

mycobacterial PAg85 promoter containing a weak ribosome-binding site.   
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 ORBIT was used to replace PAg85 with one of three different promoters: Pimyc, PGroEL or P38.  

Plasmids containing these promoters were obtained from D. Schnappinger and S. Ehrt and are listed 

according to increasing strengths of expression (D. Schnappinger, personal communication).  The 

promoters were transferred to ORBIT integration plasmids and placed upstream of the Bxb1 attB site 

(see Fig. 8a). An optimized ribosome binding site (rbs: AGAAAGGAGGAAGGA) was included between 

the promoters and the attB site to increase the overall expression of β-galactosidase relative to the 

starting strain, where an endogenous Shine-Delgarno sequence could not be recognized.  ORBIT 

recombinants were identified by resistance to zeocin and verified by chromosomal PCR analysis as 

described above.  As seen in Fig. 8b, the total amount of β-galactosidase in each extract increased in 

accordance with the expected strengths of the three promoters used in these assays.  Clearly, endogenous 

promoters can easily be altered using ORBIT to express different levels of a target gene.  

  

DISCUSSION 

 The λ Red recombineering system has been critical for genome engineering of E. coli and related 

bacteria. While λ Red does not function well in bacteria more distantly related to E. coli, endogenous 

phage recombination systems have been identified and employed to promote recombineering in these 

organisms.  One of the more notable examples of a phage recombination system utilized in this way is 

the Che9c mycobacterial RecET system, identified by Van Kessel and Hatfull and used for 

recombineering of the M. smegmatis and M. tuberculosis chromosomes 14, 15.  This recombineering 

system has been used to construct numerous knockouts and modifications of mycobacterial targets 18, 39, 

46, 48.  However, unlike λ Red recombineering in E. coli, this process requires the cumbersome 

construction of a recombineering substrate containing >500 bp of flanking homology for each specific 
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modification.  Similarly, specialized transduction also requires the laborious construction and packaging 

of a different recombination substrate-containing phagemid for each genome modification55.  

 ORBIT  overcomes the limitations of existing methods by combining components of two 

different efficient recombination systems from mycobacteria: the Che9c annealase from the general 

homologous recombination system and the Bxb1 Integrase from the site-specific recombination system.  

The construction of long dsDNA recombination substrates is replaced by the synthesis of a targeting 

oligonucleotide, and the availability of a library of payload plasmids allows a single oligo to be used to 

generate a wide variety of functional modifications.  The utility of ORBIT extends beyond the simple 

generation of mutants.  Since targeting oligos are so easily generated, the system is well suited for the 

construction of libraries of mutants.   The targeting oligo loop containing the 48 bp attP site can be 

extended to 60 bp (Fig. 1) to include a nearly infinite number of unique DNA barcode sequences, which 

would allow each mutant in a large ORBIT-generated pool to be monitored independently by PCR or 

next-generation sequencing.  The variety of modifications that can be made with the existing collection 

of payload plasmids opens new avenues for functional screening of mutant libraries that are generated 

using this method.  ORBIT can also be used for genome reduction strategies in MTb.  The largest 

deletion generated in this study was the one-step 12kb deletion of the pks12 gene, and it is likely that 

even larger deletions are possible. Finally, though most of the payload plasmids described in this report 

are designed to modify endogenous genes, one could also use this system to place exogenous elements, 

such as large clusters of biosynthetic genes, into any specified position in the mycobacterial 

chromosome. 

 The paradigm of ORBIT is likely to be useful in many different bacterial species.  The Bxb1 

Integrase requires no host functions to carry out the site-specific and directional (attB  x attP) 

recombination reaction. It is for these reasons that Bxb1 Integrase has been selectively employed for 
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genetic manipulations in both bacterial and mammalian cells 49, 50.  Thus, the key to the development of 

ORBIT for other microbial systems would be to find a λ Beta or RecT-like annealase that promotes 

some level of oligo-mediated recombineering.  Datta et al 51 have tested a number of single-stranded 

annealing proteins (SSAPs) from both Gram-positive and Gram-negative bacteria for oligo-mediated 

recombineering in E. coli.  While the recombineering efficiency ranged over three orders of magnitude, 

some SSAPs from distant species worked as well as the λ Beta protein in E. coli, suggesting that some 

annealases are easily transferable between species.  The annealase for use in ORBIT would have to be 

able to promote annealing of an oligo containing a 48 bp attP insertion.  Note, however, that even if 

oligo recombineering occurs at low frequencies with such a substrate (~10-6), the number of attP sites 

generated could very well be adequate for the Bxb1 Integrase to promote integration of a non-replicating 

plasmid, thus making integration of the oligo a selectable event.   

 

Methods 

Bacterial strains.  M. smegmatis strains used in this study were derived from mc2155; the M. 

tuberculosis strains were all derived from H37Rv. 

 

Media. M. smegmatis was grown in Middlebrook 7H9 broth with 0.05% Tween 80, 0.2% glycerol, 0.5% 

BSA, 0.2% dextrose, and 0.085% NaCl; transformants were selected on LB plates (DIFCO) with 

appropriate drugs.  M. tuberculosis was grown in 7H9 broth with 0.05% Tween 80, 0.2% glycerol and 

OADC (Beckton-Dickinson); transformants were selected on 7H10 plates with 0.5% glycerol and 

OADC.  When needed, antibiotics were added at the following concentrations: kanamycin (20 μg/ml), 

streptomycin (20 μg/ml), hygromycin (50 μg/ml), zeocin (25 μg/ml). 
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Plasmids.  Plasmids containing the Pimyc promoter 52, the PGroEL promoter and P38 promoter were 

obtained from D. Schnappinger and S. Ehrt, as were plasmids pGMCgS-TetOFF-18 and pGMCgS-

TetON-18, where the E. coli SspB adapter protein is under control of the wild type and reverse TetR 

repressors, respectively.  Plasmids constructed for this study are described in Tables 3 & 4 and will be 

made available from the Addgene plasmid repository site.  Details of plasmid constructions are available 

upon request.  

 

Oligos.  Oligos used for ORBIT were obtained from IDT as Ultramers at a concentration of 100 uM and 

delivered in 96-well plates; they were supplied desalted with no further purification.  Oligos were 

diluted ten-fold in 10 mM Tris-HCl, pH 8.0, and final concentrations (250-350 ng/ml) were determined 

by Abs260 using a conversion factor of O.D. of 1 = 20 μg/ml oligo.  ORBIT plasmids (200 ng) were 

mixed with 1 μg of oligo prior to electroporation 

 

Design of the ORBIT oligo.  The sequence of oligos flanking the attP site used for ORBIT must be 

derived from the lagging strand of the replication fork.  For design of an ORBIT oligo, start with a 

dsDNA sequence file of a target gene, starting 200 bp upstream of the initiation codon and ending 200 

bp downstream of the stop codon.  Insert the Bxb1 attP site shown in Supplementary Fig. 2 into the 

target sequence file for the type of modification required (i.e., knockout, C-terminal tag, or promoter 

replacement) as described in the Results section. If the transcriptional direction of the target gene is 

pointing toward the chromosomal origin in either replicore (green arrows in Supplementary Fig. 2), then 

select the top strand (5’ to 3’) of the “target sequence + attP” file as the lagging strand DNA in the oligo.  

If the transcriptional direction of the target gene is pointing away from the chromosomal origin in either 

replicore (red arrows in Supplementary Fig. 2), then select the bottom strand (5’ to 3’) of the “target 
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sequence + attP” file as the lagging strand in the oligo.   Example shown in Supplementary Fig. 2 is for 

M. smegmatis.  Apply the same rules of MTb, but assume the dif region occurs at 2.2 Mb. For further 

details, see 18. 

 

ORBIT electroporations.  A culture of M. smegmatis containing plasmid pKM444 (or pKM461) was 

started overnight by adding 100-150 μl of a fresh saturated stock culture to 20 ml of 7H9 media 

containing 20 μg/ml kanamycin in a 125 mL flask.  Cells were grown on a swirling platform at 37oC.  

The next day, at an O.D. (600 nm) of 0.5, anhydrotetracycline (ATc) was added to a final concentration 

of 500 ng/ml.  The culture was placed back on the swirling platform at 37oC for 2.75-3 hours until the 

culture O.D. was ~1.0.  The culture was placed on ice (with swirling) for 10 min and then centrifuged at 

4000 rpms for 10 min in a chilled centrifuge.  The supernatant was removed, the cells were gently 

resuspended in 1 ml of 10% cold glycerol and brought up to 20 ml with 10% cold glycerol.  The 

centrifugation and washing steps were repeated.  After the second wash, the cells were collected by 

centrifugation and resuspended in 2 ml of 10% cold glycerol.  Aliquots of electrocompetent cells (380 

μl) were added to sterile Eppendorf tubes containing 1 μg of an attP-containing oligo and 200 ng of an 

attB-containing plasmid (except where noted otherwise in figure legends).  The cells and DNA were 

mixed by pipetting and transferred to ice-cooled electroporation cuvettes (0.2 cm).  The cells were 

shocked with an electroporator at settings of 2.5 kV, 1000 OHMs and 25 μF.  Following electroporation, 

the cells were resuspended in 2 ml 7H9 media and rolled at 37oC overnight.  The following day, two 0.5 

ml portions of the culture were spread on LB plates containing 50 μg/ml hygromycin or 25 μg/ml zeocin.  

Recombinant colonies were picked into 2 ml 7H9 media containing 50 μg/ml hygromycin or 25 μg/ml 

zeocin and grown overnight at 37oC.  Control electroporations with no DNA were also performed. 
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 Electroporations with M. tuberculosis (MTb) was done in a similar manner, with the following 

modifications.  Cells containing pKM444 (or pKM461) were grown in 30 ml 7H9 media containing 

OADC, 0.2% glycerol, 0.05% Tween-80, and 20 μg/ml kanamycin.  At an O.D. of ~ 0.8, ATc was 

added to the culture to a final concentration of 500 ng/ml.  After ~ 8 h of swirling at 37oC, 3 ml of 2 M 

glycine was added to the culture.  The cells were shaken at 37oC overnight (16-20 total hours following 

induction), collected by centrifugation and processed as described above, except that all steps were 

performed at room temperature.  Recombinant colonies were picked into 5 ml 7H9-OADC-tween 

containing 50 μg/ml hygromycin and grown with shaking for 4-5 days at 37oC.   

 

PCR analysis for verification of Recombinants   

Recombinants were verified by PCR analysis; Taq polymerase was obtained from Denville Scientific, 

Inc.  PCR reactions were performed in 30 μl volume and contained 125 μM dNTPs, 5% DSMO, 1 μM 

primers, 2 μl of an M. smegmatis overnight culture (or heat-inactivated MTb culture) and 0.2 μl of Taq 

polymerase.   MTb cells (O.D. around 1.5) were heat inactivated at 85oC for 50 minutes prior to removal 

from the BSL3 lab.  The PCR program consisted of an initial step of 95o C for 5 minutes (to lyse the 

cells), thirty cycles of 30 sec at 95o C, 30 sec at 58o C, and 1 minute at 72o C, and a final polymerization 

step for 5 min at 72oC. Correct-sized PCR fragments were generated from both junctions of the payload 

plasmid inserted into the chromosome (see Fig. 3c).  In each case, the 5’ junction was verified by a 

target-specific primer and an  “oriE” primer (CCTGGTATCTTTATAGTCCTGTCG); the 3’ junction 

was verified by a target-specific primer and a “HygC-out” primer 

(TGCACGGGACCAACACCTTCGTGG  or  GAGGAACTGGCGCAGTTCCTCTGG).  In some cases, 

the 5’ junction PCR was verified by sequencing. Target-specific primers contained sequences at least 

100 bp upstream (5’) and downstream (3’) of the chromosomal sequences flanking the attP site in the 
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ORBIT oligo.  For knockouts, an additional PCR was performed to verify the absence of the target gene 

in the recombinant. 

 

Fluorescence microscopy 

Bacterial cells were mounted on 1% agar pads and imaged with a DeltaVision Personal DV microscope 

followed by deconvolution using SoftwoRx software (Applied Precision). Further processing was 

performed using FIJI software 53.  Image brightness and contrast were adjusted for visibility and the files 

were converted to 600 dpi.  Representative cells are shown from multiple images of each strain. 

 

Beta-galactosidase activity assay.  

A 5 mL of culture at 0.8 – 1.0 OD was pelleted and resuspended in 1 mL of freshly prepared Z buffer 

(50 mM Na2HPO4, pH 7.0, 10 mM KCl, 1 mM MgSO4, 50 mM β-mercaptoethanol). Cells were lysed by 

bead beating 4 times at 6.5 M/s for 30 seconds followed by centrifugation for 10 minutes to harvest the 

supernatant. Protein concentrations were measured with a Nanodrop. For the activity assay, 10 μg of 

protein and Z buffer (total volume of 100 μL) was added in triplicate to a 96-well microplate. The 

reaction was started with 20 μL of 4 mg/mL ONPG in 0.1 M, pH 7.0 sodium phosphate buffer. Once 

sufficient yellow color had developed, the reaction was terminated with 50 μL of 1 M sodium carbonate. 

Final absorbance of the sample was measured at 420 nm in a plate reader.   
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FIGURE LEGENDS 
 

Figure 1. 

RecT-promoted oligo-mediated 60 base insertion.  (a) Diagram of oligo-mediated recombineering of 

a chromosomal target in M. smegmatis.  An integrating plasmid (pKM433) at the L5 phage attachment 

site contains a mutated hyg-resistance gene due to an internal 60 bp deletion (red square).  

Electroporation of an oligo containing the 60 bases missing in the target gene, along with 60 bp of 

flanking DNA on each side, is electroporated into cells expressing the Che9c RecT function from 

pKM402.  (b) After induction of RecT and preparing the cells for transformation (as described in the 

Methods section), the cells were electroporated with various amounts of an oligo (180 mer) that spans 

the 60 bp deletion of the Hyg-resistance cassette in pKM433.  Cells were grown out overnight and 0.5 

ml was plated on LB-Hyg plates.  The experiment was performed in triplicate; standard errors are 

shown. 

 

 

Figure 2. 

Plasmids constructed for ORBIT.  (a) Construct pKM444 expresses the Che9c phage RecT annealase 

and the Bxb1 phage Integrase, both driven from the Ptet promoter.  A similar construct (pKM461) 

contains (in addition) the sacRB genes for curing the plasmid following gene modification.  (b) One of 

the ORBIT payload plasmids (pKM446) used for integration into the chromosomal attP site created by 

an oligo.  In this case, the plasmid payload contains a Flag-DAS+4 degradation tag that will be fused to 

the 3’ end of the target gene.  (c) List of 3 genes in M. smegmatis targeted for C-terminal tagging.  

Following the ORBIT protocol for each target gene, total numbers of colonies obtained (from multiple 

trials) ranged between 10-100 CFU/ml.  Electroporations with payload plasmid only (no targeting oligo) 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/249292doi: bioRxiv preprint first posted online Jan. 16, 2018; 

http://dx.doi.org/10.1101/249292
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27

gave, on average, 5-fold fewer total numbers of colonies.  The number of correct recombinants (out of 4 

candidates tested) for each target gene is shown.  (d) PCR analysis of the 5’ junctions of each candidate 

tested.  (e) Primer positions for verification by PCR of the recombinants are shown; 5’ junction (blue 

arrows), 3’ junction (brown arrows).  In each case where a 5’ junction was verified, the 3’ junction was 

also verified (not shown).  The 5’ junctions were confirmed by DNA sequencing. 

 

 

Figure 3. 

Knockdown phenotypes of ORBIT-generated DAS+4-tagged strains. The growth phenotypes of the 

Flag-DAS+4 tagged strains constructed above were analyzed after transformation of an SspB-expressing 

plasmid.    (a) The recA-Flag-DAS+4 strain was transformed with an SspB-producing plasmid 

pGMCgS-TetON-18 (strepR) under control of the reverse TetR repressor.  In this scenario, RecA is 

proteolyzed in the absence of anhydrotetracycline (ATc).  Ten-fold serial dilutions of the cells were 

spotted on LB-strep plates and the cells were exposed to 20 J/m2 of UV.  In the absence of ATc, 

increased sensitivity of recA-Flag-DAS+4 strain containing pGMCgTetON-18 (relative to the tagged 

strain containing a control plasmid) is observed (left).  In the presence of ATc, both strains show similar 

UV sensitivities (right).  (b) The DivIVA-Flag-DAS+4 strain was transformed with an SspB-producing 

plasmid pGMCgS-TetOFF-18 (strepR) under control of the wild type TetR repressor.  In this case, 

DivIVA is expected to be depleted in the presence of ATc.  In the absence of ATc, both cultures grow 

well on LB-strep plates.  In the presence of ATc, growth sensitivity is observed for the DivIVA -Flag-

DAS+4 strain containing the SspB-producer.  (c) Same as B, except that leuB is the target and the cells 

are plated on 7H9 plates.  
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Figure 4 

ORBIT-promoted gene alteration.  The site of action occurs at the replication fork.   An oligomer 

containing a single-stranded version of the Bxb1 attP site (top pictures, red lines) is co-electroporated 

with an attB-containing non-replicating plasmid into a mycobacterial host cell expressing both RecT 

annealase and Bxb1 Integrase.  RecT promotes annealing of the oligo to the lagging strand template.  

Following DNA replication through this region, an attP site is formed in the chromosome (middle 

pictures).  In the same outgrowth period, Bxb1 Integrase promotes site-specific insertion of the plasmid 

into the chromosome (attB x attP).  Left side:  The oligo is designed so that attP is inserted just before 

the stop codon.  The integration event fuses the GFP tag in-frame to the 3’ end of the target gene (with 

an attL site in-frame between them); the recombinant is selected for by HygR.   Right side:  The oligo is 

designed so that attP replaces the target gene and the plasmid integration event allows hygromycin 

resistance to be used to select for the knockout. 

 

Figure 5 

Parameters of the ORBIT process.   A.  The amount of target homology flanking the attP site in an 

oligo designed to create a polA-Flag-DAS+4 fusion in M. smegmatis was examined as a function of 

recombinant formation (HygR).   One microgram of each oligo was electroporated with 200 ng of 

pKM446.  The frequency of targeting is expressed as the percentage of HygR transformants following 

integration of pKM446 relative to a transformation control (20 ng of GenR plasmid pKM390).  

Experiments were performed in triplicate; standard errors are shown.   B.  Colony counts were measured 

after electroporation of 1 μg of an oligo with 70 base flanks (designed to create a polA-Flag-DAS+4 

fusion) with various amounts of pKM446.  CFU/ml was measured following overnight growth of the 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/249292doi: bioRxiv preprint first posted online Jan. 16, 2018; 

http://dx.doi.org/10.1101/249292
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29

electroporation mixtures in 2ml LB.  Experiments were performed in triplicate; standard errors are 

shown. 

 

Figure 6 

ORBIT-generated insertions and deletions in M. tuberculosis and M. smegmatis.   Target gene 

deletions and tags were placed at a variety of positions in the chromosomes of both M. tuberculosis (a) 

and M. smegmatis (b).  In most cases, the oligos contained an attP site flanked by 70 bases of target 

homology.  Insertions (either DAS+4, GFP or His-Flag) are shown in red and deletions are shown in 

blue.   A description of all the types of modifications performed by ORBIT are shown in Table 1 (for M. 

smegmatis) and Table 2 (for M. tuberculosis). 

 

Figure 7. 

ORBIT-generated GFP fusions.  M. smegmatis cells containing GFP-tagged targets were grown in 

7H9-AD-Tween-80 to an optical density of 0.8.  One microliter of the culture was spotted on an agarose 

pad for microscopy. Each bacterial strain was imaged using differential interference contrast (DIC) and 

GFP channels. 

 

Figure 8. 

Promoter replacements.   (a) Diagram of ORBIT-generated promoter replacement.  In the non-

replicating plasmid, the promoter to be inserted into the chromosome is placed to the left of the attB site.  

A TrrnB terminator is placed upstream of this promoter to prevent read-through from the plasmid 

backbone.  The oligo is designed to place attP just upstream of the target gene in place of the 
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endogenous promoter. Following integration, the promoter and inserted ribosome binding site drive 

expression of the chromosomal target gene (lacZ).   

(b)  ORBIT was carried out with plasmids pKM496 (PGroEL), pKM508 (Pimyc) and pKM509 (P38) with 

an oligo that deletes the endogenous promoter.  Extracts of the cells were made and beta-galactosidase 

assays were performed in triplicate (standard error bars shown).  The higher amounts of beta-

galactosidase present in the engineered strains, relative to the starting strain, is likely due to the presence 

of the optimized ribosome binding site following each promoter. 

 

Supplementary Figure 1 

Sequence of the recA-Flag-DAS+4 fusion.  The sequence contains the C-terminal region of recA 

(blue), the 43 bp attR site (orange) created by a crossover between attP and attB (with the crossover core 

sequence in black), and a CG base pair (light blue) included in the ORBIT plasmid to fuse the 43 bp attR 

site with both the Flag tag (green) and the DAS+4 tag (red).  Finally, the stop codon from recA is shown 

in blue. 

 

Supplementary Figure 2 

Design of the ORBIT oligo.  To identify the lagging strand from a sequence file of a target gene 

(reading from the start codon 5’ to 3’), first insert the attP site into the desired position.  Then, use the 

top strand if your target gene is transcribed toward the ori sequence (e.g., green arrows), or use the 

bottom strand if your target gene is transcribed toward the dif region (e.g, red arrows). 
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TABLE 1 

       

 

     ORBIT-promoted M. smegmatis modifications      

                
Gene     function                # correct/# tested 

  

Flag-Das4 tags:  

leuB   MSMEG_2379  3-isopropylmalate dehydrogenase     2/4 
recA   MSMEG_2723  recombinase        4/4 
divVIA  MSMEG_4217  DivIVA protein       3/4 
dnaN   MSMEG_0001  DNA polymerase III, beta subunit     2/2 
dinB  MSMEG_3172  DNA polymerase IV 1      2/2 
dnaK   MSMEG_0709  chaperone  (heat shock)      1/2 
recD   MSMEG_1325  ExoV, α-subunit       2/4   
recB   MSMEG_1327  ExoV, β-subunit       2/2 
adnB  MSMEG_1943  ATP dependent helicase/recombinase    2/2 

dnaE2   MSMEG_1633  DNA polymerase III, alpha subunit     0/2   
recG   MSMEG_2403  ATP-dependent DNA helicase      2/2 
ftsK   MSMEG_2690  DNA translocase        3/6 
ruvA   MSMEG_2944  Holliday junction branch migration     1/2   
ruvB  MSMEG_2945  Holliday junction branch migration     3/4 

ruvC  MSMEG_2943  Holliday junction resolvase      1/2 

priA   MSMEG_3061  replication restart       2/2 

polA   MSMEG_3839  DNA polymerase I       4/6 

fhaB  MSMEG_0034  FHA domain-containing protein     6/12 
sepF  MSMEG_4219  Interacts with FtsZ  and MurG     1/2 

uvrD2  MSMEG_1952  ATP-dependent DNA helicase     2/2 

nucS  MSMEG_4923  ssDNA binding protein      3/4 

    -  MSMEG_4922  conserved hypothetical protein     3/4  
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GFP tags: 

 

dnaN   MSMEG_0001  DNA polymerase III, beta subunit     nr  

mmpL3 MSMEG_0250  MmpL family protein       nr 

sppA  MSMEG_1476  signal peptide peptidase      nr 

clpC  MSMEG_6091  ATP-dependent protease ATP-binding protein   nr 

   -     MSMEG_3596  ATPase        nr 

 

Deletions: 

ΔrecD  MSMEG_1325  ExoV, α-subunit       2/4  

ΔrecF  MSMEG_0003  Replication repair protein      2/4 
ΔrecG   MSMEG_2403  ATP-dependent DNA helicase      2/2 
ΔrecO   MSMEG_4491  DNA repair protein       1/2 

ΔruvC   MSMEG_2943  Holliday junction resolvase      2/6 

ΔrecR  MSMEG_6279  Recombination protein      4/6 

ΔnusS  MSMEG_4923  mismatch repair function      nr 

    -  MSMEG_4922  conserved hypothetical protein     nr  

ΔrhlE  MSMEG_1930  RNA helicase        nr     

ΔdeaD  MSMEG_5042  deaD RNA helicase       nr 

    -  MSMEG_2579  unknown        nr     

    -  MSMEG_3027  unknown         nr     

    -  MSMEG_4256  NLP/P60 family protein      nr  

 

nr (not reported) 
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TABLE 2 

 

 

ORBIT-promoted M. tuberculosis modifications 

                  

    
Knockouts:                

  

Rv# Gene Function 

Rv0503c cmaA2 Cyclopropane-fatty-acyl-phospholipid synthase 

Rv0645c mmaA1 Methoxy mycolic acid synthase 

Rv1174c TB8.4 Low molecular weight T-cell antigen TB8.4 

Rv1184c Rv1184c Possible exported protein 

Rv1273c Rv1273c Probable drugs-transport transmembrane ABC transporter 

Rv1901 cinA Probable CinA-like protein CinA 

Rv3136 PPE51 PPE family protein PPE51 

Rv3822 Rv3822 Conserved hypothetical protein 

Rv1747 Rv1747 Probable conserved transmembrane ABC transporter 

Rv0248c Rv0248c Probable succinate dehydrogenase 

Rv0249c Rv0249c Probable succinate dehydrogenase 

Rv3696 glpK Probable glycerol kinase 

Rv1543 Rv1543 Possible fatty acyl-CoA reductase 

Rv1621c CydD transmembrane ATP-binding protein ABC transporter CydD 

Rv1623c CydA Probable integral membrane cytochrome D ubiquinol oxidase 

Rv2048c Pks12 Polyketide synthase 

Rv2684 arsA Probable arsenic-transport integral membrane protein ArsA 

Rv3680 Rv3680 Probable anion transporter ATPase 

Rv2047 Rv2047 Conserved hypothetical protein 

Rv0244c FadE5 Probable acyl-CoA dehydrogenase FadE5 
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Rv1488 Rv1488 Possible exported conserved protein 

Rv1161-1164 NarG- NarI  Nitrate reduction 

Rv0465c Rv0465c Probable transcriptional regulatory protein 

Rv1620c-1623c cyd operon Respitory chain 

Rv2384 mbtA salicyl-AMP ligase (SAL-AMP ligase) + salicyl-S-ArCP synthetase 

Rv2383c mbtB phenyloxazoline synthetase 

Rv3283 sseA Probable thiosulfate sulfurtransferase SseA 

Rv3270 ctpC Probable metal cation-transporting P-type ATPase C 

Rv0928 pstS3 Periplasmic phosphate-binding lipoprotein PstS3 

Rv0929 pstC2 Phosphate-transport integral membrane ABC transporter 

Rv3869 EccB1 ESX-1 type VII secretion system protein 

Rv2563 Rv2563 glutamine-transport transmembrane protein ABC transporter 

Rv2564 Rv2564 glutamine-transport ATP-binding protein ABC transporter 

Rv3544c fadE28 Probable acyl-CoA dehydrogenase 

Rv3574 kstR Transcriptional regulatory protein 

Rv1321 nucS Probable mismatch repair protein 

Rv3211 rhiE Probable ATP-dependent RNA helicase 

Rv3296 lhr Probable ATP-dep. helicase Lhr (large helicase-related protein) 

Rv1253 deaD Probable cold-shock DeaD-box protein A homolog 

Rv0989c grcC2 Probable polyprenyl-diphosphate synthase 

Rv1592 Rv1592 Conserved hypothetical protein 

 

Insertions (Flag-Das4 tags):  

 

Rv2241 aceE Pyruvate dehydrogenase E1 component 

Rv0218 Rv0218 Probable conserved transmembrane protein 

Rv3370c dnaE2 DNA polymerase III (alpha chain) 

Rv1475c acn Probable iron-regulated aconitate hydratase  

Rv3663c dppD Probable dipeptide-transport ATP-binding protein 

Rv1743 pknE  Probable transmembrane serine/threonine-protein kinase E 

Rv0228 Rv0228 Probable integral membrane acyltransferase 

Rv1005c pabB Probable para-aminobenzoate synthase component 

Rv0556 Rv0556 Probable conserved transmembrane protein 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

peer-review
ed) is the author/funder. It is m

ade available under a
T

he copyright holder for this preprint (w
hich w

as not
. 

http://dx.doi.org/10.1101/249292
doi: 

bioR
xiv preprint first posted online Jan. 16, 2018; 

http://dx.doi.org/10.1101/249292
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35

rv0993 galU UTP--glucose-1-phosphate uridylyltransferase GalU 

Rv3465 rmlC dTDP-4-dehydrorhamnose 3,5-epimerase 

Rv3034c Rv3034c Possible transferase 

Rv1093 glyA1 Serine hydroxymethyltransferase 

Rv2398c cysW Probable sulfate-transport membrane protein ABC transporter 

Rv0054 ssb Single-strand binding protein  

Rv3206c moeB1 Probable molybdenum cofactor biosynthesis protein MoeB1 

Rv2977c thiL Probable thiamine-monophosphate kinase 

Rv3910 Rv3910 Probable conserved transmembrane protein 

Rv3441c mrsA Probable phospho-sugar mutase 

Rv2868c gcpE Probable GcpE protein 

Rv3410c guaB3 Probable inosine-5'-monophosphate dehydrogenase 

Rv2746c pgsA3 Probable PGP synthase PgsA3 

Rv1392 metK Probable S-adenosylmethionine synthetase 

Rv3034c Rv3034c Possible transferase 

Rv0896 gltA2 Probable citrate synthase 

RV2986c hupB DNA-binding protein HU homolog 

Rv3581c ispF Probable 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase 

Rv3212 - Conserved alanine valine rich protein 
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Table 3 

 

ORBIT integration plasmids 
 

 

Plasmid name  Type of modification     Drug resistance markers 

 

 

C-terminal tags: 

 

pKM446  C-terminal tag: Flag-DAS tag     HygR
      

      

pKM468  C-terminal tag:  EGFP-4xGly-TEV-Flag-6xHis   HygR 
        

pKM469  C-terminal tag:  Venus-4xGly-TEV-Flag-6xHis   HygR        
 

pKM489  C terminal tag: SNAP tag      HygR
      

 

pKM490  C-terminal tag: CLIP tag      HygR
      

 

pKM491  C-terminal tag: 4xGly-TEV-Flag-6xHis    HygR
     

 

pKM492  C-terminal tag: 4xGly-TEV-Myc-6xHis    HygR
  

 

pKM493  C-terminal tag:  TEV-Flag-4xGly-EGFP    HygR
  

 

pKM495  C-terminal tag: Flag-DAS tag     ZeoR   
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Knockouts: 

 

pKM464  knockout        HygR
       

 

pKM496  knockout        ZeoR
       

 

 

 

Promoter replacements: 

 

pKM464  Replace endogenous promoter with PHyg    HygR
       

 

pKM496  Replace endogenous promoter with PGroEL (op-rbs1)  ZeoR
  

 

pKM508  Replace endogenous promoter with P21 (op-rbs)   ZeoR 

 

pKM509  Replace endogenous promoter with P38 (op-rbs)   ZeoR
  

 
1)  optimized ribosome binding site  

 
 
 
 
 

  

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

peer-review
ed) is the author/funder. It is m

ade available under a
T

he copyright holder for this preprint (w
hich w

as not
. 

http://dx.doi.org/10.1101/249292
doi: 

bioR
xiv preprint first posted online Jan. 16, 2018; 

http://dx.doi.org/10.1101/249292
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38

 

 

 

 

 

 

Table 4 

 

ORBIT-testing and promotion plasmids 
 

Plasmid   Functions        Drug resistance marker 
            
pKM433   Phage L5 integrating vector; HygΔ60 bp internal deletion; oriE  ZeoR   

 

 

pKM444   PTet-Che9c RecT-Bxb1 Int; TetR, oriE, oriM     KanR 

 

pKM461   PTet-Che9c RecT-Bxb1 Int; SacRB; TetR, oriE, oriM   KanR
 

 

pKM511   PTet-Che9c RecT-Bxb1 Int; SacRB; TetR, oriE, oriM   ZeoR 
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Figure	5	

a.	
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Figure	6a	

4411	kbp	
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Figure	6b	

6988	kbp	
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RecA-Flag-Das+4	fusion	

...AGAGAAGCTCGGTATCGGCGCCGTCGTGACCGCTGAAGCCGATGACGTCCTCCC
GGCCCCGGTTGACTTCGGTTTGTCTGGTCAACCACCGCGGTCTCCGTCGTCAGGATC
ATCGGACTACAAGGACGACGACGACAAGGCCGCCAACGACGAGAACTACTCCGAG
AACTACGCGGACGCCAGCTAG	
	

	 	 	 	 	recA	C-terminus	–	blue	
	 	 	 	 	aZL	site	-	orange	
	 	 	 	 	core	sequence	–	black	 	 		
	 	 	 	 	CG	–	to	make	recA	in	frame	with	tags	
	 	 	 	 	Flag	tag-	green	
	 	 	 	 	DAS+4	tag	–	red	
	 	 	 	 	TAG	–	recA	stop	codon	

	
	
	

Supplementary	Figure	1	
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Supplementary	Figure	2	
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