1,054 research outputs found

    Asymptotic tunneling conductance in Luttinger liquids

    Full text link
    Conductance through weak constrictions in Luttinger liquids is shown to vanish with frequency ω\omega as c1ω2+c2ω2/g−2c_1 \omega^2 + c_2 \omega^{2/g - 2}, where gg is a dimensionless parameter characterizing the Luttinger liquid phase, and c1c_1 and c2c_2 are nonuniversal constants. The first term arises from the ^^ Coulomb blockade' effect and dominates for g<1/2g < 1/2, whereas the second results from eliminating high-energy modes and dominates for g>1/2g > 1/2.Comment: Latex file + one appended postcript figur

    Surface Core Level Shifts of Clean and Oxygen Covered Ru(0001)

    Full text link
    We have performed high resolution XPS experiments of the Ru(0001) surface, both clean and covered with well-defined amounts of oxygen up to 1 ML coverage. For the clean surface we detected two distinct components in the Ru 3d_{5/2} core level spectra, for which a definite assignment was made using the high resolution Angle-Scan Photoelectron Diffraction approach. For the p(2x2), p(2x1), (2x2)-3O and (1x1)-O oxygen structures we found Ru 3d_{5/2} core level peaks which are shifted up to 1 eV to higher binding energies. Very good agreement with density functional theory calculations of these Surface Core Level Shifts (SCLS) is reported. The overriding parameter for the resulting Ru SCLSs turns out to be the number of directly coordinated O atoms. Since the calculations permit the separation of initial and final state effects, our results give valuable information for the understanding of bonding and screening at the surface, otherwise not accessible in the measurement of the core level energies alone.Comment: 16 pages including 10 figures. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Bonding, Moment Formation, and Magnetic Interactions in Ca14MnBi11 and Ba14MnBi11

    Full text link
    The ``14-1-11'' phase compounds based on magnetic Mn ions and typified by Ca14MnBi11 and Ba14MnBi11 show unusual magnetic behavior, but the large number (104) of atoms in the primitive cell has precluded any previous full electronic structure study. Using an efficient, local orbital based method within the local spin density approximation to study the electronic structure, we find a gap between a bonding valence band complex and an antibonding conduction band continuum. The bonding bands lack one electron per formula unit of being filled, making them low carrier density p-type metals. The hole resides in the MnBi4 tetrahedral unit and partially compensates the high spin d^5 Mn moment, leaving a net spin near 4 \mu_B that is consistent with experiment. These manganites are composed of two disjoint but interpenetrating `jungle gym' networks of spin 4/2 MnBi4^{9-} units with ferromagnetic interactions within the same network, and weaker couplings between the networks whose sign and magnitude is sensitive to materials parameters. Ca14MnBi11 is calculated to be ferromagnetic as observed, while for Ba14MnBi11 (which is antiferromagnetic) the ferro- and antiferromagnetic states are calculated to be essentially degenerate. The band structure of the ferromagnetic states is very close to half metallic.Comment: 17 pages, containing 10 postscript figures and 5 tables. Two additional figures (Fig.8 and 11 of the paper) are provided in JPG format in separate files. Submitted to Phys. Rev. B on September 20th 200

    CDH1 mutation distribution and type suggests genetic differences between the etiology of orofacial clefting and gastric cancer

    Get PDF
    Pathogenic variants in CDH1, encoding epithelial cadherin (E-cadherin), have been implicated in hereditary diffuse gastric cancer (HDGC), lobular breast cancer, and both syndromic and non-syndromic cleft lip/palate (CL/P). Despite the large number of CDH1 mutations described, the nature of the phenotypic consequence of such mutations is currently not able to be predicted, creating significant challenges for genetic counselling. This study collates the phenotype and molecular data for available CDH1 variants that have been classified, using the American College of Medical Genetics and Genomics criteria, as at least ‘likely pathogenic’, and correlates their molecular and structural characteristics to phenotype. We demonstrate that CDH1 variant type and location differ between HDGC and CL/P, and that there is clustering of CL/P variants within linker regions between the extracellular domains of the cadherin protein. While these differences do not provide for exact prediction of the phenotype for a given mutation, they may contribute to more accurate assessments of risk for HDGC or CL/P for individuals with specific CDH1 variants

    Ab-Initio Calculation of Molecular Aggregation Effects: a Coumarin-343 Case Study

    Get PDF
    We present time-dependent density functional theory (TDDFT) calculations for single and dimerized Coumarin-343 molecules in order to investigate the quantum mechanical effects of chromophore aggregation in extended systems designed to function as a new generation of sensors and light-harvesting devices. Using the single-chromophore results, we describe the construction of effective Hamiltonians to predict the excitonic properties of aggregate systems. We compare the electronic coupling properties predicted by such effective Hamiltonians to those obtained from TDDFT calculations of dimers, and to the coupling predicted by the transition density cube (TDC) method. We determine the accuracy of the dipole-dipole approximation and TDC with respect to the separation distance and orientation of the dimers. In particular, we investigate the effects of including Coulomb coupling terms ignored in the typical tight-binding effective Hamiltonian. We also examine effects of orbital relaxation which cannot be captured by either of these models

    Nucleation of a sodium droplet on C60

    Full text link
    We investigate theoretically the progressive coating of C60 by several sodium atoms. Density functional calculations using a nonlocal functional are performed for NaC60 and Na2C60 in various configurations. These data are used to construct an empirical atomistic model in order to treat larger sizes in a statistical and dynamical context. Fluctuating charges are incorporated to account for charge transfer between sodium and carbon atoms. By performing systematic global optimization in the size range 1<=n<=30, we find that Na_nC60 is homogeneously coated at small sizes, and that a growing droplet is formed above n=>8. The separate effects of single ionization and thermalization are also considered, as well as the changes due to a strong external electric field. The present results are discussed in the light of various experimental data.Comment: 17 pages, 10 figure

    The electronic structure of amorphous silica: A numerical study

    Full text link
    We present a computational study of the electronic properties of amorphous SiO2. The ionic configurations used are the ones generated by an earlier molecular dynamics simulations in which the system was cooled with different cooling rates from the liquid state to a glass, thus giving access to glass-like configurations with different degrees of disorder [Phys. Rev. B 54, 15808 (1996)]. The electronic structure is described by a tight-binding Hamiltonian. We study the influence of the degree of disorder on the density of states, the localization properties, the optical absorption, the nature of defects within the mobility gap, and on the fluctuations of the Madelung potential, where the disorder manifests itself most prominently. The experimentally observed mismatch between a photoconductivity threshold of 9 eV and the onset of the optical absorption around 7 eV is interpreted by the picture of eigenstates localized by potential energy fluctuations in a mobility gap of approximately 9 eV and a density of states that exhibits valence and conduction band tails which are, even in the absence of defects, deeply located within the former band gap.Comment: 21 pages of Latex, 5 eps figure

    On inelastic hydrogen atom collisions in stellar atmospheres

    Full text link
    The influence of inelastic hydrogen atom collisions on non-LTE spectral line formation has been, and remains to be, a significant source of uncertainty for stellar abundance analyses, due to the difficulty in obtaining accurate data for low-energy atomic collisions either experimentally or theoretically. For lack of a better alternative, the classical "Drawin formula" is often used. Over recent decades, our understanding of these collisions has improved markedly, predominantly through a number of detailed quantum mechanical calculations. In this paper, the Drawin formula is compared with the quantum mechanical calculations both in terms of the underlying physics and the resulting rate coefficients. It is shown that the Drawin formula does not contain the essential physics behind direct excitation by H atom collisions, the important physical mechanism being quantum mechanical in character. Quantitatively, the Drawin formula compares poorly with the results of the available quantum mechanical calculations, usually significantly overestimating the collision rates by amounts that vary markedly between transitions.Comment: 9 pages, 6 figures, accepted for A&

    Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy beta and nuclear recoils in liquid argon with DEAP-1

    Get PDF
    The DEAP-1 low-background liquid argon detector was used to measure scintillation pulse shapes of electron and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination (PSD) down to an electron-equivalent energy of 20 keV. In the surface dataset using a triple-coincidence tag we found the fraction of beta events that are misidentified as nuclear recoils to be <1.4×10−7<1.4\times 10^{-7} (90% C.L.) for energies between 43-86 keVee and for a nuclear recoil acceptance of at least 90%, with 4% systematic uncertainty on the absolute energy scale. The discrimination measurement on surface was limited by nuclear recoils induced by cosmic-ray generated neutrons. This was improved by moving the detector to the SNOLAB underground laboratory, where the reduced background rate allowed the same measurement with only a double-coincidence tag. The combined data set contains 1.23×1081.23\times10^8 events. One of those, in the underground data set, is in the nuclear-recoil region of interest. Taking into account the expected background of 0.48 events coming from random pileup, the resulting upper limit on the electronic recoil contamination is <2.7×10−8<2.7\times10^{-8} (90% C.L.) between 44-89 keVee and for a nuclear recoil acceptance of at least 90%, with 6% systematic uncertainty on the absolute energy scale. We developed a general mathematical framework to describe PSD parameter distributions and used it to build an analytical model of the distributions observed in DEAP-1. Using this model, we project a misidentification fraction of approx. 10−1010^{-10} for an electron-equivalent energy threshold of 15 keV for a detector with 8 PE/keVee light yield. This reduction enables a search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 10−4610^{-46} cm2^2, assuming negligible contribution from nuclear recoil backgrounds.Comment: Accepted for publication in Astroparticle Physic

    Mechanical and Electronic Properties of MoS2_2 Nanoribbons and Their Defects

    Get PDF
    We present our study on atomic, electronic, magnetic and phonon properties of one dimensional honeycomb structure of molybdenum disulfide (MoS2_2) using first-principles plane wave method. Calculated phonon frequencies of bare armchair nanoribbon reveal the fourth acoustic branch and indicate the stability. Force constant and in-plane stiffness calculated in the harmonic elastic deformation range signify that the MoS2_2 nanoribbons are stiff quasi one dimensional structures, but not as strong as graphene and BN nanoribbons. Bare MoS2_2 armchair nanoribbons are nonmagnetic, direct band gap semiconductors. Bare zigzag MoS2_2 nanoribbons become half-metallic as a result of the (2x1) reconstruction of edge atoms and are semiconductor for minority spins, but metallic for the majority spins. Their magnetic moments and spin-polarizations at the Fermi level are reduced as a result of the passivation of edge atoms by hydrogen. The functionalization of MoS2_2 nanoribbons by adatom adsorption and vacancy defect creation are also studied. The nonmagnetic armchair nanoribbons attain net magnetic moment depending on where the foreign atoms are adsorbed and what kind of vacancy defect is created. The magnetization of zigzag nanoribbons due to the edge states is suppressed in the presence of vacancy defects.Comment: 11 pages, 5 figures, first submitted at November 23th, 200
    • 

    corecore