1,980 research outputs found

    Investigation of critical slowing down in a bistable S-SEED

    Get PDF
    A simulation of S-SEED switching based upon experimental data is developed that includes the effect of critical slowing down. The simulation's accuracy is demonstrated by close agreement with the results from experimental S-SEED switching. The simulation is subsequently used to understand how the phenomenon of critical slowing down applies to switching of an S-SEED and how the effect on photonic analog-to-digital (A/D) converter performance may be minimized.B. A. Clare, K. A. Corbett, K. J. Grant, P. B. Atanackovic, W. Marwood and J. Munc

    Buildings for smart cities

    Get PDF

    Large Scale Flows from Orion-South

    Get PDF
    Multiple optical outflows are known to exist in the vicinity of the active star formation region called Orion-South (Orion-S). We have mapped the velocity of low ionization features in the brightest part of the Orion Nebula, including Orion-S, and imaged the entire nebula with the Hubble Space Telescope. These new data, combined with recent high resolution radio maps of outflows from the Orion-S region, allow us to trace the origin of the optical outflows. It is confirmed that HH 625 arises from the blueshifted lobe of the CO outflow from 136-359 in Orion-S while it is likely that HH 507 arises from the blueshifted lobe of the SiO outflow from the nearby source 135-356. It is likely that redshifted lobes are deflected within the photon dominated region behind the optical nebula. This leads to a possible identification of a new large shock to the southwest from Orion-S as being driven by the redshifted CO outflow arising from 137-408. The distant object HH 400 is seen to have two even further components and these all are probably linked to either HH 203, HH 204, or HH 528. Distant shocks on the west side of the nebula may be related to HH 269. The sources of multiple bright blueshifted Herbig-Haro objects (HH 202, HH 203, HH 204, HH 269, HH 528) remain unidentified, in spite of earlier claimed identifications. Some of this lack of identification may arise from the fact that deflection in radial velocity can also produce a change in direction in the plane of the sky. The best way to resolve this open question is through improved tangential velocities of low ionization features arising where the outflows first break out into the ionized nebula.Comment: Astronomical Journal, in press. Some figures are shown at reduced resolution. A full-resolution version is available at http://ifront.org/wiki/Orion_South_Outflows_Pape

    Hubble Space Telescope Images of Magellanic Cloud Planetary Nebulae: Data and Correlations across Morphological Classes

    Get PDF
    The morphology of planetary nebulae (PNe) provides an essential tool for understanding their origin and evolution, as it reflects both the dynamics of the gas ejected during the TP-AGB phase, and the central star energetics. Here we study the morphology of 27 Magellanic Cloud planetary nebulae (MCPNe) and present an analysis of their physical characteristics across morphological classes. Similar studies have been successfully carried out for galactic PNe, but were compromised by the uncertainty of individual PN distances. We present our own HST/FOC images of 15 Magellanic Cloud PNe (MCPNe) acquired through a narrow-band lambda 5007 [O III] filter. We use the Richardson-Lucy deconvolution technique on these pre-COSTAR images to achieve post-COSTAR quality. Three PNe imaged before and after COSTAR confirm the high reliability of our deconvolution procedure. We derive morphological classes, dimensions, and surface photometry for all these PNe. We have combined this sample with HST/PC1 images of 15 MCPNe, three of which are in common with the FOC set, acquired by Dopita et al. (1996), to obtain the largest MCPN sample ever examined from the morphological viewpoint. By using the whole database, supplemented with published data from the literature, we have analyzed the properties of the MCPNe and compared them to a typical, complete galactic sample. Morphology of the MCPNe is then correlated with PN density, chemistry, and evolution.Comment: text file lstanghe_mcpn.tex (LaTex); Figures 2 through 10, Figure 5 is in 3 parts (a,b,c); Figure 1 available by regular mail only; ApJ, in press, November 10, 199

    Cytoskeletal interactions at the nuclear envelope mediated by Nesprins

    Get PDF
    Nesprin-1 is a giant tail-anchored nuclear envelope protein composed of an N-terminal F-actin binding domain, a long linker region formed by multiple spectrin repeats and a C-terminal transmembrane domain. Based on this structure, it connects the nucleus to the actin cytoskeleton. Earlier reports had shown that Nesprin-1 binds to nuclear envelope proteins emerin and lamin through C-terminal spectrin repeats. These repeats can also self-associate. We focus on the N-terminal Nesprin-1 sequences and show that they interact with Nesprin-3, a further member of the Nesprin family, which connects the nucleus to the intermediate filament network. We show that upon ectopic expression of Nesprin-3 in COS7 cells, which are nearly devoid of Nesprin-3 in vitro, vimentin filaments are recruited to the nucleus and provide evidence for an F-actin interaction of Nesprin-3 in vitro. We propose that Nesprins through interactions amongst themselves and amongst the various Nesprins form a network around the nucleus and connect the nucleus to several cytoskeletal networks of the cell

    A comparative study on wear and corrosion behaviour of tungsten carbide-nickel and tungsten carbide-cobalt high velocity oxy-fuel (HVOF) for carbon steel blade

    Get PDF
    Nowadays, the demand of high wear and corrosion resistance of the components in various industry is increasing from time to time. Therefore, high velocity oxy-fuel (HVOF) thermal spray was introduced to protect machine components from wear and corrosion, to restore worn components and to improve the durability of the components. HVOF is one of the process of depositing a material layer over a base metal or substrate with characteristics of high flame velocity and moderate temperature. The main purpose of this present study is to characterize the structure of the tungsten carbide 10 wt.% nickel (WC-10Ni) and tungsten carbide 12 wt.% w cobalt (WC-12Co) coating deposited by means of HVOF thermal spray onto a continuous digester (CD) blade that made up from carbon steel. The morphology and chemical composition of the coating were characterized by scanning electron microscope (SEM), electron dispersive spectrometer (EDS), and x-ray diffraction (XRD). The hardness test was carried out by using Vickers micro-hardness tester with load of 490.3 mN (0.05 HV). The wear and corrosion behavior and mechanism for both coatings was compared. Three body wear test was carried out in term of weight loss and electrochemical test was performed in acidic media (mixture of sulfuric acid, H2SO4 and ilmenite) to obtain the corrosion rate of the coating. From the result, it shows that WC-12Co coating has finer grain size that is around 2.3 μm. WC-12Co has higher wear resistance due to high volume friction, low mean free path, high hardness and lower porosity distribution compared to WC-10Ni. Besides, the formation of secondary phase, W2C also affected the hardness of both coating, where this phase is harder than WC phase. For corrosion test, WC-12Co shows good corrosion resistance with small differences of corrison rate with WC-10Ni, that is only 0.7016 mm/y. As a conclusion, WC-12Co HVOF coating shows high potential on replacement of CD blade

    High connectivity among locally adapted populations of a marine fish (Menidia menidia)

    Get PDF
    Author Posting. © Ecological Society of America, 2010. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecology 91 (2010): 3526–3537, doi:10.1890/09-0548.1.Patterns of connectivity are important in understanding the geographic scale of local adaptation in marine populations. While natural selection can lead to local adaptation, high connectivity can diminish the potential for such adaptation to occur. Connectivity, defined as the exchange of individuals among subpopulations, is presumed to be significant in most marine species due to life histories that include widely dispersive stages. However, evidence of local adaptation in marine species, such the Atlantic silverside, Menidia menidia, raises questions concerning the degree of connectivity. We examined geochemical signatures in the otoliths, or ear bones, of adult Atlantic silversides collected in 11 locations along the northeastern coast of the United States from New Jersey to Maine in 2004 and eight locations in 2005 using laser ablation inductively coupled plasma mass spectrometry (ICP-MS) and isotope ratio monitoring mass spectrometry (irm-MS). These signatures were then compared to baseline signatures of juvenile fish of known origin to determine natal origin of these adult fish. We then estimated migration distances and the degree of mixing from these data. In both years, fish generally had the highest probability of originating from the same location in which they were captured (0.01–0.80), but evidence of mixing throughout the sample area was present. Furthermore, adult M. menidia exhibit highly dispersive behavior with some fish migrating over 700 km. The probability of adult fish returning to natal areas differed between years, with the probability being, on average, 0.2 higher in the second year. These findings demonstrate that marine species with largely open populations are capable of local adaptation despite apparently high gene flow.This work was funded by the National Science Foundation (grant OCE-0425830 to D. O. Conover and grant OCE- 0134998 to S. R. Thorrold) and the New York State Department of Environmental Conservation

    Exploring CEvNS with NUCLEUS at the Chooz Nuclear Power Plant

    Full text link
    Coherent elastic neutrino-nucleus scattering (CEν\nuNS) offers a unique way to study neutrino properties and to search for new physics beyond the Standard Model. Nuclear reactors are promising sources to explore this process at low energies since they deliver large fluxes of (anti-)neutrinos with typical energies of a few MeV. In this paper, a new-generation experiment to study CEν\nuNS is described. The NUCLEUS experiment will use cryogenic detectors which feature an unprecedentedly low energy threshold and a time response fast enough to be operated in above-ground conditions. Both sensitivity to low-energy nuclear recoils and a high event rate tolerance are stringent requirements to measure CEν\nuNS of reactor antineutrinos. A new experimental site, denoted the Very-Near-Site (VNS) at the Chooz nuclear power plant in France is described. The VNS is located between the two 4.25 GWth_{\mathrm{th}} reactor cores and matches the requirements of NUCLEUS. First results of on-site measurements of neutron and muon backgrounds, the expected dominant background contributions, are given. In this paper a preliminary experimental setup with dedicated active and passive background reduction techniques is presented. Furthermore, the feasibility to operate the NUCLEUS detectors in coincidence with an active muon-veto at shallow overburden is studied. The paper concludes with a sensitivity study pointing out the promising physics potential of NUCLEUS at the Chooz nuclear power plant
    corecore