207 research outputs found

    Convergent extension analysis in mouse whole embryo culture

    Get PDF
    Mutations have been identified in a non-canonical Wnt signalling cascade (the planar cell polarity pathway) in several mouse genetic models of severe neural tube defects. In each of these models, neurulation fails to be initiated at the 3-4 somite stage, leading to an almost entirely open neural tube (termed craniorachischisis). Studies in whole embryo culture have identified a defect in the morphogenetic process of convergent extension during gastrulation, preceding the onset of neural tube closure. The principal defect is a failure of midline extension, both in the neural plate and axial mesoderm. This leads to an abnormally wide neural plate in which the elevating neural folds are too far apart to achieve closure. In this chapter, we provide details of several experimental methods that can be used to evaluate convergent extension in cultured mouse embryos. We describe analytical methods that can reveal the abnormalities that characterise neurulation-stage embryos with defective planar cell polarity signalling, in particular the loop-tail (Lp; Vangl2) mutant

    Spina bifida-predisposing heterozygous mutations in Planar Cell Polarity genes and Zic2 reduce bone mass in young mice

    Get PDF
    Fractures are a common comorbidity in children with the neural tube defect (NTD) spina bifida. Mutations in the Wnt/planar cell polarity (PCP) pathway contribute to NTDs in humans and mice, but whether this pathway independently determines bone mass is poorly understood. Here, we first confirmed that core Wnt/PCP components are expressed in osteoblasts and osteoclasts in vitro. In vivo, we performed detailed µCT comparisons of bone structure in tibiae from young male mice heterozygous for NTD-associated mutations versus WT littermates. PCP signalling disruption caused by Vangl2 (Vangl2Lp/+) or Celsr1 (Celsr1Crsh/+) mutations significantly reduced trabecular bone mass and distal tibial cortical thickness. NTD-associated mutations in non-PCP transcription factors were also investigated. Pax3 mutation (Pax3Sp2H/+) had minimal effects on bone mass. Zic2 mutation (Zic2Ku/+) significantly altered the position of the tibia/fibula junction and diminished cortical bone in the proximal tibia. Beyond these genes, we bioinformatically documented the known extent of shared genetic networks between NTDs and bone properties. 46 genes involved in neural tube closure are annotated with bone-related ontologies. These findings document shared genetic networks between spina bifida risk and bone structure, including PCP components and Zic2. Genetic variants which predispose to spina bifida may therefore independently diminish bone mass

    Wolbachia Bacteria Reside in Host Golgi-Related Vesicles Whose Position Is Regulated by Polarity Proteins

    Get PDF
    Wolbachia pipientis are intracellular symbiotic bacteria extremely common in various organisms including Drosophila melanogaster, and are known for their ability to induce changes in host reproduction. These bacteria are present in astral microtubule-associated vesicular structures in host cytoplasm, but little is known about the identity of these vesicles. We report here that Wolbachia are restricted only to a group of Golgi-related vesicles concentrated near the site of membrane biogenesis and minus-ends of microtubules. The Wolbachia vesicles were significantly mislocalized in mutant embryos defective in cell/planar polarity genes suggesting that cell/tissue polarity genes are required for apical localization of these Golgi-related vesicles. Furthermore, two of the polarity proteins, Van Gogh/Strabismus and Scribble, appeared to be present in these Golgi-related vesicles. Thus, establishment of polarity may be closely linked to the precise insertion of Golgi vesicles into the new membrane addition site

    Towards Visible Light Hydrogen Generation: Quantum Dot-Sensitization via Efficient Light Harvesting of Hybrid-TiO2

    Get PDF
    We report pronounced enhancement of photoelectrochemical hydrogen generation of a quantum dot-sensitized hybrid-TiO2 (QD/H-TiO2) electrode that is composed of a mesoporous TiO2 layer sandwiched by a double sided energy harvesting layer consisting of a surface-textured TiO2 inverse opals layer on the bottom and a patterned mesoporous TiO2 layer on the top. CdSe/H-TiO2 exhibits a maximum photocurrent density of similar to 16.2 mA/cm(2), which is 35% higher than that of the optimized control sample (CdSe/P25), achieved by matching of the bandgap of quantum dot-sensitization with the wavelength where light harvesting of H-TiO2 is observed. Furthermore, CdSe/H-TiO2 under filtered exposure conditions recorded current density of similar to 14.2 mA/cm(2), the greatest value in the visible range. The excellent performance of the quantum dot-sensitized H-TiO2 suggests that alteration of the photoelectrodes to suitable nanostructures with excellent light absorption may offer optimal strategies for attaining maximum efficiency in a variety of photoconversion systems.open3

    The Genetic Signature of Sex-Biased Migration in Patrilocal Chimpanzees and Humans

    Get PDF
    A large body of theoretical work suggests that analyses of variation at the maternally inherited mitochondrial (mt)DNA and the paternally inherited non-recombining portion of the Y chromosome (NRY) are a potentially powerful way to reveal the differing migratory histories of men and women across human societies. However, the few empirical studies comparing mtDNA and NRY variation and known patterns of sex-biased migration have produced conflicting results. Here we review some methodological reasons for these inconsistencies, and take them into account to provide an unbiased characterization of mtDNA and NRY variation in chimpanzees, one of the few mammalian taxa where males routinely remain in and females typically disperse from their natal groups. We show that patterns of mtDNA and NRY variation are more strongly contrasting in patrilocal chimpanzees compared with patrilocal human societies. The chimpanzee data we present here thus provide a valuable comparative benchmark of the patterns of mtDNA and NRY variation to be expected in a society with extremely female-biased dispersal

    Nutrients cause grassland biomass to outpace herbivory

    Get PDF
    Human activities are transforming grassland biomass via changing climate, elemental nutrients, and herbivory. Theory predicts that food-limited herbivores will consume any additional biomass stimulated by nutrient inputs ('consumer-controlled'). Alternatively, nutrient supply is predicted to increase biomass where herbivores alter community composition or are limited by factors other than food ('resource-controlled'). Using an experiment replicated in 58 grasslands spanning six continents, we show that nutrient addition and vertebrate herbivore exclusion each caused sustained increases in aboveground live biomass over a decade, but consumer control was weak. However, at sites with high vertebrate grazing intensity or domestic livestock, herbivores consumed the additional fertilization-induced biomass, supporting the consumer-controlled prediction. Herbivores most effectively reduced the additional live biomass at sites with low precipitation or high ambient soil nitrogen. Overall, these experimental results suggest that grassland biomass will outstrip wild herbivore control as human activities increase elemental nutrient supply, with widespread consequences for grazing and fire risk

    Differential activation of inflammatory pathways in A549 type II pneumocytes by Streptococcus pneumoniae strains with different adherence properties

    Get PDF
    BACKGROUND: Adherence of Streptococcus pneumoniae bacteria to lung cells is a first step in the progression from asymptomatic carriage to pneumonia. Adherence abilities vary widely among S. pneumoniae patient isolates. In this study, the binding properties of S. pneumoniae isolates and the effects of binding on activation of the Nuclear Factor-Kappa-B (NFκB) pathway and cytokine secretion by type II pneumocytes were measured. METHODS: Mechanisms of high- and low-binding S. pneumoniae adherence to A549 cells were investigated by blocking putative receptors on bacteria and host cells with antibody and by eluting choline-binding proteins off of bacterial surfaces. NFκB activation was measured by western blot and immunocytochemistry and cytokine secretion was detected by a protein array. RESULTS: This study shows that S. pneumoniae isolates from pneumonia patients (n = 298) can vary by as much as 1000-fold in their ability to bind to human lung epithelial cells. This difference resulted in differential activation of the NFκB pathway. High-, but not low-binding S. pneumoniae used Choline-binding protein A (CbpA) to bind to complement component C3 on epithelial cell surfaces. Interleukin-8 (IL-8) was the only cytokine secreted by cells treated with either low- or high-binding S. pneumoniae. CONCLUSION: These results indicate that S. pneumoniae clinical isolates are not homogeneous in their interaction with host epithelial cells. The differential activation of host cells by high- and low-binding S. pneumoniae strains could have implications for the treatment of pneumococcal pneumonia and for vaccine development
    corecore