91 research outputs found

    Biodegradation of Carbamazepine and Diclofenac by Bacterial Strain Labrys portucalensis

    Get PDF
    The occurrence of pharmaceuticals in the environment has been a topic of increasing concern. Pharmaceuticals are not completely mineralized in the human body and are released on the sewage systems as the pharmaceutical itself and as their “biologically active” metabolites through excretion, as well as by improper elimination and disposal. Conventional wastewater treatment plants (WWTPs) are not designed to remove these emerging pollutants and they are thus released into the environment. The antiepileptic drug carbamazepine (CBZ) and the non-steroidal anti-inflammatory diclofenac (DCF) are two widely used pharmaceuticals, frequently detected in water bodies, including rivers and groundwater, in concentrations ranging from ng L 1 to mg L 1. These two compounds were classified as medium to high-risk pollutants in WWTP effluents and surface waters. Also, CBZ has been suggested as a molecular marker of wastewater contamination in surface water and groundwater and the European Union included DCF in the watch list of substances Directive to be monitored. In the present study, biodegradation of CBZ and DCF by the bacterial strain Labrys portucalensis F11, a strain able to degrade other pharmaceutical compounds, was assessed; tests were performed with F11 as single carbon and energy source, as well as in presence of 5.9mM of sodium acetate. In assays supplemented with 2.0 and 4.0 µM of CBZ, the compound was no longer detected in the bulk medium after 24hr and 5days, respectively. Complete degradation was achieved in 21 days for 11.0 µM and in 23 days for 21.0 µM. For the highest concentration tested (43.0 µM), 95% of degradation was achieved in 30days. Supplementation with acetate increased the degradation rate of CBZ, for all tested concentrations. In the case of DCF, when supplemented as a single carbon source, approximately 70% of DCF (1.7, 3.3, 8.4, 17.5 and 34.0 µM) was degraded in 30days. Complete degradation was achieved in the presence of acetate for all tested concentrations, at higher degradation rates. The detection of intermediates produced during DCF biodegradation was performed by UPLC-QTOF/MS/MS, which allowed the identification of a range of metabolites. Stoichiometric liberation of chorine occurred and no metabolites were detected at the end of the biodegradation assays suggesting a complete mineralization of DCF. Strain Labrys portucalensis F11 proved to be able to degrade these two top priority environmental contaminants and may be potentially useful for biotechnological applications/environment remediation.info:eu-repo/semantics/publishedVersio

    UV and solar-based photocatalytic degradation of organic pollutants by nano-sized TiO2 grown on carbon nanotubes

    Get PDF
    Anew photocatalyst based on nano-sized TiO2 supported on single wall carbon nanotubes (SWCNTs) with tailored photocatalytic properties upon irradiation by both UV and solar simulated light was successfully employed for the degradation of a mixture of 22 organic pollutants in both ultrapure water and real secondary wastewater effluent. First-order degradation rates showed that under UV irradiation nanosized TiO2 supported on SWCNTs is much more effective than conventional Degussa P25 for degradation of iopamidol, iopromide, diatrizoic acid, diclofenac, triclosan and sulfamethoxazole in ultrapure water. For the remaining organics the degradation rates were comparable being in most of the cases Degussa P25 slightly more effective than nano-sized TiO2 supported on SWCNTs. Reactions performed in real secondary wastewater effluent showed a general reduction of degradation rates. Specifically, such a reduction was in the range 9-87% and 9-96% for the Degussa P25 and the nano-sized TiO2 supported on SWCNTs, respectively. Overall, the nano-sized TiO2 supported on SWCNTs under UV irradiation displayed comparable degradation rates with respect to convention Degussa P25. Under simulated solar irradiation the new prepared photocatalyst showed lower efficiency than Degussa P25 in ultrapure water. Such a gap was greatly reduced when the reactions were carried out in real secondary wastewater effluent. The nano-sized TiO2 supported on SWCNTs demonstrated to have the addition benefit to be easily removed from the aqueous solution by a mild centrifugation or a filtration step and, consequently, can be reused for a further photocatalytic treatment batch. Therefore, the obtained results showed that new photocatalyst based on nano-sized TiO2 supported on SWCNTs has proved to be a promising candidate to be used in a photocatalytic based-AOP and to be integrated with a biological step for the effective removal of emerging organic pollutants

    Flow Index: a novel, non-invasive, continuous, quantitative method to evaluate patient inspiratory effort during pressure support ventilation

    Get PDF
    Background: The evaluation of patient effort is pivotal during pressure support ventilation, but a non-invasive, continuous, quantitative method to assess patient inspiratory effort is still lacking. We hypothesized that the concavity of the inspiratory flow-time waveform could be useful to estimate patient’s inspiratory effort. The purpose of this study was to assess whether the shape of the inspiratory flow, as quantified by a numeric indicator, could be associated with inspiratory effort during pressure support ventilation. Methods: Twenty-four patients in pressure support ventilation were enrolled. A mathematical relationship describing the decay pattern of the inspiratory flow profile was developed. The parameter hypothesized to estimate effort was named Flow Index. Esophageal pressure, airway pressure, airflow, and volume waveforms were recorded at three support levels (maximum, minimum and baseline). The association between Flow Index and reference measures of patient effort (pressure time product and pressure generated by respiratory muscles) was evaluated using linear mixed effects models adjusted for tidal volume, respiratory rate and respiratory rate/tidal volume. Results: Flow Index was different at the three pressure support levels and all group comparisons were statistically significant. In all tested models, Flow Index was independently associated with patient effort (p < 0.001). Flow Index prediction of inspiratory effort agreed with esophageal pressure-based methods. Conclusions: Flow Index is associated with patient inspiratory effort during pressure support ventilation, and may provide potentially useful information for setting inspiratory support and monitoring patient-ventilator interactions

    Microbiological and chemical assessment of wastewater discharged by infiltration trenches in fractured and karstified limestone (Sca.re.s. project 2019–2020)

    Get PDF
    This study investigated the environmental contamination of groundwater as a consequence of the discharge of treated wastewater into the soil. The investigation focused on a wastewater treatment plant located in an area fractured by karst in the Salento peninsula (Apulia, Italy). Water samples were collected at four sites (raw wastewater, treated wastewater, infiltration trench, and monitoring well), monthly from May to December 2019 (with the exception of August), and were tested for (1) panel of bacteria; (2) enteric viruses; and (3) chemical substances. A gradual reduction in the concentration of bacteria, viruses and contaminants of emerging concern was observed across the profile of soil fissured by karst. All monitored bacteria were absent from the monitoring well, except for Pseudomonas aeruginosa. Pepper mild mottle virus and adenovirus were detected at all sampling sites. Personal care products and X-ray contrast media showed the greatest decrease in concentration from infiltration trench to the monitoring well, while the highest residual concentrations in the monitoring well were found for anticonvulsants (78.5%), antimicrobials (41.3%), and antipsychotic drugs (38.6%). Our results show that parameters provided by current law may not always be sufficient to evaluate the sanitary risk relating to the discharge of treated wastewater to the soil

    A lower global lung ultrasound score is associated with higher likelihood of successful extubation in invasively ventilated COVID-19 patients

    Get PDF
    Lung ultrasound (LUS) can be used to assess loss of aeration, which is associated with outcome in patients with coronavirus disease 2019 (COVID-19) presenting to the emergency department. We hypothesized that LUS scores are associated with outcome in critically ill COVID-19 patients receiving invasive ventilation. This retrospective international multicenter study evaluated patients with COVID-19-related acute respiratory distress syndrome (ARDS) with at least one LUS study within 5 days after invasive mechanical ventilation initiation. The global LUS score was calculated by summing the 12 regional scores (range 0-36). Pleural line abnormalities and subpleural consolidations were also scored. The outcomes were successful liberation from the ventilator and intensive care mortality within 28 days, analyzed with multistate, competing risk proportional hazard models. One hundred thirty-seven patients with COVID-19-related ARDS were included in our study. The global LUS score was associated with successful liberation from mechanical ventilation (hazard ratio [HR]: 0.91 95% confidence interval [CI] 0.87-0.96; P = 0.0007) independently of the ARDS severity, but not with 28 days mortality (HR: 1.03; 95% CI 0.97-1.08; P = 0.36). Subpleural consolidation and pleural line abnormalities did not add to the prognostic value of the global LUS score. Examinations within 24 hours of intubation showed no prognostic value. To conclude, a lower global LUS score 24 hours after invasive ventilation initiation is associated with increased probability of liberation from the mechanical ventilator COVID-19 ARDS patients, independently of the ARDS severity.Pathogenesis and treatment of chronic pulmonary disease

    Degradation of emerging organic pollutants in wastewater effluents by electrochemical photocatalysis on nanostructured TiO2 meshes

    No full text
    An immobilized photoactive TiO2 coating grown directly on titanium meshes was successfully exploited for the electrochemical photocatalytic degradation of carbamazepine in real secondary wastewater effluent. The catalyst was prepared by Plasma Electrolytic Oxidation and during the photocatalytic water treatment an electrical polarization (bias) was applied to the catalyst. The investigated process was compared with the conventional one employing suspended TiO2 powder (Degussa P25). Results showed that carbamazepine degradation rate follows the order UV/supported TiO2+bias ≈ UV/TiO2 Degussa P25 &gt; UV/supported TiO2 &gt; UV. The investigation also included the identification of other micropollutants and degradation products. This allowed the detection of 201 compounds present in the secondary wastewater effluent employed for the photocatalysis tests, 51 of them also successfully associated to compounds of emerging concern (CECs), and 194 to transformation products (TPs). The degradation of detected compounds followed first-order kinetics and the mean kinetic constant values of the 51 CECs resulted to be 0.048, 0.035 and 0.043 min−1 for the TiO2+Bias + UV, TiO2+UV and UV, respectively. As for TPs, results showed that the TiO2+Bias + UV treatment is much more efficient than both TiO2+UV and UV in minimizing the intensity of the organics in the real wastewater. Such a better performance was more pronounced at higher reaction time reaching 60% reduction of mean peak area of TPs at 90 min of reaction. Among the detected TPs also compounds belonging to known carbamazepine TPs were found. This allowed to propose a degradation pathway of carbamazepine. The supported catalyst was positively tested for 15 cycles demonstrating that it has the potential to be used in real wastewater tertiary steps aimed at removing CECs
    corecore