21 research outputs found

    Differential Protein Modulation in Midguts of Aedes aegypti Infected with Chikungunya and Dengue 2 Viruses

    Get PDF
    International audienceAbstract Background: Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. Methodology and Principal Findings: Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. Conclusion/Significance: Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour virus survival, replication and transmission, suggesting a subversion of the insect cell metabolism by the arboviruses

    Phenotypic and transcriptomic analyses reveal major differences between apple and pear scab nonhost resistance

    Get PDF
    Nonhost resistance is the outcome of most plant/pathogen interactions, but it has rarely been described in Rosaceous fruit species. Apple (Malus x domestica Borkh.) have a nonhost resistance to Venturia pyrina, the scab species attacking European pear (Pyrus communis L.). Reciprocally, P. communis have a nonhost resistance to Venturia inaequalis, the scab species attacking apple. The major objective of our study was to compare the scab nonhost resistance in apple and in European pear, at the phenotypic and transcriptomic levels.  Macro- and microscopic observations after reciprocal scab inoculations indicated that, after a similar germination step, nonhost apple/V. pyrina interaction remained nearly symptomless, whereas more hypersensitive reactions were observed during nonhost pear/V. inaequalis interaction. Comparative transcriptomic analyses of apple and pear nonhost interactions with V. pyrina and V. inaequalis, respectively, revealed differences. Very few differentially expressed genes were detected during apple/V. pyrina interaction, preventing the inferring of underlying molecular mechanisms. On the contrary, numerous genes were differentially expressed during pear/V. inaequalis interaction, allowing a deep deciphering. Pre-invasive defense, such as stomatal closure, could be inferred, as well as several post-invasive defense mechanisms (apoplastic reactive oxygen species accumulation, phytoalexin production and alterations of the epidermis composition). In addition, a comparative analysis between pear scab host and nonhost interactions indicated that, although specificities were observed, two major defense lines seems to be shared in these resistances: cell wall and cuticle potential modifications and phenylpropanoid pathway induction. This first deciphering of the molecular mechanisms underlying a nonhost scab resistance in pear offers new possibilities for the genetic engineering of sustainable scab resistance in this species. Concerning nonhost scab resistance in apple, further analyses must be considered with the aid of tools adapted to this resistance with very few cells engaged

    Shoot differentiation from protocorm callus cultures of Vanilla planifolia (Orchidaceae): proteomic and metabolic responses at early stage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Vanilla planifolia </it>is an important Orchid commercially cultivated for the production of natural vanilla flavour. Vanilla plants are conventionally propagated by stem cuttings and thus causing injury to the mother plants. Regeneration and <it>in vitro </it>mass multiplication are proposed as an alternative to minimize damage to mother plants. Because mass production of <it>V. planifolia </it>through indirect shoot differentiation from callus culture is rare and may be a successful use of in <it>vitro </it>techniques for producing somaclonal variants, we have established a novel protocol for the regeneration of vanilla plants and investigated the initial biochemical and molecular mechanisms that trigger shoot organogenesis from embryogenic/organogenic callus.</p> <p>Results</p> <p>For embryogenic callus induction, seeds obtained from 7-month-old green pods of <it>V. planifolia </it>were inoculated on MS basal medium (BM) containing TDZ (0.5 mg l<sup>-1</sup>). Germination of unorganized mass callus such as protocorm -like structure (PLS) arising from each seed has been observed. The primary embryogenic calli have been formed after transferring on BM containing IAA (0.5 mg l<sup>-1</sup>) and TDZ (0.5 mg l<sup>-1</sup>). These calli were maintained by subculturing on BM containing IAA (0.5 mg l<sup>-1</sup>) and TDZ (0.3 mg l<sup>-1</sup>) during 6 months and formed embryogenic/organogenic calli. Histological analysis showed that shoot organogenesis was induced between 15 and 20 days after embryogenic/organogenic calli were transferred onto MS basal medium with NAA (0.5 mg l<sup>-1</sup>). By associating proteomics and metabolomics analyses, the biochemical and molecular markers responsible for shoot induction have been studied in 15-day-old calli at the stage where no differentiating part was visible on organogenic calli. Two-dimensional electrophoresis followed by matrix-assisted laser desorption ionization time-of-flight-tandem mass spectrometry (MALDI-TOF-TOF-MS) analysis revealed that 15 protein spots are significantly expressed (<it>P </it>< 0.05) at earlier stages of shoot differentiation. The majority of these proteins are involved in amino acid-protein metabolism and photosynthetic activity. In accordance with proteomic analysis, metabolic profiling using 1D and 2D NMR techniques showed the importance of numerous compounds related with sugar mobilization and nitrogen metabolism. NMR analysis techniques also allowed the identification of some secondary metabolites such as phenolic compounds whose accumulation was enhanced during shoot differentiation.</p> <p>Conclusion</p> <p>The subculture of embryogenic/organogenic calli onto shoot differentiation medium triggers the stimulation of cell metabolism principally at three levels namely (i) initiation of photosynthesis, glycolysis and phenolic compounds synthesis; (ii) amino acid - protein synthesis, and protein stabilization; (iii) sugar degradation. These biochemical mechanisms associated with the initiation of shoot formation during protocorm - like body (PLB) organogenesis could be coordinated by the removal of TDZ in callus maintenance medium. These results might contribute to elucidate the complex mechanism that leads to vanilla callus differentiation and subsequent shoot formation into PLB organogenesis. Moreover, our results highlight an early intermediate metabolic event in vanillin biosynthetic pathway with respect to secondary metabolism. Indeed, for the first time in vanilla tissue culture, phenolic compounds such as glucoside A and glucoside B were identified. The degradation of these compounds in specialized tissue (i.e. young green beans) probably contributes to the biosynthesis of glucovanillin, the parent compound of vanillin.</p

    Quantitative proteomic determination of diethylstilbestrol action on prostate cancer

    No full text
    International audienceDiethylstilbestrol (DES) has a direct cellular mechanism inhibition on prostate cancer. Its action is independent from the oestrogen receptors and is preserved after a first-line hormonal therapy. We aimed to identify proteins involved in the direct cellular inhibition effects of DES on prostate cancer. We used a clonogenic assay to establish the median lethal concentration of DES on 22RV1 cells. 22RV1 cells were exposed to standard and DES-enriched medium. After extraction, protein expression levels were obtained by two-dimensional differential in-gel electrophoresis (2D-DIGE) and isotope labelling tags for relative and absolute quantification (iTRAQ). Proteins of interest were analysed by quantitative RT-PCR and western blotting. The differentially regulated proteins (P1.3 fold; P<<0.05). The iTRAQ analyses allowed the identification of 895 proteins. Among these proteins, 65 had a modified expression due to DES exposure (i.e., 23 overexpressed and 42 underexpressed). Most of these proteins were implicated in apoptosis and redox processes and had a predicted mitochondrial expression. Additionally, ingenuity pathway analysis placed the OAT and HSBP1 genes at the centre of a highly significant network. RT-PCR confirmed the overexpression of OAT (P50.006) and HSPB1 (P50.046)

    Comparison of Spheroids Formed by Rat Glioma Stem Cells and Neural Stem Cells Reveals Differences in Glucose Metabolism and Promising Therapeutic Applications

    No full text
    International audienceCancer stem cells (CSCs) are thought to be partially responsible for cancer resistance to current therapies and tumor recurrence. Dichloroacetate (DCA), a compound capable of shifting metabolism from glycolysis to glucose oxidation, via an inhibition of pyruvate dehydrogenase kinase was used. We show that DCA is able to shift the pyruvate metabolism in rat glioma CSCs but has no effect in rat neural stem cells. DCA forces CSCs into oxidative phosphorylation but does not trigger the production of reactive oxygen species and consecutive anti-cancer apoptosis. However, DCA, associated with etoposide or irradiation, induced a Bax-dependent apoptosis in CSCs in vitro and decreased their proliferation in vivo. The former phenomenon is related to DCA-induced Foxo3 and p53 expression, resulting in the overexpression of BH3-only proteins (Bad, Noxa, and Puma), which in turn facilitates Bax-dependent apoptosis. Our results demonstrate that a small drug available for clinical studies potentiates the induction of apoptosis in glioma CSCs

    Populations of the Parasitic Plant Phelipanche ramosa Influence Their Seed Microbiota

    No full text
    International audienceSeeds of the parasitic weedPhelipanche ramosaare well adapted to their hosts because they germinate and form haustorial structures to connect to roots in response to diverse host-derived molecular signals.P. ramosapresents different genetic groups that are preferentially adapted to certain hosts. Since there are indications that microbes play a role in the interaction especially in the early stages of the interaction, we studied the microbial diversity harbored by the parasitic seeds with respect to their host and genetic group. Twenty-six seed lots from seven cropping plots of three different hosts-oilseed rape, tobacco, and hemp-in the west of France were characterized for their bacterial and fungal communities using 16S rRNA gene and ITS (Internal transcribed spacer) sequences, respectively. First seeds were characterized genetically using twenty microsatellite markers and phenotyped for their sensibility to various germination stimulants including strigolactones and isothiocyanates. This led to the distinction of threeP. ramosagroups that corresponded to their host of origin. The observed seed diversity was correlated to the host specialization and germination stimulant sensitivity withinP. ramosaspecies. Microbial communities were both clustered by host and plot of origin. The seed core microbiota was composed of seventeen species that were also retrieved from soil and was in lower abundances for bacteria and similar abundances for fungi compared to seeds. The host-related core microbiota of parasitic seeds was limited and presumably well adapted to the interaction with its hosts. Two microbial candidates ofSphingobacteriumspecies andLeptosphaeria maculanswere especially identified in seeds from oilseed rape plots, suggesting their involvement in host recognition and specialization as well as seed fitness forP. ramosaby improving the production of isothiocyanates from glucosinolates in the rhizosphere of oilseed rape

    QTL Analysis and Candidate Gene Mapping for the Polyphenol Content in Cider Apple

    Get PDF
    Polyphenols have favorable antioxidant potential on human health suggesting that their high content is responsible for the beneficial effects of apple consumption. They control the quality of ciders as they predominantly account for astringency, bitterness, color and aroma. In this study, we identified QTLs controlling phenolic compound concentrations and the average polymerization degree of flavanols in a cider apple progeny. Thirty-two compounds belonging to five groups of phenolic compounds were identified and quantified by reversed phase liquid chromatography on both fruit extract and juice, over three years. The average polymerization degree of flavanols was estimated in fruit by phloroglucinolysis coupled to HPLC. Parental maps were built using SSR and SNP markers and used for the QTL analysis. Sixty-nine and 72 QTLs were detected on 14 and 11 linkage groups of the female and male maps, respectively. A majority of the QTLs identified in this study are specific to this population, while others are consistent with previous studies. This study presents for the first time in apple, QTLs for the mean polymerization degree of procyanidins, for which the mechanisms involved remains unknown to this day. Identification of candidate genes underlying major QTLs was then performed in silico and permitted the identification of 18 enzymes of the polyphenol pathway and six transcription factors involved in the apple anthocyanin regulation. New markers were designed from sequences of the most interesting candidate genes in order to confirm their co-localization with underlying QTLs by genetic mapping. Finally, the potential use of these QTLs in breeding programs is discussed

    Haustorium initiation in the obligate parasitic plant Phelipanche ramosa involves a host-exudated cytokinin signal

    No full text
    The heterotrophic lifestyle of parasitic plants relies on the development of the haustorium, a specific infectious organ required for attachment to host roots. While haustorium development is initiated upon chemodetection of host-derived molecules in hemiparasitic plants, the induction of haustorium formation remains largely unknown in holoparasitic species such as Phelipanche ramosa. This work demonstrates that the root exudates of the host plant Brassica napus contain allelochemicals displaying haustorium-inducing activity on P. ramosa germinating seeds, which increases the parasite aggressiveness. A de novo assembled transcriptome and microarray approach with P. ramosa during early haustorium formation upon treatment with B. napus root exudates allowed the identification of differentially expressed genes involved in hormone signaling. Bioassays using exogenous cytokinins and the specific cytokinin receptor inhibitor PI-55 showed that cytokinins induced haustorium formation and increased parasite aggressiveness. Root exudates triggered the expression of cytokinin-responsive genes during early haustorium development in germinated seeds, and bio-guided UPLC-ESI(+)-/MS/MS analysis showed that these exudates contain a cytokinin with dihydrozeatin characteristics. These results suggest that cytokinins constitutively exudated from host roots play a major role in haustorium formation and aggressiveness in P. ramosa
    corecore