
111

Lane Compression: A Lightweight Lossless Compression
Method for Machine Learning on Embedded Systems

YOUSUN KO, ALEX CHADWICK, DANIEL BATES, and ROBERT MULLINS, University of
Cambridge, United Kingdom

This paper presents Lane Compression, a lightweight lossless compression technique for machine learning
which is based on a detailed study of the statistical properties of machine learning data. The proposed technique
profiles machine learning data gathered ahead of run-time, and partitions values bit-wise into different lanes
with more distinctive statistical characteristics. Then the most appropriate compression technique is chosen for
each lane out of a small number of low-cost compression techniques. Lane Compression’s compute andmemory
requirements are very low and yet it achieves a compression rate comparable to or better than Huffman
coding. We evaluate and analyse Lane Compression on a wide range of machine learning networks for both
inference and re-training. We also demonstrate the profiling prior to run-time and the ability to configure the
hardware based on the profiling guarantee robust performance across different models and datasets. Hardware
implementations are described and the scheme’s simplicity makes it suitable for compressing both on-chip
and off-chip traffic.

CCS Concepts: • Theory of computation → Data compression; • Hardware → Reconfigurable logic
and FPGAs; • Computer systems organization→ Embedded systems.

Additional Key Words and Phrases: machine learning, deep neural networks, ASIC

ACM Reference Format:
Yousun Ko, Alex Chadwick, Daniel Bates, and Robert Mullins. 2018. Lane Compression: A Lightweight Lossless
Compression Method for Machine Learning on Embedded Systems. ACM Trans. Embedd. Comput. Syst. 37, 4,
Article 111 (August 2018), 26 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Machine learning techniques are rapidly being deployed across much of our computing infras-
tructure, from IoT and mobile devices to data centres. Consequently, demand for fast and efficient
machine learning techniques has been increasing. Hardware accelerators can provide large gains
over GPU and CPU-based solutions [16], but unfortunately gains can be limited by memory band-
width and the overhead of off-chip memory access [25].

Data compression is one way to reduce the amount of memory traffic and improve the per-
formance of workloads. Figure 1 shows a high-level view of a typical compression pipeline for
machine learning. The figure shows that data in full-precision, usually 32-bit floating point, is
compressed by a lossy transformation and/or lossless compression for training or inference. Lossy
transformations compress data by reducing the amount of information in the data, and lossless
compression compresses data by increasing the density of information in its representation. Lossy

Authors’ address: Yousun Ko, yousun.ko@cl.cam.ac.uk; Alex Chadwick, alex.chadwick@cl.cam.ac.uk; Daniel Bates,
daniel.bates@cl.cam.ac.uk; Robert Mullins, robert.mullins@cl.cam.ac.uk, University of Cambridge, 15 JJ Thomson Av-
enue, Cambridge, United Kingdom.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
1539-9087/2018/8-ART111 $15.00
https://doi.org/10.1145/1122445.1122456

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

111:2 Yousun Ko, Alex Chadwick, Daniel Bates, and Robert Mullins

Full
Precision
Data

Lossy
Transformation

Pruning
Quantization

SVD
.
.
.

Reduced
Precision
Data

Lossless
Compression

Huffman
Z-RLC
ZVC
.
.
.

Reduced
Precision and

Compressed Data

Fig. 1. Overview of compression in machine learning in a typical pipeline

transformation techniques for machine learning include pruning [19], singular value decompo-
sition (SVD) [37], and quantization [26], and lossless compression techniques used for machine
learning include Huffman coding [22], run-length coding on zeros (Z-RLC) [30], and zero-value
compression (ZVC) [46].
Lossless compression for machine learning has been an active research field recently. Works

has focused on compressing off-chip memory traffic [5, 6, 24, 31, 43, 46], data between computing
units and cache [6, 8, 15, 17, 18, 52], or over the on-chip network traffic for a tiled architecture [6,
10, 43]. Lossless compression is also now employed in a number of commercial machine-learning
accelerators [1, 36]. However, lossless compression has been considered as part of a compression
pipeline rather than a stand-alone method in most previous work, hampering in-depth justification
for the selected lossless compression methods and their algorithmic parameters. Such approaches
also disrupt understanding the effectiveness of the selected method against a measure of the
potential compressibility of the source data. We also note that the hardware complexities of
previously suggested lossless compression techniques vary considerably, and some approaches are
infeasible for implementation on resource-constrained hardware.
In this paper, we focus on lossless compression to learn how to use it for maximum effect for

machine learning, and propose a new lightweight lossless compression technique for machine
learning, called Lane Compression. Lane Compression demonstrates reliably high compression
rates with a low hardware cost outperforming state-of-the-art lossless compression techniques
for machine learning. To measure the effectiveness of the proposed method and previous lossless
compression methods, we use the notion of Shannon limit which is the theoretical limit for symbol-
based compression given by Shannon’s marginal entropy [49]. Noting that lossy transformations
and lossless compression are complementary, we show that combination of simple and low cost
lossless compression and lossy transformation can lead to compression results competitive with
highly aggressive and costly lossy transformation.

The contributions of this paper are as follows:
• We present key characteristics of the redundancy in machine learning data based on a detailed
study of their statistical properties (see Section 4).

• We propose Lane Compression, a lossless compression technique for machine learning, that
achieves compression rates comparable or better than Huffman coding with low hardware
cost (see Section 4).

• We empirically demonstrate that Lane Compression performs reliably with high compression
rates on all data sources from seven different neural networks. This includes two different
use-cases (inference and re-training1), and a wide range of statistical characteristics (see
Section 7).

1Training on machine learning models that have converged at least once.

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Lane Compression: A Lightweight Lossless Compression Method for Machine Learning on Embedded Systems 111:3

• We show that static profiling is sufficient for Lane Compression to perform well, even on
data generated dynamically without any further run-time adaptation (see Section 5).

• We outline a hardware implementation of Lane Compression that is lightweight and practical
for compressing both on-chip and off-chip communication traffic on resource-constrained
hardware. The reconfigurable nature of the hardware ensures that the best compression
technique can be selected for the data (see Section 6).

Evaluation of Lane Compression is performed on five machine learning data sources (activa-
tions and weights for inference, and activations, weights, and gradients for re-training) from all
layers (including convolutional layers, fully connected layers, and subsidiary layers for activation
functions, normalisation, and pooling), of seven distinct neural networks (LeNet-5 [35], CifarNet2,
ResNet-18 [20], SqueezeNet [23, 28], MobileNet [21], AlexNet [34], and an LSTM network [7]) for
four image or text based datasets (MNIST [35], CIFAR-10 [33], ImageNet [11], and WikiText-2 [38]).
Lane Compression targets data obtained during inference and re-training, assuming the statistical
properties of data are more stable after convergence, thus more suitable for the proposed method.
We demonstrate that Lane Compression provides reliably high performance regardless of data
source, layer type, learning model, and input data type, unlike other lightweight compression
methods for machine learning. This result implies that the compression rate of Lane Compression
is expected to be high without modification or re-implementation of the hardware for new machine
learning techniques.

In terms of geometric mean, Lane Compression achieved minimum 93% and maximum 102% (see
Section 7 for justification) of the Shannon limit on a per network basis, and minimum 90% and
maximum 105% of the Shannon limit on a per data source basis. We implemented Lane Compression
in hardware and the total hardware area was 23000`m2 for the encoder and 18000`m2 for the
decoder in a 40nm process, which is similar in size to a 4KiB SRAM each.

2 RELATEDWORK
Zero-value compression (ZVC) [46] is a simple but effective lossless compression method for sparse
data which stores non-zero values only, with a bit-mask to indicate locations of the non-zeros. ZVC
is the only lightweight compression method that does not have an algorithmic parameter and its
compression rate is solely dependent on the sparsity of the source data.

Run-length coding on zeros (Z-RLC) [5, 18, 29] and compressed sparse column/row (CSC/CSR) [6,
17, 24, 43, 51] exploit consecutive zeros. Z-RLC is a variation of run-length coding (RLC), counting
only runs of zeros instead of all values. The algorithmic parameters for Z-RLC and CSC/CSR decide
the window size for counting consecutive zeros. If these parameters are too small then highly sparse
data cannot be compressed efficiently, and if these parameters are too large then the overhead of
compression becomes significant for less sparse data. Any positive integer parameter can be used
for Z-RLC, which makes Z-/RLC the only lightweight compression methods that can compress
a sequence of values at once, and parameters for CSC/CSR are capped by sizes of matrices such
as feature maps or filters. Unlike Z-RLC, CSC/CSR stores 2-dimensional position information of
non-zeros which may hamper the compression rate but can improve efficiency of computation.
Null suppression (NS) [9, 47] is a compression technique that removes leading zero bits from a

value. NS is well-suited to machine learning because the majority of machine learning values are
small, regardless of the source of data. Sparse Exponential-Golomb (S-EG) [15] eliminates leading
zeros of individual values, and Dynamic Precision Reduction (DPRed) [10] eliminates leading zeros
common to a block of values. NS methods do not fully rely on sparsity of data unlike prior methods.

2A CNN developed internally for CIFAR-10. The model definition can be found at https://github.com/deep-fry/mayo/blob/
master/models/cifarnet.yaml

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://github.com/deep-fry/mayo/blob/master/models/cifarnet.yaml
https://github.com/deep-fry/mayo/blob/master/models/cifarnet.yaml

111:4 Yousun Ko, Alex Chadwick, Daniel Bates, and Robert Mullins

A Conv Layer

Conv
Batch
Norm Act

𝐴0
𝐼

𝐴0
𝑇

𝐺0
𝑇

𝐴1
𝑇

𝐴2
𝑇

𝐴1
𝐼

𝐴3
𝑇

𝐺1
𝑇

𝑊 0 𝑊 1

Fig. 2. Dataflow of a convolutional layer showing activations (𝐴𝑖), weights (𝑊 𝑖) and gradients (𝐺𝑖) for
inference (𝐼) and training (𝑇). Solid arrows represent data that moves between execution units and so could
be compressed to save bandwidth.

A few memory compression techniques have been adapted to machine learning such as frequent
pattern compression (FPC) [29, 52] and Base-delta-immediate compression (BDI) [45, 52]. Extended
bit-plane compression (EBPC) [4] is a variation of FPC designed for machine learning combined
with ZVC and Z-RLC. These methods incorporate some data-driven information into compression
such as a dictionary of frequent patterns of the source data, or common bases or ranges of deltas in
a block of values.

Improved compression rates may be possible with more complex compression algorithms such as
Huffman coding [8, 18], LZW [8], and DEFLATE [8, 46], but at a much higher, and often impractical,
hardware and run-time cost for embedded systems. Moreover, these methods are designed for
general purpose data such as text and numbers which have distinctive and different statistical
characteristics to machine learning data.
In this paper, we compare Lane Compression with all compression methods mentioned above

except BDI. The method has been demonstrated only on weights to the best of our knowledge,
and finding the most frequent bases and ranges of deltas for other data sources is an independent
research topic and beyond the scope of the paper.

3 BACKGROUND
3.1 Compression in Machine Learning
Using machine learning for inference or training involves an enormous number of matrix multi-
plications and massive memory traffic to supply data for the computation [25]. A convolutional
network is composed of multiple convolutional layers with additional pooling layers in between.
Figure 2 depicts the baseline dataflow of a convolutional layer for this paper. Left-to-right arrows
represent flow of activations (𝐴0

𝐼
and 𝐴1

𝐼
) during inference and right-to-left arrows represent flow

of activations (𝐴0
𝑇
, 𝐴1

𝑇
, 𝐴2

𝑇
, and 𝐴3

𝑇
) and gradients (𝐺0

𝑇
and 𝐺1

𝑇
) during training. Weights for con-

volution (‘Conv’) (𝑊 0) and the scale and shift parameters for batch normalisation (‘Batch Norm’)
(𝑊 1) will be used and updated for inference and training respectively. Activation functions (‘Act’)
usually do not require parameters, or constant parameters if needed. In this paper, we quantise and
compress dataflows denoted by solid arrows. The dataflows denoted by dashed arrows indicate that
data can be produced and consumed without being stored in memory [14, 39]. For training, any
intermediate gradients of activations are stored in memory and gradients of weights are computed
internally without being stored. State-of-the-art quantization methods for weights usually quantise
𝑊0 only and also exclude the first and last convolutional layers from quantization to minimise
any drop in accuracy [12, 26, 54, 58]. Such restrictions are reasonable for resource-heavy devices
such as GPU machines but not for resource-constrained devices. Any partially unquantised values
require full floating point functional units such as multipliers and adders which is up to an order

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Lane Compression: A Lightweight Lossless Compression Method for Machine Learning on Embedded Systems 111:5

of magnitude more expensive in area and energy consumption than fixed-point functional units.
In addition, the proportional overhead for batch normalisation is not negligible even on GPU
machines [27]. Thus we quantise and compress𝑊 1 as well as𝑊 0 for all layers.

3.2 Lossless Compression

Table 1. Lossless compression methods for machine learning. Target data source column presents on eor
more data sources, i.e. activations (A), weights (W), or gradients (G), that have been targeted by each
compression method.

Method Compression
unit

Algorithmic
parameter(s) Coverage HW

feasible
Target

data source

ZVC Symbol None Low Yes A, G
Z-RLC Sequence Max sequence Low Yes A

CSC/CSR Symbol (block) Size of matrix Low Yes A, W, G

NS Symbol Size of dense bits Med Yes A
Symbol (block) Size of block Med Yes A, W, G

FPC Symbol (block) Patterns Med Yes A, G
BDI Symbol (block) Base(s) and delta Med Yes W

Huffman Symbol Huffman code table High No W

LZW Symbol, Sequence Size of code table,
code table High No W

DEFLATE Symbol, Sequence Size of window,
code table High No A, W

Lane (ours) Symbol, Sequence Bit-split, methods High Yes A, W, G

Data compression exploits statistical characteristics of source data to reduce data redundancy.
One of the commonly used statistical characteristics is the probability distribution of symbols.
Symbols refer to the base unit of data such as characters in text or quantised integer values in
machine learning. Compressing source data with incompatible statistical characteristics to the
applied compression method may cause compression to fail and data after compression can even
be larger than the source.

This subsection presents the three factors that we have identified that define the characteristics
of lossless compression. Table 1 classifies the lossless compression methods discussed in Section 2
in terms of these three factors.

3.2.1 Compression unit: the unit of source data to be passed into the compression function. Com-
monly used compression units are individual symbols or sequences of symbols. The probability
distribution of the compression unit determines the compression rate. Huffman coding is a well-
known symbol-based compression method, and arithmetic coding [44] and Lempel-Ziv-Welch
coding (LZW) [53] are popular sequence-based compression methods. Symbol-based compression
methods assume symbols are independent and identically distributed (iid), and sequence-based
compression methods consider mutual dependencies between symbols in addition. Not assuming
iid may result in better compression, however the probability distribution of sequences is much
more complex than that of symbols, typically causing high compression overhead.

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:6 Yousun Ko, Alex Chadwick, Daniel Bates, and Robert Mullins

Machine learning data is multi-dimensional, so different ways to serialise the data before com-
pression may affect the amount of mutual dependence between symbols. In this paper, we serialised
the data by the commonly-used NCHW (batch-channel-height-width) order [42].

3.2.2 Coverage: the possible probability distributions that can be effectively handled by a com-
pression method. Restricting coverage can improve the compression rate in particular cases or
reduce the implementation complexity, at the cost of generality. Both Huffman coding and ZVC are
symbol-based compression methods, but ZVC limits its coverage to highly sparse data distributions
whereas Huffman coding covers all distributions. This coverage limitation allows ZVC to achieve
high compression rates without any additional overheads such as Huffman tables, but only if the
redundancy of the source data is mainly in zeros. ZVC commonly fails to compress otherwise.

3.2.3 Hardware Feasibility: hardware implementation cost is highly sensitive to the amount of state
maintained within compression algorithms. Lightweight compressionmethods, marked as hardware
feasible in Table 1, require only a small number of parameters whereas the complex compression
methods such as Huffman coding, LZW, and DEFLATE, require a large table of parameters to map
each symbol or sequence of symbols to its codeword. One of the distinctive merits of complex
compression methods against lightweight compression methods is their high adaptivity to dynamic
input data, and this makes hardware implementation even more complicated. Huffman coding is
not naturally adaptive, but can gain adaptivity by rebuilding the Huffman table on the fly or by
speculating statistics of the source. Either approach significantly increases the implementation
complexity and may or may not benefit compression rate [32]. LZW is a universal compression
method and does not require a priori knowledge of the statistics of the source, but its dictionary
needs to be rebuilt on every encoding/decoding operation and the size of the dictionary can be even
larger than a similar Huffman table. DEFLATE uses a combination of Huffman coding and LZSS
which is a version of LZ compression. The hardware implementation complexity of arithmetic
coding is also high due to high precision computations, although this can be partially mitigated
using approximate computing or lookup tables [48].
In Section 5.2, we have demonstrated that statistical fluctuation in dynamic machine learning

data for inference and re-training is rather modest, which might not compensate for the high cost
of adaptivity in previously mentioned complex compression methods.

3.3 Lossy Transformation

0
min max

Values

Frequency

Fig. 3. Illustration of lossy transformation for machine learning [26]: pruning (min), clipping (max), and
quantization (bars between min and max).

A lossy transformation applied to a machine learning model minimises the amount of information
without harming the overall model accuracy. Popular lossy transformation techniques include
pruning, clipping and quantization as shown in Figure 3.

Pruning is a technique to reduce the amount of information by selectively converting non-zero
values to zero. Values smaller than a threshold (denoted as ‘min’ in Figure 3) are converted to zero,

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Lane Compression: A Lightweight Lossless Compression Method for Machine Learning on Embedded Systems 111:7

increasing sparsity of the data. Clipping reduces the amount of information by converting values
larger than a threshold (denoted as ‘max’ in Figure 3) to that threshold. Quantization is a way of
binning data into 2𝑏 bins (denoted as bars in Figure 3) where 𝑏 is the bitwidth of the target data
representation after quantization. Quantization effectively reduces the amount of information by
reducing the resolution of individual symbols. Quantization conveys a similar effect to pruning for
values smaller than the minimum resolution. Clipping is frequently accompanied by quantization
to achieve higher resolution of data for a given bitwidth.
We use machine learning data that are linearly quantized without clipping in the rest of this

paper, except Section 7.1. In Section 7.1, we discuss the effectiveness of Lane Compression with
different levels of lossy transformation, to show our approach is not limited to a specific lossy
transformation.

3.4 Compression Rate
The overall compression rate comprises compression rates from lossy transformations (𝑄), and
lossless compression (𝐶),

overall compression rate = 𝑄 ×𝐶.

We use 32-bit floating point as the full precision representation, thus𝑄 = 32
𝐵
where 𝐵 is the bitwidth

after quantization. Note that sign bits are discarded if values are analytically non-negative (e.g.,
activations after ReLU activation functions). For such layers, 𝑄 = 32

𝐵−1 .
Since Lane Compression is a lossless compression technique, all the numbers provided in this

paper correspond to 𝐶 in the equation above, not the overall compression rate if not specified.
Compression rate 𝐶 can be combined with any lossy transformation and/or quantization method
to amplify the overall compression rate.

4 LANE COMPRESSION
The intuition behind Lane Compression is that different portions of values seen in deep machine
learning have different characteristics. The most significant bits tend to be very sparse, with sparsity
steadily reducing as the bits become less significant. We therefore split values into multiple lanes
and apply a tailored compression method to each lane.

Table 2 shows statistical characteristics of machine learning data from a selected set of networks.
Entropy density is the Shannon marginal entropy [49] over the bitwidth of the data type and
represents how many bits in the data contain information. The main redundancy in machine
learning data is sparsity in both values and bits [41]. The sparsity in values is the proportion of
zero-valued symbols in a dataset, and the sparsity in bits is the proportion of zero-bits in a signed
magnitude binary representation. In addition to many machine learning data sources having high
value-level sparsity, even dense data has high bit-level sparsity as shown in Table 2. This is because
most non-zero machine learning data values are very small regardless of the source. The intuition
of our approach is that the hidden bit-level sparsity can be exposed by splitting values into bit
segments, or lanes.

For the inference results shown, we train models using full-precision floating point values, then
quantise to the minimum bit widths while reducing accuracy by no more than 0.5%. For re-training,
we train models from scratch using quantised values with the minimum bit widths that converge
to the same or better accuracy within the bound as the baseline full-precision floating point models.
Since this quantization level is sufficient for complete training, we believe it to also be sufficient for
fine-tuning pre-trained models.
Figure 4 visualises how data characteristics change by splitting bits into lanes. Value sparsity

of the original activations is 22.61% (Figure 4(a)(i)). As each value is split into lanes, the sparsity

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:8 Yousun Ko, Alex Chadwick, Daniel Bates, and Robert Mullins

Table 2. Machine learning data characteristics from inference (Inf.) and re-training (Re-tr.). Data type refers
data representation after quantization in fixed-point (FxP). Top-1 model accuracy is provided with differences
to the full precision model accuracy in parentheses.

Network Inf./
Re-tr.

Data
source

Data
type

Value
sparsity

Bit
sparsity

Entropy
density

Top-1
model acc.

LeNet-5

Inf. Acts 10 FxP 1.51% 65.20% 63.99% 99.20%
(-0.04%)Weights 0.82% 61.37% 82.54%

Re-tr.
Acts

16 FxP
1.03% 60.51% 73.88% 99.14%

(-0.10%)Weights 15.81% 67.70% 70.37%
Grads 4.96% 76.37% 56.62%

CifarNet

Inf. Acts 10 FxP 65.54% 90.00% 29.52% 93.23%
(+0.02%)Weights 2.35% 66.28% 75.65%

Re-tr.
Acts

16 FxP
24.02% 71.77% 60.91% 92.98%

(-0.23%)Weights 40.42% 76.49% 55.53%
Grads 10.26% 79.07% 52.50%

ResNet-18

Inf. Acts 12 FxP 36.33% 77.64% 50.42% 69.25%
(+0.01%)Weights 0.94% 66.95% 72.12%

Re-tr.
Acts

24 FxP
18.94% 65.88% 69.72% 69.53%

(+0.29%)Weights 0.09% 61.50% 78.07%
Grads 29.77% 75.19% 54.58%

MobileNet

Inf. Acts 14 FxP 54.40% 83.24% 38.93% 68.12%
(-0.03%)Weights 33.84% 76.78% 56.75%

Re-tr.
Acts

24 FxP
41.05% 75.32% 52.95% 68.97%

(+0.82%)Weights 27.32% 71.90% 56.87%
Grads 34.60% 78.37% 50.60%

LSTM

Inf. Acts 12 FxP 1.24% 69.85% 60.41% 23.09%
(-0.02%)Weights 5.14% 77.28% 54.96%

Re-tr.
Acts

20 FxP
1.21% 64.12% 74.73% 23.08%

(-0.03%)Weights 1.94% 68.50% 70.72%
Grads 18.35% 92.62% 20.42%

of the most significant lane increases drastically and the entropy of the source is shifted to the
least significant lane. A similar tendency is observed for the weights, even though their value
sparsity (3.25%) is significantly lower than the activations. Since information content and sparsity
are not distributed evenly across the bits, we can break values into lanes, each with more distinctive
characteristics. We can then take advantage of this to apply more-specialised compression methods
to each lane. The least significant lane has slightly less entropy than the source in far fewer bits
which means the least significant lane has much higher density of information (= entropy

bit width) than the
source. Data with higher density of information is harder to compress but the overall compression
rate is improved because of the drastic increase of sparsity in the other lanes.
After splitting into lanes, each lane is compressed separately as illustrated by the example in

Figure 5. Every lane has distinct statistical characteristics from other lanes. Thus the best compres-
sion method and parameter are chosen for each lane to harvest different forms of redundancy. In
this example, the first lane (lane0) is the most sparse lane where Z-RLC with a wide 12-bit counter

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Lane Compression: A Lightweight Lossless Compression Method for Machine Learning on Embedded Systems 111:9

(i) lane0=𝑏1𝑏2𝑏3𝑏4𝑏5𝑏6𝑏7𝑏8𝑏9 (i) lane0=𝑏0𝑏1𝑏2𝑏3𝑏4𝑏5𝑏6𝑏7𝑏8𝑏9

(ii) lane0=𝑏1, lane1=𝑏2𝑏3, lane2=𝑏4𝑏5𝑏6𝑏7𝑏8𝑏9 (ii) lane0=𝑏0, lane1=𝑏1𝑏2, lane2=𝑏3𝑏4𝑏5𝑏6𝑏7𝑏8𝑏9

(iii) lane0=𝑏1, lane1=𝑏2𝑏3, lane2=𝑏4𝑏5, lane3=𝑏6𝑏7𝑏8𝑏9 (iii) lane0=𝑏0, lane1=𝑏1𝑏2, lane2=𝑏3𝑏4𝑏5, lane3=𝑏6𝑏7𝑏8𝑏9
(a) Activation (b) Weight

Fig. 4. Changes in data characteristics by splitting bits of (a) activations and (b) weights from a layer of
CifarNet for inference. Each graph shows the distribution of non-zero values, and the value sparsity is given
in the top-right corner.

. . .

𝑣𝑡+1

𝑏
0

𝑏
1

𝑏
2

𝑏
3

𝑏
4

𝑏
5

𝑏
6

𝑏
7

𝑏
8

𝑏
9

𝑣𝑡

𝑏
0

𝑏
1

𝑏
2

𝑏
3

𝑏
4

𝑏
5

𝑏
6

𝑏
7

𝑏
8

𝑏
9

Sp
lit

in
to

la
ne
s

lane0

lane1

lane2

lane3

𝑣𝑡+1

𝑏
1

𝑏
2

𝑏
3

𝑏
4

𝑏
5

𝑏
6

𝑏
7

𝑏
8

𝑏
9

𝑏
0

𝑣𝑡

𝑏
1

𝑏
2

𝑏
3

𝑏
4

𝑏
5

𝑏
6

𝑏
7

𝑏
8

𝑏
9

𝑏
0

Method

Z-RLC

Z-RLC

D-DPRed

None

Algorithmic
parameter

Max seq. = 212

Max seq. = 29

Block size = 3

Fig. 5. Lane Compression with an example configuration. Values (𝑣𝑖) in the input stream comprised of 10
bits (𝑏𝑖) each are split into lanes (lane𝑖) of smaller bitwidth before being compressed. The choice of splitting
and method is determined by ahead of run-time profiling.

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:10 Yousun Ko, Alex Chadwick, Daniel Bates, and Robert Mullins

Table 3. Compression techniques considered for compressing individual lanes

Method Algorithmic parameter Range (𝑝 ∈ N)
None None N/A
ZVC None N/A
RLC Max seq. (2𝑝) 1 ≤ 𝑝 ≤ 32
Z-RLC Max seq. (2𝑝) 1 ≤ 𝑝 ≤ 32

D-DPRed Block size (𝑝) 1 ≤ 𝑝 ≤ 8
S-DPRed Block size (𝑝) 1 ≤ 𝑝 ≤ 8

is most effective. The second lane (lane1) is also highly sparse but not as much as the first lane.
Thus Z-RLC with smaller 9-bit counter is most suitable for the second lane. Later lanes eventually
become too dense to exploit simple sequence based compression methods. The third lane (lane2)
still has some symbol level redundancy, thus D-DPRed, a variation of DPRed for dense data, is used
on every block of three symbols. The last lane (lane3) does not have sufficient data redundancy to
compensate for the overhead of any compression method, and so we do not compress the last lane.
Note that sign bits, 𝑏0, are highly random in general and have no correlation to neighbouring bits,
thus sign bits have been shifted to the least significant bit position. Sign bits are not used if values
are analytically always positive, such as activations after ReLU, as shown in Figure 4(a).
The compression methods used to compress individual lanes and their parameters are listed in

Table 3. Sparse-DPRed (S-DPRed) and Dense-DPRed (D-DPRed) are variations of DPRed that we
propose, and they are specialised for dense and sparse data respectively. For S-DPRed we add one
more bit to the original DPRed to indicate whether a block is full of zeros or not, and for D-DPRed
the zero-bit mask is dropped. The original DPRed works well as a compromise on common datasets
which are composed of sparse or dense values, but either D-DPRed or S-DPRed is better when a
dataset has consistent characteristics. Therefore these DPRed variations outperformed the original
DPRed when used in lanes because of the ahead of run-time profiling (see Figure 10(b) in Section 6).
Lane Compression has flexibility to choose the best bitwidth to compress, and also to choose

the best sequence-based or symbol-based method for each lane depending on the type of the data
redundancy. Such flexibility provides high coverage, which is specifically important for the machine
learning domain where new techniques are introduced regularly. A compression method with high
coverage means high compression rates are expected without modification or re-implementation
for the new techniques.

5 PROFILING AND EXPLORATION
The best split of lanes and the best methods and parameters per lane are decided by profiling data
statically for both static and dynamic data. The profiling step explores all possible configurations
exhaustively. This section explains the profiling step in detail and also feasibility and quality of
profiling.

5.1 Search Space
Finding the best configuration for Lane Compression is a combinatorial problem. The size of the
search space 𝑆 is,

|𝑆 | =
𝑛∑

𝑘=1

©«
(
𝑛 − 1
𝑘 − 1

) (∑
𝑚∈𝑀

|𝑃𝑚 |
)𝑘ª®¬

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Lane Compression: A Lightweight Lossless Compression Method for Machine Learning on Embedded Systems 111:11

where 𝑛 is the bit width of data, 𝑘 is the number of lanes, 𝑀 is the set of available methods,
and 𝑃𝑚 is the set of available parameters for a method 𝑚 for 𝑚 ∈ 𝑀 . Therefore

∑
𝑚∈𝑀 |𝑃𝑚 | =

1 + 1 + 32 + 32 + 8 + 8 = 82 for the configuration used in the paper (see Table 3). For instance,
|𝑆 | = 5.011×1030 for 16 fixed-point (FxP) data. To reduce the search space, we assume that individual
lanes are independent from each other. This assumption allows us to find the best method and
parameter for every possible width and position of lanes first and then combine them to estimate
the performance of each split of lanes. With this assumption, the size of the alternative search
space 𝑆 ′ becomes,

|𝑆 ′ | =
𝑛∑
𝑙=1

𝑙
∑
𝑚∈𝑀

|𝑃𝑚 | +
𝑛∑

𝑘=1

(
𝑛 − 1
𝑘 − 1

)
where

∑𝑛
𝑙=1 𝑙 is the number of every possible width and position of individual lanes. This assumption

reduces the search space drastically, making exhaustive search feasible. For instance, |𝑆 ′ | = 43920
for 16 FxP data.

This assumption is correct theoretically but not in practice, because our hardware implementation
of Lane Compression exploits synchronous behaviour of individual lanes to cope with infinite bit
streams using a very small buffer (see Section 6.1). We argue that the huge reduction in search
space under this assumption outweighs the minimal loss in compression rate.

(i) Compression rate by bit-splits in lexicographical order (i) Compression rate by bit-splits in lexicographical order

(ii) Bit-splits ordered in compression rate (ii) Bit-splits ordered in compression rate
(a) Activation (b) Weight

Fig. 6. Overall compression rate (𝑄 ×𝐶) of different bit splits vs. 32-bit in (i) lexicographical order and in
(ii) order of compression rate for (a) activations and (b) weights from a layer of CifarNet for inference. Red
horizontal lines are provided to compare with other compression methods and the Shannon limit.

Figure 6 shows the compression rate of all possible splits of the activations (Figure 6(a)) and
weights (Figure 6(b)) used for Figure 4. Figure 6(a)(i) and Figure 6(b)(i) show compression rates for
different splits in lexicographical order (i.e., splits on more significant bits precede the splits on less
significant bits when the number of lanes is same.), and Figure 6(a)(ii) and Figure 6(b)(ii) show the
same results in order of compression rate to present likelihood to achieve a better compression rate

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:12 Yousun Ko, Alex Chadwick, Daniel Bates, and Robert Mullins

than other compression methods. The left-most bar in Figure 6(a)(i) shows the compression rate
without splitting and the right-most bar shows compression after splitting every bit into its own
lane. It is worth noting that splitting bits into too many or too few lanes harms compression rate.
Insufficient bit-level redundancy may be exposed if the number of lanes is too small, and if splitting
bits does not reveal further data redundancy then it only adds compression overhead without gain.

We use static Huffman coding for comparison, where the Huffman table contains only codewords
of the observed values. The Huffman table has to be updated if an unknown value is encountered
which not only increases the size of the dictionary but may also increase the length of codewords of
other values, lowering the overall compression rate. We did not include this overhead for adaptivity
in the comparison. Thus the compression rate of static Huffman coding for dynamic data, e.g. 13.70×
for activations, is only a maximum possible compression rate. The result of Exhaustive Huffman
coding (E-HC), which is 13.28× and covers all possible values for a given data representation, is
provided in addition to suggest a realistic compression rate including the overhead for adaptivity.

For activations, every possible split performed better than RLC, 73.8% of splits performed better
than Z-RLC and CSC/CSR, 28.9% of splits performed better than ZVC, 5.1% of splits performed
better than DPRed, and 3.1% of splits performed better than E-HC and Huffman coding. For weights,
every possible split performed better than all lightweight compression methods. CSC/CSR, ZVC,
RLC, and Z-RLC failed to compress weights resulting in larger compressed data than the source.
Thus the results are omitted from the graphs. Static Huffman coding performed best on weights,
achieving 4.59×, which is close to the Shannon limit, but at the cost of around 1KB memory space
for the Huffman table only for this layer and the need to access this memory repeatedly to encode
and decode data. Lane compression (4.54×) achieved 98.6% of the limit without a dictionary.

5.2 Profiling Dynamicity
Profiling static data ahead of run-time is relatively straight-forward, but not all machine learning
data is static. In this section, we show that the statistical characteristics of machine learning data
that Lane Compression exploits are strong enough even in dynamic data, such as activations and
gradients, to be profiled ahead of run-time.
First we use the Z-test and the central limit theorem3, on 100 random samples from different

batches to estimate the performance of Lane Compression on the population of dynamic data.
One sample corresponds to all activations or gradients generated by one input to the network (for
example, activations from all layers from one input image into CifarNet).

The 95% confidence interval (CI) of the compression rate of Lane Compression on dynamic data
showed less than 1.75% difference for on activations and less than 3.6% difference on weights over
mean of the 100 samples. This indicates that the compression rate does not change much even with
different inputs. This also implies that the high performance is expected not to be degraded by
unseen input data such as activations or gradients of new images. This also implies the statistical
characteristics exploited by lossless compression are determined by the network and not by its
input. Gradients show relatively wider intervals because gradients have higher sequence based data
redundancy than other data sources, leading to high but also slightly more fluctuating compression
rate.
Table 4 shows the results of another experiment, the quality of configurations for Lane Com-

pression after different amounts of profiling compared to the best configuration of the evaluation
set. We randomly partition the dataset into a profiling set and evaluation set. In this experiment,
we investigated the minimum size of the profiling set needed to search for the best configuration.

3Standard deviation of random samples greater than 30 in size is considered as a valid standard deviation of the population
based on the central limit theorem.

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Lane Compression: A Lightweight Lossless Compression Method for Machine Learning on Embedded Systems 111:13

Table 4. Quality of profiling dynamicity by different sizes of profiling set

1 2 4 8 16 32

Inf. Acts 97.68% 99.66% 99.87% 99.95% 99.83% 99.99%
Re-tr. Acts 99.63% 99.75% 99.95% 99.95% 99.97% 99.99%
Re-tr. Grads 94.24% 97.73% 99.40% 99.71% 99.84% 99.90%

In

N
S
lo
gi
c

2𝑆 symbols

32
-b
it
bu

ffe
r

32
-b
it
bu

ffe
r

︸ ︷︷ ︸
. . .

Lane1

Lane2
.
.
.

Lane𝑁

St
op

co
de

in
se
rt
er

Out In Out

In
pu

tb
uff

er

sel1

sel2

sel𝑁

.

.

.

Lane1

Lane2
.
.
.

Lane𝑁

Stop code detector Recombiner 32-bit buffer

(a) Encoder (b) Decoder

Fig. 7. Lane Compression block diagram. Blocks sized proportional to approximate hardware area cost.

Notably, a configuration selected by profiling a single sample could achieve a minimum of 94.24%
of the compression rate of the best configuration. This indicates that statistical characteristics of
machine learning data are consistent enough to be detected by only a single sample. For this paper,
we profiled once per dynamic data source using four random samples for each.

6 HARDWARE IMPLEMENTATION
Lane Compression was designed with a simple hardware implementation in mind. In this section
we describe a reconfigurable implementation of Lane Compression, as we aim to support a wide
range of machine learning networks with a single hardware design. This design would be suitable
for use on an ASIC, either situated at the memory controller or instantiated repeatedly within an
accelerator to compress and decompress on-chip traffic and memory.
In order to match realistic design constraints, we present a version of a Lane Compression

encoder which produces a single fixed width output bitstream, and symmetrically a decoder which
receives a single fixed width input stream. The design would be simpler if each encoder lane
produced a separate stream that was never recombined, but the rest of the system would then have
to be modified to handle these multiple streams. This may be appropriate for some use cases, but
we choose to focus on the more generic and challenging case. Producing a single fixed width input
stream is the source of most of the complexity in our design, consuming over half the area.
Figure 7 shows a block diagram for the encoder and decoder. The blocks in the diagram are

sized proportionally to their approximate hardware cost in area. On the left side of the encoder is
the NS logic. This block detects the number of leading zeroes in groups of lane values to support
S/D-DPRed. The leading zero counts are transmitted to all S/D-DPRed lanes. The input symbol
then queues in a FIFO of size 2𝑆 . The lanes are simple, reconfigurable implementations of the
compression methods, with the constraint that every input symbol generates exactly one (possibly
null) variable length output symbol. The output symbols of the lanes must then be interleaved by
muxing logic to form combined output symbols for the whole encoder. This is done by shifting each
output value to the appropriate offset and performing a bitwise or operation. Finally, the combined
symbols must be checked for an escape sequence known as a stop code (see Section 6.1). If the
symbol matches a stop code, an extra bit must be inserted to prevent ambiguity in the decoder.

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:14 Yousun Ko, Alex Chadwick, Daniel Bates, and Robert Mullins

The decoder is similar to the encoder but in reverse. Input compressed symbols are buffered in
the input buffer. This must be large enough for the worst case compressed symbol. A stop code
detector checks for stop code sequences and handles them appropriately. It is important for the
decoder’s throughput to quickly compute the size of each variable-length compressed symbol
because the next symbol decode cannot start until the width of the previous symbol is known.
Therefore, all possible symbol widths are precomputed on the previous cycle. This precomputation
explores more possibilities as the number of lanes increases, which is why the selection logic gets
bigger in the figure for each lane. Once the symbol is available, the symbol is inspected by each
lane sequentially in order to deduce the true symbol width (see Section 6.2). Once all lanes have
inspected the data, the symbol width is known and the appropriate number of bits removed from
the buffer. The symbol is then split up, reversing the combination logic in the encoder. This is
achieved by shifting and masking the appropriate number of bits from the symbol. The symbol for
each lane is decompressed and then passed to the recombining logic which shifts the outputs to the
correct position to form the full output symbol. This final recombination logic is simple because
the shift and mask values are static for a given configuration.
Note that our hardware design trades increased encoder complexity for a simple decoder. A

lightweight decoder is useful when multiple decoders per encoder are used, for instance, when a
value needs to be read multiple times but the locality of the value is not high enough to compensate
the cost of local storage.

6.1 Bit Packing
This section describes how our hardware implementation creates a fixed width stream for the
compressed data, despite the variable width nature of the individual lane methods.

A simple naive scheme is to concatenate the results of each encoder lane to form a single variable
width output symbol in the encoder, and symmetrically to split the concatenated values in the
decoder. Unfortunately this naive scheme only works for symbol-based lane methods. Z-RLC and
RLC are sequence-based methods and thus not every input symbol generates an output symbol.
A fundamental aspect of this problem is that in order to generate any output symbol a (Z-)RLC
encoder needs to receive all the input data for that run. On the other side, the decoder needs to
receive the output symbol before it can decode any information about that run. Thus the encoder
produces information late, but the decoder needs it early. This is a problem for Lane Compression,
as we need to synchronise the output data from each lane.

Our solution is to modify the (Z-)RLC methods to introduce the concept of ‘long/short runs’. We
introduce a parameter 𝑆 and define a run of length 2𝑆 or more as ‘long’ and otherwise ‘short’. Short
runs are encoded in a standard way, a value followed by the run length in 𝑆 bits, and long runs are
encoded as the value followed by 2𝑆 − 1. The encoder must then emit a stop code to signal when
the long run ends. This ensures that the encoder only needs to see at most the next 2𝑆 − 1 input
symbols before outputting an output symbol, thus only a buffer of size 2𝑆 is needed in the encoder
as shown in Figure 7.

The stop code for long runs should be recognisable to the decoder and be unique for correctness.
We introduce a parameter 𝐶 for the width of the stop code. The value of the stop code is chosen
as 100 . . . 00; a 1 bit followed by 𝐶 − 1 0 bits. This must then be followed by an additional 0 bit
if the stop code is real or a 1 bit if it is spurious. Spurious stop codes are cases where the output
symbol happens to match the stop code value. If there is a spurious stop code, the decoder simply
deletes the extra 1 bit and carries on processing normally. We have carefully chosen the value of
the stop code for simplicity of the hardware implementation and to reduce the number of spurious
occurrences. After the stop code, it may be necessary to indicate which lane stopped if there is

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Lane Compression: A Lightweight Lossless Compression Method for Machine Learning on Embedded Systems 111:15

more than one (Z-)RLC lane. Thus, the index of the lane should be emitted, but the width of this
index value can be less than log2 (lanes) if there are few (Z-)RLC lanes.
One consequence of our modification of (Z-)RLC is that there must be at least one lane which

is symbol based. This is because the stop code encoding implicitly uses the other lane’s data to
synchronise when to stop the run.

while True:

b = []

for l in Lanes:

if l.need_stop_code:

output('10..0 ', '0', l.index)

b += l.output_symbol

output(b[0:C])

if b[0:C] == '10..0 ':

output('1')

output(b[C:])

Fig. 8. Pseudo-code for Bit Packing algorithm

Figure 8 shows pseudo-code for our bit packing hardware. Not shown is the fact that spurious
stop codes may span multiple iterations of the ‘while’ loop, so it is necessary to detect this case
as well. Stop codes can only be generated at the start of a concatenated output symbol and so
consequently the decoder only needs to check for stop codes at the start of a concatenated input
symbol.

Processing Order 0 1 2 3 4 5 6
Input 00000 00001 00010 00011 00000 00100 01000

Lane 0 in 00 01 10 11 00 00 00
Lane 1 in 000 000 000 000 000 001 010

Stop code 10
Lane 0 out 0 101 110 111 0 0 0
Lane 1 out 00011 001 010

Concatenation 000011 101 110 111 0 100001 0010

Output 000011 1011 110 111 0 1000001 0010

Stop code: 10
Methods: Lane 0: ZVC

Lane 1: Z-RLC, Max seq. = 22

Fig. 9. Example output of Lane Compression. The figure shows inputs and corresponding outputs of the
encoder in processing order starting from Column ‘0’. Within each processing step, bit columns are aligned
vertically to denote how the input is split (Rows ‘Lane 0 in’ and ‘Lane 1 in’), how the concatenation is formed
(Rows ‘Stop code’, ‘Lane 0 out’, and ‘Lane 1 out’), and how the real stop codes are distinguished with the
spurious ones (Rows ‘Concatenation’ and ‘Output’).

Figure 9 shows an example of Lane Compression. In this example a 5 bit input is being compressed
with 2 lanes with parameters 𝑆 = 2 and𝐶 = 2. Lane 0 is using the ZVC method to compress the two
least significant bits. Lane 1 is using the Z-RLC method to compress the three most significant bits.
For each input, lane 0 (the ZVC lane) just outputs 0 if the input is 00 or the value concatenated
with 1. This matches the normal behaviour of a ZVC encoder. For lane 1, the first five symbols
are 000, so this is the start of a run of length 5. This is larger than 2𝑆 − 1 = 3 and so a long run is

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:16 Yousun Ko, Alex Chadwick, Daniel Bates, and Robert Mullins

started. This is encoded with a run length of 11 and will eventually be stopped with a stop code.
After the run, the remaining inputs to lane 1 are non-zero, so these are encoded directly, matching
the normal behaviour of Z-RLC. For each input, all of these encoded values are concatenated ready
to be output. At the second input symbol, the concatenated output matches the stop code value
10 (as shown in bold) spuriously and so an extra 1 bit is inserted by the stop code detector. This
allows the decoder to know this is not a real stop code. At the sixth input symbol, the run in lane 1
stops, so a stop code is emitted before the output symbol, again shown in bold.

6.2 Speculation in Decoder
When using a combined bitstream, the lane decoder hardware has a fundamental speed bottleneck.
The compressed bitstream has no annotations or indication as to the boundaries between variable-
length symbols, so the decoder cannot begin decoding the next symbol until the end position of
the previous symbol is computed. To do this, the decoder must inspect the symbol at the head of
the stream and determine the width of each lane’s contribution to that symbol. If solved naively,
this problem can prove to be a significant bottleneck on the decoder speed. Fortunately, in the vast
majority of cases the width of the next symbol can only be one of two possibilities for each lane.
This allows speculation of the next symbol width and some information to be precomputed.

For example, in Figure 9, lane 0 is a 2 bit ZVC lane and so each symbol this lane generates is
either a 1 bit zero value, or a 3 bit non-zero value. Lane 1 is a 3 bit Z-RLC lane and so on the first
input symbol the width will either be a 3 bit non-zero value or a 5 bit run start. Once a run start is
seen, the next symbol width will be 0 bits until the run end. Simple rules such as this always give
at most two possible widths of all lane symbols before the symbol is read. The only exception is
the first symbol of a DPRed block, which cannot be predicted.
Predicting the width of compressed lane symbols allows the width of the whole symbol to be

predicted as one of 2lane count possibilities. These width values are precomputed and stored. In all
methods, it is sufficient to test if only a subset of bits in the input symbol are all zero in order to
select the width. For example, in ZVC, the least significant bit is tested against zero. In the rare
case of a symbol width which is not predictable, the decoder stalls for a cycle to wait for the final
symbol width to be computed. This system of prediction shortens the critical path of the decoder,
allowing it to operate at speed.

6.3 Hardware Cost

(a) Number of lanes and NS logic blocks (b) Size of buffers

Fig. 10. Changes in compression rate and hardware cost by optimising reconfigurability.

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Lane Compression: A Lightweight Lossless Compression Method for Machine Learning on Embedded Systems 111:17

As reconfigurability adds to hardware cost, those lane widths and compression techniques
supported in hardware should be chosen carefully. Experimentation showed that many options
could be removed with a minimal loss in compression rate.

We optimised reconfigurability from coarse-grained options (e.g. number of lanes) to fine-grained
options (e.g. size of buffer). This is because coarse-grained options are more influential on hardware
cost and also on compression rate as shown in Figure 10. Each bar shows the geometric mean
compression rate normalised to unconstrained hardware, with an error bar to show minimum and
maximum across all data from our benchmark machine learning networks. Relative hardware costs
for the encoder and decoder are provided for each design point in addition.
Increasing the number of lanes improved the compression rate and decreased the degree of

fluctuation. The area overhead due to a single NS logic block was insignificant compared to the gain,
but having two NS logic blocks was not worth the increased hardware cost. Thus we have chosen 3
lanes with 1 NS logic block. Figure 10(b) shows the effect of reducing sizes of buffers (parameter 𝑆)
from 25 to 22. As the buffer size reduces, the hardware cost drops visibly but the compression rate
difference is relatively small between 24 and 23 considering both encoder and decoder. Thus we
have chosen 3 for 𝑆 . Dynamic data can be more sensitive to buffer size than static data, resulting in
a slightly lower compression rate than that of static data. But the gap was negligible i.e. around
0.1% of the overall compression rate for the buffers larger than 22 symbols. Figure 10(b) shows our
S/D-DPRed performs better than DPRed as a part of Lane Compression by the aid of profiling. We
evaluated the effect of different bit widths of stop codes (parameter𝐶) up to 8 bits in hardware cost
and compression rate and found the difference is negligible. Thus we have chosen 8 for 𝐶 .

To evaluate the hardware cost we designed an encoder and decoder pair and placed and routed
them for the a commercial low leakage power 40nm ASIC process. We targeted a clock frequency
of 200MHz with moderate circuit-level optimisations. Users may apply further circuit-level optimi-
sations, change target hardware area, or use different transistor technologies to match the target
throughput of their use cases. The maximum input symbol width and output symbol width were
both fixed to 32 bits. Our hardware implementation requires 57 parameters regardless of input
data representation and run-time adaptation can be performed by changing these parameters at a
cost of 14 cycles if necessary. All lanes support the ‘none’ and ZVC methods. In addition, Lane 0
supports sparse and dense DPRed, and all other lanes support RLC and Z-RLC. Each lane can also
be disabled and the bits each lane compresses can be reconfigured to be any contiguous range of
bits from the input. All the reconfiguration state of the hardware is kept in registers. The total area
for the encoder was 23000`m2 and the total area for the decoder was 18000`m2.
Our hardware implementation costs 8–20 pJ/symbol for encoding and 10–15 pJ/symbol for

decoding on a commercial low leakage power 40nm ASIC process. The energy costs are affected by
compression rates, showing higher energy efficiency when compression rates are high, because the
hardware will have less transitions if the compression rate is good. The current implementation
supports up to 32-bit symbols and the energy cost does not vary with the effective bitwidth of
inputs. Thus the energy consumption can be drastically reduced by constraining the maximum
bitwidth, for instance to 16-bit or 8-bit symbols.

The energy saving from compressing memory traffic can be described as,

energy cost before compression
energy cost after compression

=
𝑛 × 𝑏 × 𝐸𝑚𝑒𝑚

𝑛 × 𝑏
𝑐
× 𝐸𝑚𝑒𝑚 + 𝑛 × 𝐸𝑐𝑜𝑚𝑝

=
𝑏 × 𝐸𝑚𝑒𝑚

𝑏
𝑐
× 𝐸𝑚𝑒𝑚 + 𝐸𝑐𝑜𝑚𝑝

(1)

=
𝑐

1 + 𝑐
𝑏

𝐸𝑐𝑜𝑚𝑝

𝐸𝑚𝑒𝑚

(2)

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:18 Yousun Ko, Alex Chadwick, Daniel Bates, and Robert Mullins

where 𝑛 is the number of symbols to be transmitted to complete a workload, 𝑏 is the bitwidth
of the symbol, 𝑐 is the compression rate, 𝐸𝑚𝑒𝑚 is the energy cost to access a bit from a memory
hierarchy (pJ/bit), and 𝐸𝑐𝑜𝑚𝑝 is the energy cost to compress a symbol (pJ/symbol). Considering the
use case of compressing DRAM data traffic, 𝐸𝑚𝑒𝑚 varies depending upon the memory technologies
used, for instance, from 15 pJ/bit to 47 pJ/bit [13, 55, 56] resulting in a cost up to 752 pJ/symbol
to access a 16-bit symbol. We observe that the energy saving from compression is dominated by
𝐸𝑚𝑒𝑚 , 𝑏, and 𝑐 and not 𝐸𝑐𝑜𝑚𝑝 which is over an order of magnitude lower. Note that 𝐸𝑐𝑜𝑚𝑝 could
be further decreased by applying more aggressive circuit level optimsations or by using different
transistor technologies. If 𝐸𝑐𝑜𝑚𝑝 is negligible, the Equation (2) suggests that energy saving rate
from compression is exactly same as the compression rate 𝑐 , and if not the gain will be reduced by
the term 𝑐

𝑏

𝐸𝑐𝑜𝑚𝑝

𝐸𝑚𝑒𝑚
.

7 EVALUATION

(a) Normalised to Lane Compression
(b) Effective compression rate

normalised to the Shannon limit

Fig. 11. A comparison of compression schemes. Results are geometric means using all data sources from all
networks with an error bar to show minimum and maximum.

Figure 11 compares the compression rate of Lane Compression with other methods mentioned
in Section 2. Each bar shows the geometric mean with an error bar to show the minimum and
maximum across all benchmark networks that we evaluated. Note that the minimum and maximum
values convey slightly more meaning than just outliers. For instance, a specific compression method
applied to a specific data source from a network will show a consistent compression rate as
demonstrated in Section 5.2. Hence, for a system doing inference on a particular network, the
performance of lossless compression could be consistently good or bad. For methods where we
have observed failure to compress, this means that the method could consistently fail to compress
at all. Note that we present two versions of the result for EBPC, EBPC for activations and gradients
only and EBPC’ for all data sources including weights. The frequent pattern table of the published
EBPC [4] it not designed for weights, therefore it shows noticeable performance degradation when
applied on weights. Finding the optimal frequent patterns of weights is an independent research
topic and it is beyond the scope of the paper.

Figure 11(a) shows comparison in hardware cost in area of HW feasible methods normalised to
the hardware cost of Lane Compression. All methods are run-time configurable and implemented
internally using the same degree of circuit-level optimisations except EBPC. Hardware cost of

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Lane Compression: A Lightweight Lossless Compression Method for Machine Learning on Embedded Systems 111:19

EBPC is retrieved from their work [4]. All methods except CSC/CSR are profiled ahead of run-time
to find the best algorithmic parameters for each layer. Algorithmic parameters for CSC/CSR are
borrowed from the previous implementation [6]. The DPRed allows block sizes up to 16 and S-EG
supports values of the 𝑘 parameter up to 31. All targeted a frequency of 200MHz except EBPC
which targets 600MHz.

As shown in Figure 11(a), no HW feasible method outperformed Lane Compression’s geometric
mean, but S-EG outperformed by 1.9% on one data source: weights for re-training from CifarNet.
This data source has high sparsity but zeros are much less likely to be consecutive. Lane Com-
pression outperformed two complex compression methods, LZW and DEFLATE, and only static
Huffman coding outperformed Lane Compression by 1.3%. Static Huffman coding performed well
on SqueezeNet’s weights for retraining, which is the most randomly distributed data among the
data sources evaluated. LZW and DEFLATE were highly effective on gradients from the LSTM,
which is a text-based machine learning network. However, the overhead due to static Huffman
coding was significant: the average sizes of Huffman tables were from a few kilobytes for inference
to a few megabytes for re-training, per layer. Various additional techniques can be applied on plain
static Huffman coding to reduce size of the Huffman table such as index hashing [18] or canonical
Huffman coding [3], but tables cannot be removed.
In comparison to the Shannon limit, Lane Compression achieved 96.3% of the Shannon limit,

outperforming all compression methods except the static Huffman coding. Moreover, with a
maximum observed normalised compression rate of 139%, it is the only lightweight compression
method that achieved compression rates beyond the Shannon limit. Static Huffman coding achieved
97.6% of the Shannon limit but it could never achieve beyond the limit because it is a purely symbol
based method.

Figure 11(b) shows a comparison of the effective compression rate, where 0 means no compression
and 1 means maximum symbol-based compression rate given by the Shannon limit. The effective
compression rate is a 0-based compression rate and obtained by data size before compression

data size after compression − 1, instead of
commonly used 1-based compression rate (= data size before compression

data size after compression) which is used elsewhere in the
paper. The effective compression rate enables us to compare gains and losses from compression
more directly and also highlights cases where a scheme fails to compress. Figure 11(b) shows
arithmetic mean of effective compression rates normalised to the effective Shannon limit (a 0-based
Shannon limit) with an error bar to show minimum and maximum. Any compression methods
with error bars stretching below 0 have failed to compress in some cases. Lane Compression
achieved 90.4% of the gain suggested by the Shannon limit from compression and DPRed and
S-EG achieved less than 64.4% and 63.7% respectively. EBPC has been designed only for activations
and gradients and struggled to compress weights, as shown by the error bar reaching near -1.
CSC/CSR showed the negative average effective compression rate with the error bar reaching over
-1.5. CSC/CSR is designed for sparse data therefore it was ill suited for the machine learning data
without additional sparsification. Static Huffman coding shows the best effective compression rate
in geometric mean (93.9%) but again never achieved beyond the limit.
Figure 12 shows compression rates of Lane Compression by network, data source, and input

dataset. LeNet-5 is one of the most dense networks in values but the distribution of non-zero values
is concentrated around zero, leading to a high geometric mean compression rate. On the other
hand, SqueezeNet is much more sparse than LeNet-5 but non-zero values are widely distributed,
making it harder to extract patterns of sequences of zeros. It also explains why Lane Compression
performed less well on weights for re-training in general. Entropy density of weights are usually
higher than other data sources in general and require wider bit widths to retain re-trainability,
which makes distribution of non-zeros even flatter. Gradients are the most sparse data source in

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:20 Yousun Ko, Alex Chadwick, Daniel Bates, and Robert Mullins

Fig. 12. Compression rate of Lane Compression normalised to the Shannon limit by network, data source,
and input dataset

both values and bits, which Lane Compression favours, resulting in compression rates beyond the
Shannon limit. Lane Compression could compress beyond the Shannon limit with all input datasets.
Note that the lightweight compression methods specialised for zero values, ZVC, CSC/CSR, RLC,
and Z-RLC, could not compress the WikiText-2 based data for all data sources except gradients.

Measured compression rates were slightly different to the estimated compression rate due to the
dynamic effect of stop codes, but the difference was less than 0.19% of the estimated compression rate
in terms of geometric mean. The complete set of absolute compression rates of Lane Compression
can be found in Appendix A.1.

7.1 Interaction with Lossy Transformation
This section explores how data statistics are changed by different levels of quantization, clipping
and pruning and how these changes impact the effectiveness of lossless compression techniques and
the overall compression rates. We adopted the concept of parameterised intervals for quantization
proposed by Jung et al. [26] which simultaneously performs both pruning and clipping, and per-
formed a non-exhaustive exploration to find the best quantization interval for data representations
with different bitwidths without additional training. This experiment is performed on activations
and weights for inference from three different networks, LeNet-5, CifarNet, and MobileNet, on
three different datasets, MNIST, CIFAR-10, and ImageNet respectively. For quantization, the same
parameter configuration is used across all layers per data source and 𝛾 was fixed to 1. Activations
and weights were transformed and evaluated separately, unlike the data used for the rest of the
paper.

Table 5 shows gradual changes in data statistics after different levels of quantization and overall
results after Lane Compression is applied on the quantised data. Figure 13 shows changes in
compression rates by lossy compression (𝑄 , black dashed lines), lossless compression (𝐶 , coloured
dashed lines) and also overall compression rates (𝑄 × 𝐶 , solid lines) on LeNet-5, CifarNet and
MobileNet. In general, value sparsity and bit sparsity increased as the resolution of data decreased
but entropy density did not decrease necessarily.

As quantization level (𝑄) increases, the compression rates (𝐶) of all lossless compression method
showed similar tendency, and hence the relative effectiveness of different methods barely changed.
Thus the consistently high compression rate of Lane Compression contributed to higher overall
compression rates (𝑄 × 𝐶) compared to other methods, and the overall performance difference
among different lossless compression methods became more visible as quantization level increased.
We also observed that higher quantization levels (𝑄) can contribute to better compression rate

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Lane Compression: A Lightweight Lossless Compression Method for Machine Learning on Embedded Systems 111:21

Table 5. Data statistics of different levels of lossy transformation with data type after quantization (col-
umn ‘Data type (32

𝑄
)’ and resulting bits per value after applying Lane Compression on the quantised data

(column ‘Bits per value (32
𝑄×𝐶)’).

Network Data
source

Data
type
(32
𝑄
)

Bits per
value
(32
𝑄×𝐶)

Value
sparsity

Bit
sparsity

Entropy
density

Top-1
model acc.

LeNet-5

Acts

16 FxP 11.8 bits 0.02% 58.94% 63.76% 99.24% (-0.00%)
10 FxP 6.9 bits 1.48% 65.14% 64.00% 99.22% (-0.02%)
8 FxP 5.5 bits 8.43% 66.05% 65.47% 99.21% (-0.03%)
6 FxP 4.3 bits 7.57% 63.85% 72.67% 99.06% (-0.18%)

Weights

16 FxP 14.5 bits 0.01% 57.04% 84.00% 99.24% (-0.00%)
10 FxP 8.5 bits 0.82% 61.37% 82.54% 99.21% (-0.03%)
8 FxP 6.5 bits 3.22% 64.24% 78.25% 99.23% (-0.01%)
6 FxP 4.5 bits 13.15% 69.42% 69.56% 98.72% (-0.52%)

CifarNet

Acts

16 FxP 5.2 bits 64.03% 87.15% 31.28% 93.21% (-0.00%)
10 FxP 2.9 bits 65.14% 90.44% 28.50% 93.16% (-0.05%)
8 FxP 2.5 bits 65.85% 89.77% 31.38% 93.06% (-0.15%)
6 FxP 1.9 bits 68.52% 90.05% 32.04% 91.76% (-1.45%)

Weights

16 FxP 13.8 bits 0.04% 60.13% 84.29% 93.19% (-0.02%)
12 FxP 9.8 bits 0.59% 63.52% 79.79% 93.13% (-0.08%)
10 FxP 7.8 bits 2.35% 66.28% 75.65% 93.14% (-0.07%)
8 FxP 5.8 bits 9.42% 70.58% 68.73% 92.36% (-0.85%)

MobileNet

Acts

16 FxP 6.3 bits 54.33% 82.43% 39.37% 68.15% (-0.00%)
14 FxP 5.4 bits 54.74% 83.32% 38.84% 68.14% (-0.01%)
12 FxP 4.6 bits 54.84% 83.35% 40.00% 68.01% (-0.14%)
10 FxP 3.8 bits 55.15% 84.00% 40.44% 67.72% (-0.43%)

Weights

16 FxP 9.9 bits 32.32% 75.39% 58.45% 68.16% (+0.01%)
14 FxP 8.4 bits 33.84% 76.78% 56.75% 68.18% (+0.03%)
12 FxP 6.9 bits 35.53% 78.51% 54.47% 68.04% (-0.11%)
10 FxP 5.4 bits 38.12% 80.82% 51.14% 65.73% (-2.42%)

(𝐶), as shown in Figure 13(b), which means the overall compression rates can be amplified even
further in such cases. This result suggests that the data redundancy exploited by lossy and lossless
compression are not of the same kind. As the level of quantization increased, the Shannon Limit,
Lane Compression, and static Huffman Coding showed a similar tendency in performance. Lane
Compression outperformed static Huffman coding for activations in all quantization levels, and
S-EG and DPRed followed next in performance. S-EG and DPRed performed exceptionally well
on weights from MobileNet compared to the weights from LeNet-5 and CifarNet, showing similar
performance to Lane Compression.

These results demonstrate that the combination of lossy and lossless compression methods can
achieve compression results competitive with more aggressive lossless techniques at an economic
cost. Aggressive quantization methods usually involve use of expensive operations such as trigono-
metrical functions, multiplication, or division [12, 54, 58] which may require specialist hardware.
For some techniques parameters for quantization need to be trained for each network [54, 57]

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:22 Yousun Ko, Alex Chadwick, Daniel Bates, and Robert Mullins

(i) LeNet-5 (ii) CifarNet (iii) MobileNet
(a) Activation

(i) LeNet-5 (ii) CifarNet (iii) MobileNet
(b) Weight

Fig. 13. Compression rates by lossless compression (𝐶 , coloured dashed lines), Compression rate by
quantization(𝑄 , black dashed lines), and the overall compression rates (𝑄 ×𝐶 , solid lines) by different levels
of quantization on activations and weights of Lenet-5, CifarNet, and MobileNet. The overall compression
rates are amplified by quatization and lossless compression.

which may not guarantee successful convergence without losing model accuracy, especially when
the target rate (𝑄) is high. A lightweight lossless compression method combined with simple linear
quantization can achieve fairly small bits per value as shown in column ‘Bits per value (𝑄 ×𝐶)’ in
Table 5.

We acknowledge that the statistical characteristics might be more arbitrary as more aggressive
quantization methods are developed, but such arbitrary cases were not observed on datasets with
representations as narrow as 6–8 FxP. For data representations that are too narrow to be split into
lanes, we can add a simple preprocessing step to restructure multiple narrow values into a value
which is wide enough to split as shown in Figure 14. Such preprocessing exposes bit-wise data
redundancy of the values if it exists and improves throughput by processing multiple values in a
cycle without modifying the underlying hardware design of Lane Compression.

8 CONCLUSION
Wehave introduced Lane Compression, an effective and lightweight lossless compressionmethod for
machine learning.We demonstrated that on average Lane Compression outperformed all lightweight
and also some complex compression methods that have been applied to machine learning data. Lane
Compression is the only lightweight compression method that we observed compressing beyond
the Shannon limit of the data. We have detailed a low-cost hardware implementation suitable for
both on-chip and off-chip communication.

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Lane Compression: A Lightweight Lossless Compression Method for Machine Learning on Embedded Systems 111:23

. . .

𝑣0

𝑏
0 0

𝑏
0 1

𝑏
0 2

𝑣1

𝑏
1 0

𝑏
1 1

𝑏
1 2

𝑣2

𝑏
2 0

𝑏
2 1

𝑏
2 2

𝑏
0 0

𝑏
1 0

𝑏
2 0

𝑏
0 1

𝑏
1 1

𝑏
2 1

𝑏
0 2

𝑏
1 2

𝑏
2 2

Sp
lit

in
to

la
ne
s

lane0

lane1

lane2

𝑏
0 0

𝑏
1 0

𝑏
2 0

𝑏
0 1

𝑏
1 1

𝑏
2 1

𝑏
0 2

𝑏
1 2

𝑏
2 2

Fig. 14. A preprocessing step with an example for Lane Compression on narrow (3-FxP) values (𝑣𝑖)

Future work will explore the effectiveness of Lane Compression on other common data formats
such as BFloat16 [50] and shift weights [40]. Finding the bestmethod for serialisingmachine learning
data to expose the hidden data redundancy in a sequence of bits or values will be another interesting
direction to investigate. Finally, additional gains are possible by considering the compressibility of
data during the design of the network and during the training process [2]. We would hope that
Lane Compression provides a useful parameterised compression technique to aid in this co-design
process.

ACKNOWLEDGMENTS
This work was kindly supported by the Samsung Advanced Institute of Technology (SAIT).

REFERENCES
[1] Ziad Asghar and Jeff Gehlhaar. 2019. 2019 Snapdragon 865 5G AI Deep Dive. https://www.qualcomm.com/media/

documents/files/2019-snapdragon-865-5g-ai-deep-dive-ziad-asghar-jeff-gehlhaar.pdf.
[2] Chaim Baskin, Brian Chmiel, Evgenii Zheltonozhskii, Ron Banner, Alex M. Bronstein, and Avi Mendelson. 2019. CAT:

Compression-Aware Training for bandwidth reduction. arXiv:1909.11481 [cs.CV]
[3] Talal Bonny and Jörg Henkel. 2010. Huffman-based Code Compression Techniques for Embedded Processors. ACM

Trans. Des. Autom. Electron. Syst. 15, 4, Article 31 (Oct. 2010), 37 pages.
[4] Lukas Cavigelli, Georg Rutishauser, and Luca Benini. 2019. EBPC: Extended Bit-Plane Compression for Deep Neural

Network Inference and Training Accelerators. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9,
4 (Dec 2019), 723–734.

[5] Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 2017. Eyeriss: An Energy-Efficient Reconfigurable
Accelerator for Deep Convolutional Neural Networks. IEEE Journal of Solid-State Circuits 52, 1 (Jan 2017), 127–138.

[6] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2: A Flexible Accelerator for Emerging Deep
Neural Networks on Mobile Devices. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 2 (June
2019), 292–308.

[7] Soumith Chintala. 2016. Word-level language modeling RNN. https://github.com/pytorch/examples/tree/master/word_
language_model.

[8] Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. 2020. Universal Deep Neural Network Compression. IEEE Journal
of Selected Topics in Signal Processing (2020), 1–1.

[9] Patrick Damme, Dirk Habich, Juliana Hildebrandt, and Wolfgang Lehner. 2017. Lightweight Data Compression
Algorithms: An Experimental Survey (Experiments and Analyses). In EDBT.

[10] Alberto Delmas, Sayeh Sharify, Patrick Judd, Milos Nikolic, and Andreas Moshovos. 2018. DPRed: Making Typical
Activation Values Matter In Deep Learning Computing. CoRR abs/1804.06732 (2018). arXiv:1804.06732

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition. 248–255.

[12] Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. 2020. Model Compression and Hardware Acceleration for
Neural Networks: A Comprehensive Survey. Proc. IEEE (2020), 1–48.

[13] Fabrice Devaux. 2019. The true Processing In Memory accelerator. In 2019 IEEE Hot Chips 31 Symposium (HCS). 1–24.

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://www.qualcomm.com/media/documents/files/2019-snapdragon-865-5g-ai-deep-dive-ziad-asghar-jeff-gehlhaar.pdf
https://www.qualcomm.com/media/documents/files/2019-snapdragon-865-5g-ai-deep-dive-ziad-asghar-jeff-gehlhaar.pdf
https://arxiv.org/abs/1909.11481
https://github.com/pytorch/examples/tree/master/word_language_model
https://github.com/pytorch/examples/tree/master/word_language_model
https://arxiv.org/abs/1804.06732

111:24 Yousun Ko, Alex Chadwick, Daniel Bates, and Robert Mullins

[14] Angelo Garofalo, Manuele Rusci, Francesco Conti, Davide Rossi, and Luca Benini. 2019. PULP-NN: A Computing
Library for Quantized Neural Network inference at the edge on RISC-V Based Parallel Ultra Low Power Clusters. In
2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS). 33–36.

[15] Georgios Georgiadis. 2018. Accelerating Convolutional Neural Networks via Activation Map Compression. CoRR
abs/1812.04056 (2018). arXiv:1812.04056

[16] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solomatnikov, Benjamin C. Lee, Stephen Richardson,
Christos Kozyrakis, and Mark Horowitz. 2010. Understanding Sources of Inefficiency in General-purpose Chips. In
Proceedings of the 37th Annual International Symposium on Computer Architecture (Saint-Malo, France). ACM, New
York, NY, USA, 37–47.

[17] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and William J. Dally. 2016. EIE:
Efficient Inference Engine on Compressed Deep Neural Network. In Proceedings of the 43rd International Symposium
on Computer Architecture (Seoul, Republic of Korea). IEEE Press, Piscataway, NJ, USA, 243–254.

[18] Song Han, Huizi Mao, andWilliam J. Dally. 2015. Deep Compression: Compressing Deep Neural Network with Pruning,
Trained Quantization and Huffman Coding. CoRR abs/1510.00149 (2015).

[19] Song Han, Jeff Pool, John Tran, and William J. Dally. 2015. Learning Both Weights and Connections for Efficient
Neural Networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume
1 (Montreal, Canada). MIT Press, Cambridge, MA, USA, 1135–1143.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,
and Hartwig Adam. 2017. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. CoRR
abs/1704.04861 (2017). arXiv:1704.04861

[22] David A. Huffman. 1952. A Method for the Construction of Minimum-Redundancy Codes. Proceedings of the IRE 40, 9
(Sep. 1952), 1098–1101.

[23] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally, and Kurt Keutzer. 2016.
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size. CoRR abs/1602.07360 (2016).

[24] Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia Tang, and Gennady Pekhimenko. 2018. Gist: Efficient Data
Encoding for Deep Neural Network Training. In 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). 776–789.

[25] Norman P. Jouppi et al. 2017. In-Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of the
44th Annual International Symposium on Computer Architecture (Toronto, ON, Canada). ACM, New York, NY, USA.

[26] Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son, Jae-Joon Han, Youngjun Kwak, Sung Ju Hwang, and Changkyu
Choi. 2019. Learning to Quantize Deep Networks by Optimizing Quantization Intervals With Task Loss. In 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 4345–4354.

[27] Wonkyung Jung, Daejin Jung, , Byeongho Kim, Sunjung Lee, Wonjong Rhee, and Jung Ho Ahn. 2018. Restructuring
Batch Normalization to Accelerate CNN Training. arXiv:1807.01702

[28] Hyunjun Kim. 2016. SqueezeNet v1.1. https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1
[29] Jungrae Kim, Michael Sullivan, Esha Choukse, and Mattan Erez. 2016. Bit-plane Compression: Transforming Data

for Better Compression in Many-core Architectures. In Proceedings of the 43rd International Symposium on Computer
Architecture (Seoul, Republic of Korea). IEEE Press, Piscataway, NJ, USA, 329–340.

[30] Morten Kjelsø, Mark Gooch, and Simon Jones. 1996. Design and performance of a main memory hardware data
compressor. In Proceedings of 22nd Euromicro Conference. Beyond 2000: Hardware and Software Design Strategies.
423–430.

[31] Jong Hwan Ko, Duckhwan Kim, Taesik Na, Jaeha Kung, and Saibal Mukhopadhyay. 2017. AdaptiveWeight Compression
for Memory-efficient Neural Networks. In Proceedings of the Conference on Design, Automation & Test in Europe
(Lausanne, Switzerland). European Design and Automation Association, 199–204.

[32] Saluka Kodituwakku and S.Amarasinghe U. 2010. COMPARISON OF LOSSLESS DATA COMPRESSION ALGORITHMS
FOR TEXT DATA. Indian Journal of Computer Science and Engineering 1 (12 2010).

[33] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images. Technical Report. University of Toronto.
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

[34] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classification with Deep Convolutional
Neural Networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume
1 (Lake Tahoe, Nevada). Curran Associates Inc., USA, 1097–1105.

[35] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document
recognition. Proc. IEEE 86, 11 (Nov 1998), 2278–2324. https://doi.org/10.1109/5.726791

[36] Arm Ltd. 2019. Arm Ethos-N series processors. https://developer.arm.com/ip-products/processors/machine-learning/
arm-ethos-n.

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://arxiv.org/abs/1812.04056
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1807.01702
https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1109/5.726791
https://developer.arm.com/ip-products/processors/machine-learning/arm-ethos-n
https://developer.arm.com/ip-products/processors/machine-learning/arm-ethos-n

Lane Compression: A Lightweight Lossless Compression Method for Machine Learning on Embedded Systems 111:25

[37] Partha Maji, Daniel Bates, Alex Chadwick, and Robert Mullins. 2017. ADaPT: Optimizing CNN Inference on IoT
and Mobile Devices Using Approximately Separable 1-D Kernels. In Proceedings of the 1st International Conference on
Internet of Things and Machine Learning (Liverpool, United Kingdom). ACM, New York, NY, USA, Article 43, 12 pages.

[38] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2016. Pointer Sentinel Mixture Models. CoRR
abs/1609.07843 (2016). arXiv:1609.07843

[39] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia, Boris Ginsburg,
Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. 2018. Mixed Precision Training. In International
Conference on Learning Representations.

[40] Daisuke Miyashita, Edward H. Lee, and Boris Murmann. 2016. Convolutional Neural Networks using Logarithmic
Data Representation. arXiv:1603.01025

[41] Miloš Nikolić, Mostafa Mahmoud, Yiren Zhao, Robert Mullins, and Andreas Moshovos. 2019. Characterizing Sources of
Ineffectual Computations in Deep Learning Networks. In 2019 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS). 165–176.

[42] Nvidia. 2019. Deep Learning Performance. https://docs.nvidia.com/deeplearning/sdk/pdf/Deep-Learning-Performance-
Guide.pdf.

[43] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan Venkatesan, Brucek Khailany,
Joel Emer, Stephen W. Keckler, and William J. Dally. 2017. SCNN: An Accelerator for Compressed-sparse Convolutional
Neural Networks. In Proceedings of the 44th Annual International Symposium on Computer Architecture (Toronto, ON,
Canada). ACM, New York, NY, USA, 27–40.

[44] Richard Clark Pasco. 1976. Source Coding Algorithms for Fast Data Compression. Ph.D. Dissertation.
[45] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch, and Todd C. Mowry.

2012. Base-delta-immediate Compression: Practical Data Compression for On-chip Caches. In Proceedings of the 21st
International Conference on Parallel Architectures and Compilation Techniques (Minneapolis, Minnesota, USA). ACM,
New York, NY, USA, 377–388.

[46] Minsoo Rhu, Mike O’Connor, Niladrish Chatterjee, Jeff Pool, and Stephen W. Keckler. 2017. Compressing DMA Engine:
Leveraging Activation Sparsity for Training Deep Neural Networks. CoRR abs/1705.01626 (2017). arXiv:1705.01626

[47] Mark A. Roth and Scott J. Van Horn. 1993. Database Compression. SIGMOD Rec. 22, 3 (Sept. 1993), 31–39.
[48] Amir Said. 2004. Introduction to Arithmetic Coding - Theory and Practice. Technical Report HPL-2004-76. Imaging

Systems Laboratory, HP Laboratories Palo Alto.
[49] Claude E. Shannon. 1948. A Mathematical Theory of Communication. Bell System Technical Journal 27, 3 (1948),

379–423.
[50] Giuseppe Tagliavini, Stefan Mach, Davide Rossi, Andrea Marongiu, and Luca Benin. 2018. A transprecision floating-

point platform for ultra-low power computing. In 2018 Design, Automation Test in Europe Conference Exhibition (DATE).
1051–1056.

[51] Richard Wilson Vuduc. 2003. Automatic Performance Tuning of Sparse Matrix Kernels. Ph.D. Dissertation. AAI3121741.
[52] Ying Wang, Huawei Li, and Xiaowei Li. 2018. A Case of On-Chip Memory Subsystem Design for Low-Power CNN

Accelerators. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 37, 10 (Oct 2018),
1971–1984.

[53] Terry A. Welch. 1984. A Technique for High-Performance Data Compression. Computer 17, 6 (June 1984), 8–19.
[54] Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li, Bing Deng, Jianqiang Huang, and Xian-sheng Hua. 2019.

Quantization Networks. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[55] Xuan Yang, Mingyu Gao, Qiaoyi Liu, Jeff Setter, Jing Pu, Ankita Nayak, Steven Bell, Kaidi Cao, Heonjae Ha, Priyanka

Raina, Christos Kozyrakis, and Mark Horowitz. 2020. Interstellar: Using Halide’s Scheduling Language to Analyze
DNN Accelerators. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). Association for Computing Machinery, New
York, NY, USA, 369–383. https://doi.org/10.1145/3373376.3378514

[56] Amir Yazdanbakhsh, Choungki Song, Jacob Sacks, Pejman Lotfi-Kamran, Hadi Esmaeilzadeh, and Nam Sung Kim. 2018.
In-DRAM near-Data Approximate Acceleration for GPUs. In Proceedings of the 27th International Conference on Parallel
Architectures and Compilation Techniques (Limassol, Cyprus) (PACT ’18). Association for Computing Machinery, New
York, NY, USA, Article 34, 14 pages. https://doi.org/10.1145/3243176.3243188

[57] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. 2018. LQ-Nets: Learned Quantization for Highly
Accurate and Compact Deep Neural Networks. In Computer Vision – ECCV 2018, Vittorio Ferrari, Martial Hebert,
Cristian Sminchisescu, and Yair Weiss (Eds.). Springer International Publishing, Cham, 373–390.

[58] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. 2016. DoReFa-Net: Training Low
Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients. arXiv:1606.06160

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1603.01025
https://docs.nvidia.com/deeplearning/sdk/pdf/Deep-Learning-Performance-Guide.pdf
https://docs.nvidia.com/deeplearning/sdk/pdf/Deep-Learning-Performance-Guide.pdf
https://arxiv.org/abs/1705.01626
https://doi.org/10.1145/3373376.3378514
https://doi.org/10.1145/3243176.3243188
https://arxiv.org/abs/1606.06160

111:26 Yousun Ko, Alex Chadwick, Daniel Bates, and Robert Mullins

A APPENDIX
A.1 A complete set of absolute compression rate of Lane Compression

Table 6. Absolute compression rate of Lane Compression against quantised data compared to the Shan-
non limit (Limit), estimated compression rates from profiling (Est. (SW)), measured from the hardware
implementation (Meas. (HW)), and overall compression rates against 32-bit full precision data (vs. 32-bit).

Network Inf./
Re-tr.

Data
Source

Limit
(𝐶)

Est.
(SW, 𝐶)

Meas.
(HW, 𝐶)

vs.
32-bit
(𝑄 ×𝐶)

LeNet-5

Inf. Acts 1.56 1.48 1.47 4.70
Weights 1.21 1.17 1.17 3.75

Re-tr.
Acts 1.35 1.34 1.34 2.68

Weights 1.42 1.22 1.22 2.44
Grads 1.77 2.44 2.46 4.92

CifarNet

Inf. Acts 3.39 3.06 3.06 10.88
Weights 1.32 1.29 1.29 4.13

Re-tr.
Acts 1.64 1.61 1.61 3.30

Weights 1.80 1.71 1.70 3.40
Grads 1.90 2.07 2.08 4.16

ResNet-18

Inf. Acts 1.98 1.87 1.85 5.32
Weights 1.39 1.36 1.36 3.63

Re-tr.
Acts 1.43 1.39 1.39 1.88

Weights 1.28 1.19 1.19 1.59
Grads 1.83 1.82 1.83 2.44

SqueezeNet

Inf. Acts 2.11 2.01 2.01 5.81
Weights 1.40 1.35 1.33 3.56

Re-tr.
Acts 1.45 1.41 1.40 1.90

Weights 1.54 1.21 1.21 1.61
Grads 2.15 2.24 2.21 2.95

MobileNet

Inf. Acts 2.57 2.45 2.46 6.03
Weights 1.76 1.67 1.67 3.81

Re-tr.
Acts 1.89 1.88 1.87 2.53

Weights 1.76 1.51 1.51 2.01
Grads 1.98 2.07 2.06 2.75

AlexNet

Inf. Acts 2.34 2.11 2.10 6.00
Weights 1.35 1.33 1.30 3.48

Re-tr.
Acts 1.59 1.45 1.45 1.95

Weights 1.16 1.13 1.13 1.51
Grads 2.63 2.51 2.50 3.33

LSTM

Inf. Acts 1.66 1.57 1.57 4.19
Weights 1.82 1.75 1.75 4.66

Re-tr.
Acts 1.34 1.32 1.37 2.19

Weights 1.41 1.38 1.38 2.20
Grads 4.90 4.50 4.50 7.20

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Compression in Machine Learning
	3.2 Lossless Compression
	3.3 Lossy Transformation
	3.4 Compression Rate

	4 Lane Compression
	5 Profiling and exploration
	5.1 Search Space
	5.2 Profiling Dynamicity

	6 Hardware implementation
	6.1 Bit Packing
	6.2 Speculation in Decoder
	6.3 Hardware Cost

	7 evaluation
	7.1 Interaction with Lossy Transformation

	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 A complete set of absolute compression rate of Lane Compression

