4,728 research outputs found

    Exploiting tightly-coupled cores

    Get PDF
    This is the published manuscript. It was first published by Springer in the Journal of Signal Processing Systems here: http://link.springer.com/article/10.1007%2Fs11265-014-0944-6.The individual processors of a chip-multiprocessor traditionally have rigid boundaries. Inter-core communication is only possible via memory and control over a core’s resources is localised. Specialisation necessary to meet today’s challenging energy targets is typically provided through the provision of a range of processor types and accelerators. An alternative approach is to permit specialisation by tailoring the way a large number of homogeneous cores are used. The approach here is to relax processor boundaries, create a richer mix of intercore communication mechanisms and provide finer-grain control over, and access to, the resources of each core. We evaluate one such design, called Loki, that aims to support specialisation in software on a homogeneous many-core architecture. We focus on the design of a single 8-core tile, conceived as the building block for a larger many-core system. We explore the tile’s ability to support a range of parallelisation opportunities and detail the control and communication mechanisms needed to exploit each core’s resources in a flexible manner. Performance and a detailed breakdown of energy usage is provided for a range of benchmarks and configurations.This work was supported by EPSRC grant EP/G033110/1

    Revisiting Embeddings for Graph Neural Networks

    Full text link
    Current graph representation learning techniques use Graph Neural Networks (GNNs) to extract features from dataset embeddings. In this work, we examine the quality of these embeddings and assess how changing them can affect the accuracy of GNNs. We explore different embedding extraction techniques for both images and texts; and find that the performance of different GNN architectures is dependent on the embedding style used. We see a prevalence of bag of words (BoW) embeddings and text classification tasks in available graph datasets. Given the impact embeddings has on GNN performance. this leads to a phenomenon that GNNs being optimised for BoW vectors

    Low temperature shape relaxation of 2-d islands by edge diffusion

    Full text link
    We present a precise microscopic description of the limiting step for low temperature shape relaxation of two dimensional islands in which activated diffusion of particles along the boundary is the only mechanism of transport allowed. In particular, we are able to explain why the system is driven irreversibly towards equilibrium. Based on this description, we present a scheme for calculating the duration of the limiting step at each stage of the relaxation process. Finally, we calculate numerically the total relaxation time as predicted by our results and compare it with simulations of the relaxation process.Comment: 11 pages, 5 figures, to appear in Phys. Rev.

    Mopra CO Observations of the Bubble HII Region RCW120

    Get PDF
    We use the Mopra radio telescope to test for expansion of the molecular gas associated with the bubble HII region RCW120. A ring, or bubble, morphology is common for Galactic HII regions, but the three-dimensional geometry of such objects is still unclear. Detected near- and far-side expansion of the associated molecular material would be consistent with a three-dimensional spherical object. We map the J=1→0J = 1\rightarrow 0 transitions of 12^{12}CO, 13^{13}CO, C18^{18}O, and C17^{17}O, and detect emission from all isotopologues. We do not detect the 00→1−1E0_0\rightarrow 1_{-1} E masing lines of CH3_3OH at 108.8939 GHz. The strongest CO emission is from the photodissociation region (PDR), and there is a deficit of emission toward the bubble interior. We find no evidence for expansion of the molecular material associated with RCW120 and therefore can make no claims about its geometry. The lack of detected expansion is roughly in agreement with models for the time-evolution of an HII region like RCW120, and is consistent with an expansion speed of <1.5 km s−1< 1.5\, {\rm km\, s^{-1}}. Single-position CO spectra show signatures of expansion, which underscores the importance of mapped spectra for such work. Dust temperature enhancements outside the PDR of RCW120 coincide with a deficit of emission in CO, confirming that these temperature enhancements are due to holes in the RCW120 PDR. Hα\alpha emission shows that RCW120 is leaking ∼5%\sim5\% of the ionizing photons into the interstellar medium (ISM) through PDR holes at the locations of the temperature enhancements. H-alpha emission also shows a diffuse "halo" from leaked photons not associated with discrete holes in the PDR. Overall 25±10%25\pm10\% of all ionizing photons are leaking into the nearby ISM.Comment: 35 pages, 14 figures. Accepted to Ap

    Changing shapes in the nanoworld

    Full text link
    What are the mechanisms leading to the shape relaxation of three dimensional crystallites ? Kinetic Monte Carlo simulations of fcc clusters show that the usual theories of equilibration, via atomic surface diffusion driven by curvature, are verified only at high temperatures. Below the roughening temperature, the relaxation is much slower, kinetics being governed by the nucleation of a critical germ on a facet. We show that the energy barrier for this step linearly increases with the size of the crystallite, leading to an exponential dependence of the relaxation time.Comment: 4 pages, 5 figures. Accepted by Phys Rev Let
    • …
    corecore