20 research outputs found

    Repeated Plyometric Exercise Attenuates Blood Glucose in Healthy Adults

    Get PDF
    International Journal of Exercise Science 10(7): 1076-1084, 2017. Plyometric exercise is popular in commercial exercise programs aiming to maximize energy expenditure for weight loss. However, the effect of plyometric exercise on blood glucose is unknown. The purpose of this study was to investigate the effect of relatively high intensity plyometric exercise on blood glucose. Thirteen subjects (6 females age= 21.8 ± 1.0 yrs.; height= 163.7 ± 7.8 cm; mass= 60.8 ± 6.7 kg and 7 males age= 22.0 ± 2.6 yrs.; height= 182.3 ± 3.6 cm; mass= 87.4 ± 12.5 kg) volunteered to participate. Subjects completed two random conditions on two separate days, consisting of either five sets of 10 maximal effort countermovement squat jumps (SJ) with 50 seconds’ rest between sets or quiet sitting (SIT) for the time equated to the SJ duration (~4min). Immediately after each condition, subjects drank 75g of anhydrous glucose (CHO) in 100ml of water. Blood glucose measurements were taken via finger prick pre and immediately post SJ or SIT, and 5, 15, 30, and 60 min post. A 2x6 (condition x time) ANOVA revealed a significant interaction where SJ blood glucose was lower at 15 (114.0 ± 14.6 mg/dl) and 30 (142.1 ± 22.5 mg/dl) min compared to SIT (15min 130.8 ± 14.0 mg/dl and 30min 159.3 ± 21.0 mg/dl). The current plyometric protocol attenuated CHO-induced blood glucose at 15 and 30 min. This may be due to increased physiological stress applied to the muscles, thus increasing muscular glucose uptake

    Non-pharmacological management of osteoporosis: a consensus of the Belgian Bone Club

    Get PDF
    This consensus article reviews the various aspects of the non-pharmacological management of osteoporosis, including the effects of nutriments, physical exercise, lifestyle, fall prevention, and hip protectors. Vertebroplasty is also briefly reviewed. Non-pharmacological management of osteoporosis is a broad concept. It must be viewed as an essential part of the prevention of fractures from childhood through adulthood and the old age. The topic also includes surgical procedures for the treatment of peripheral and vertebral fractures and the post-fracture rehabilitation. The present document is the result of a consensus, based on a systematic review and a critical appraisal of the literature. Diets deficient in calcium, proteins or vitamin D impair skeletal integrity. The effect of other nutriments is less clear, although an excessive consumption of sodium, caffeine, or fibres exerts negative effects on calcium balance. The deleterious effects of tobacco, excessive alcohol consumption and a low BMI are well accepted. Physical activity is of primary importance to reach optimal peak bone mass but, if numerous studies have shown the beneficial effects of various types of exercise on bone mass, fracture data as an endpoint are scanty. Fall prevention strategies are especially efficient in the community setting, but less evidence is available about their effectiveness in preventing fall-related injuries and fractures. The efficacy of hip protectors remains controversial. This is also true for vertebroplasty and kyphoplasty. Several randomized controlled studies had reported a short-term advantage of vertebroplasty over medical treatment for pain relief, but these findings have been questioned by recent sham-controlled randomized clinical studies

    Short-Term Effects of Eccentric Overload Versus Traditional Back Squat Training on Strength and Power

    No full text
    Background of Study: Benefits of training with eccentric overload (EO) include increased concentric strength, eccentric strength, explosiveness, and muscle adaptation. There is a lack of practical strength training protocols that compare traditional methods and EO. Purpose: Compare effects of eccentric overload versus traditional training on strength and performance. Method: Thirty-three trained males (age: 21.4 ± 2.7 years) were divided into three groups: Traditional (TRAD, N =12), EO, (N =11), and Control (CTRL, N =10). Back squat training lasted five weeks. The average intensity (%1RM) for each repetition and the volume was the same between groups. Results: Multiple 3x2 (Group x Time) Analyses of Variance (ANOVAs) were performed on the following: 1RM, eccentric 1RM (Ecc1RM), countermovement jump height (CMJ), and 20-meter sprint times. A significant Group x Time interaction (p =.001) was observed for Ecc1RM. The source was a significant increase in Ecc1RM strength from pre to post-test for the EO group (+16.9 kg) and TRAD group (+12.7 kg). A significant Group x Time interaction (p =.026) was observed for CMJ. The source was a significant increase in CMJ height from pre to post-test for the EO group (+3.8 cm) and TRAD group (+2.9 cm). Conclusions: Using EO and TRAD during a short-term back squat training protocol enhanced vertical jump explosiveness and eccentric strength. Athletes aiming to enhance lower body explosiveness and eccentric strength are likely benefit from EO. Athletes looking to enhance concentric strength should adhere to methods whereby paired concentric-eccentric actions are the primary focus

    Effects of Kettlebell Swing vs. Explosive Deadlift Training on Strength and Power

    No full text
    Background: Recent research has compared explosive deadlift to kettlebell training observing their effects on strength. The kettlebell swing is a popular practical exercise as it shares share a hip hinge movement with the explosive deadlift, but the two have not been compared. Objectives: The purpose of this study was to compare the effects of kettlebell swing vs. explosive deadlift training on strength and power. Methods: Thirty-one recreationally resistance-trained men (age = 23.1 ± 2.3 years, height = 175.5 ± 6.6 cm, mass = 83.9 ± 13.8 kg, 1RM deadlift = 159.9 ± 31.7 kg) were randomly assigned to one of two groups [kettlebell swing group (KBG) n = 15, or explosive deadlift group (EDLG) n = 16]. Vertical jump height, isometric mid-thigh pull (MTP), and 1RM deadlift were measured pre and post training. Both groups trained twice per week for 4 weeks. Volume and load were increased after the first 2 weeks of training. Results: A 2 (time) x 2 (group) mixed factor ANOVA revealed a significant (P<0.05) increase in deadlift 1RM (pre: 159.9 ± 31.7 kg, post: 168.9 ± 31.8 kg) and vertical jump height (pre: 56.6 ± 9.9 cm, post: 57.9 ± 9.7 cm) for both groups, but were not significantly different between groups. There were no significant changes in MTP. Conclusions: Strength and conditioning professionals may use both kettlebell swings and explosive deadlifts to increase deadlift strength and vertical jump power

    Effects of Short-Term Jump Squat Training With and Without Chains on Strength and Power in Recreational Lifters

    No full text
    Background: The use of chains in resistance training is a way to accommodate the muscular strength curve. Short-term training and jump squats have been shown to increase back squat strength, but not in conjunction with each other or with chains. Jump squats have also been used to increase jump height and power. Objectives: The purpose of this study was to investigate the effects of short-term jump squat training with and without chains on strength and power. Methods: Thirty-one resistance-trained men volunteered to participate (age = 23.87 ± 2.2 years, height=174.87 ± 6.94 cm, mass = 82.74 ± 14.95 kg) and were randomly assigned to one of three groups [control (C) = 10, no chains (NC) =10, or chains (CH) = 11]. Participants had their jump height (VJ) and back squat strength (BS) tested before and after a week of training. The NC and CH groups performed three training sessions consisting of five sets of three reps of jump squats at 30% 1RM with 30s rest between sets. The CH group had 20% of their load added by chains when standing erect. The C group did not train. Results: A 3 (group: CH, NC, C) x 2 (time: pre, post) mixed factor ANOVA revealed a significant (p = 0.006) interaction for back squat 1RM. Both the CH (pre 142.56 ± 20.40 kg; post 145.66 ± 19.59 kg) and NC (pre 150.00 ± 15.23 kg; post 154.77 ± 15.09 kg) groups significantly increased while the C (pre 157.27 ± 25.35 kg; post 156.36 ± 24.85 kg) group showed no difference. There were no significant interactions (p =0.32) or main effects for VJ (C = pre 50.59 ± 9.39cm; post 51.29 ± 9.68cm; NC = pre 55.29 ± 5.23cm; post 57.39 ± 5.22cm; CH = pre 46.19 ± 5.02; post 47.45 ± 4.62.) Conclusions: The CH group was able to increase strength while lifting less overall weight. Coaches may use short-term training with chains to yield a similar increase in back squat strength as without chains. Keywords: variable resistance, back squats, novel, vertical jum

    Effects of Short-Term Jump Squat Training With and Without Chains on Strength and Power in Recreational Lifters

    No full text
    Background: The use of chains in resistance training is a way to accommodate the muscular strength curve. Short-term training and jump squats have been shown to increase back squat strength, but not in conjunction with each other or with chains. Jump squats have also been used to increase jump height and power. Objectives: The purpose of this study was to investigate the effects of short-term jump squat training with and without chains on strength and power. Methods: Thirty-one resistance-trained men volunteered to participate (age = 23.87 ± 2.2 years, height=174.87 ± 6.94 cm, mass = 82.74 ± 14.95 kg) and were randomly assigned to one of three groups [control (C) = 10, no chains (NC) =10, or chains (CH) = 11]. Participants had their jump height (VJ) and back squat strength (BS) tested before and after a week of training. The NC and CH groups performed three training sessions consisting of five sets of three reps of jump squats at 30% 1RM with 30s rest between sets. The CH group had 20% of their load added by chains when standing erect. The C group did not train. Results: A 3 (group: CH, NC, C) x 2 (time: pre, post) mixed factor ANOVA revealed a significant (p = 0.006) interaction for back squat 1RM. Both the CH (pre 142.56 ± 20.40 kg; post 145.66 ± 19.59 kg) and NC (pre 150.00 ± 15.23 kg; post 154.77 ± 15.09 kg) groups significantly increased while the C (pre 157.27 ± 25.35 kg; post 156.36 ± 24.85 kg) group showed no difference. There were no significant interactions (p =0.32) or main effects for VJ (C = pre 50.59 ± 9.39cm; post 51.29 ± 9.68cm; NC = pre 55.29 ± 5.23cm; post 57.39 ± 5.22cm; CH = pre 46.19 ± 5.02; post 47.45 ± 4.62.) Conclusions: The CH group was able to increase strength while lifting less overall weight. Coaches may use short-term training with chains to yield a similar increase in back squat strength as without chains.Keywords: variable resistance, back squats, novel, vertical jum

    No Effect of Assisted Hip Rotation on Bat Velocity

    Get PDF
    International Journal of Exercise Science 11(4): 68-74, 2018. Softball and baseball are games that require multiple skill sets such as throwing, hitting and fielding. Players spend a copious amount of time in batting practice in order to be successful hitters. Variables commonly associated with successful hitting include bat velocity and torso rotation. The concept of overspeed bodyweight assistance (BWA) has shown increases in vertical jump and sprint times, but not hip rotation and batting. The purpose of this study was to examine the effects of assisted hip rotation on bat velocity. Twenty-one male and female recreational softball and baseball players (15 males, age 23.8 ± 3.1yrs; height 177.67 ± 6.71cm; body mass 85.38 ± 14.83kg; 6 females, age 21.5 ± 2.1yrs; height 162.20 ± 9.82cm; body mass 60.28 ± 9.72kg) volunteered to participate. Four different BWA conditions (0%, 10%, 20%, and 30%) were randomly applied and their effects on bat velocity were analyzed. Subjects performed three maximal effort swings under each condition in a custom measurement device and average bat velocity (MPH) was used for analysis. A mixed factor ANOVA revealed no interaction (p=0.841) or main effect for condition, but there was a main effect for sex where males had greater bat velocity (43.82±4.40 - 0% BWA, 41.52±6.09 - 10% BWA, 42.59±7.24 - 20% BWA, 42.69±6.42 - 30% BWA) than females (32.57±5.33 - 0% BWA, 31.69±3.40 - 10% BWA, 32.43±5.06 - 20% BWA, 32.08±4.83 - 30% BWA) across all conditions Using the concept of overspeed training with assisted hip rotation up to 30% BWA did not result in an increase in bat velocity. Future research should examine elastic band angle and hip translation at set-up
    corecore