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Abstract: Pathogenic variants in CDH1, encoding epithelial cadherin (E-cadherin), have been 

implicated in hereditary diffuse gastric cancer (HDGC), lobular breast cancer, and both syndromic 

and non-syndromic cleft lip/palate (CL/P). Despite the large number of CDH1 mutations described, 

the nature of the phenotypic consequence of such mutations is currently not able to be predicted, 

creating significant challenges for genetic counselling. This study collates the phenotype and 

molecular data for available CDH1 variants that have been classified, using the American College 

of Medical Genetics and Genomics criteria, as at least ‘likely pathogenic’, and correlates their 

molecular and structural characteristics to phenotype. We demonstrate that CDH1 variant type and 

location differ between HDGC and CL/P, and that there is clustering of CL/P variants within linker 

regions between the extracellular domains of the cadherin protein. While these differences do not 

provide for exact prediction of the phenotype for a given mutation, they may contribute to more 

accurate assessments of risk for HDGC or CL/P for individuals with specific CDH1 variants. 

Keywords: orofacial clefting; cleft lip; cleft palate; gastric cancer; cadherin 1; genotype-phenotype 
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1. Introduction 

E-cadherin (epithelial cadherin) is the archetypical member of the classic cadherin family of 

calcium-dependent cell-adhesion molecules. Encoded by the CDH1 gene, E-cadherin is the principle 

adhesive protein of epithelial adherens junctions, playing a major role in both tissue morphogenesis 

and epithelial differentiation. The extracellular region of mature E-cadherin comprises five 

extracellular (EC) domains that mediate adhesion. Strong and stable adhesion requires chelation of 

Ca2+ ions in each linker region that separates the EC domains as well as coordination of corresponding 

cytoskeletal changes mediated through its cytoplasmic tail. Mechanistically, calcium binding 

stabilizes EC domain flexibility and exposes an N-terminal tryptophan (Trp) residue, which embeds 

in a pocket of the EC1 domain on a Cadherin protomer that is in trans. Cell–cell adhesion is then 

consolidated and strengthened by cumulative cis interactions between trans-dimerized proteins [1–

3]. 

Over the last decade, the role of E-cadherin in cancer etiology has been intensively investigated, 

identifying that pathogenic variants in CDH1 are present in multiple types of cancer, including 

hereditary diffuse gastric cancer (HDGC) and lobular breast cancer [4,5]. More recently, both 

germline and de novo pathogenic variants in CDH1 have also been shown to underlie both syndromic 

(blepharocheilodontic syndrome; BCDS) [6,7] and non-syndromic forms of cleft lip with or without 

cleft palate (CL/P) [8–10]. 

Functional studies on cancer-associated, as well as a limited number of CL/P-associated, E-

cadherin missense variants have identified varying degrees of impact on cell–cell adhesion. A variety 

of mechanisms, including reduced trans-dimerization, increased endocytic recycling, and loss of 

cytoskeletal interaction and subsequent signal transduction, have been found to explain this impact 

[10–15]. Despite this, CL/P has only been reported in a few families with CDH1-linked HDGC and 

likewise HDGC has only been infrequently reported in families with CDH1-linked CL/P. 

Frebourg et al. (2006) reported the first two families in which individuals presented with both 

HDGC and CL/P. They described two families with splice site variants that resulted, at least in 

lymphocytes, in complex aberrant splicing that included one transcript predicted to produce a 

protein with an in-frame deletion [16]. Based on this, they hypothesized that such variants may have 

a trans-dominant negative impact, distinguishing them from other variants. However, variants 

affecting these canonical splice sites causing in-frame deletions have been reported subsequently in 

families with purely HDGC [17,18] or purely CL/P; hence it is unclear whether such a hypothesis of 

a dominant negative effect holds true in all cases.  

Figueiredo et al. (2019) reviewed available literature from 1985 to 2018 on CDH1 germline 

variants but did not identify preferential type or location of CDH1 variants that would help direct 

differential patient management [4]. Obermair et al. (2019) noted that families with a combined 

phenotype of HDGC and CL/P had variants within the extracellular domains (ECD) [19]; however, 

overlap was noted for families with isolated HDGC. The clinical relevance of differentiating 

craniofacial from cancer phenotypes is substantial, given the possibility of identifying CDH1 variants 

in genomic investigations for CL/P. Likewise, the identification of CDH1 variants in familial HDGC 

raises challenges for counselling couples on the additional risk of having a child with CL/P.  

In this study, we have undertaken a review of available molecular data from published and 

unpublished reports over the past 20 years of patients with HDGC and CL/P. Our study differs from 

other recent reviews in a number of important ways, including the restriction of our assessment to 

variants classified using current ACMG criteria as at least ‘likely pathogenic’ (i.e., exclusion of 

variants of uncertain significance (VUSs)), and analysis of the location of missense variants on the 

three-dimensional protein structure rather than the two-dimensional linear structure. From this 

analysis, and in contrast to prior studies, we note different characteristics between the variants in the 

two distinct clinical presentations, including in variant type, and their location in the protein. In 

particular, we note a strong preponderance for CL/P-related pathogenic variants to lie around the 

linker regions between extracellular domains, where the chelation of calcium ions occurs to stabilize 

the extracellular structure of E-cadherin and promote strong trans-cellular adhesion. These 

observations could contribute towards developing an algorithm to enable characterization of the 



Genes 2020, 11, 391 3 of 16 

 

phenotype from the genotype and, at minimum, lead to improved risk assessment for genetic 

counselling of patients. We further propose alternative or complementary mechanisms to explain the 

dichotomous clinical impact of CDH1 mutations that provide future opportunities for investigation. 

2. Materials and Methods  

2.1. Literature Searches 

To generate a comprehensive list of all previously reported pathogenic variants in CDH1, a 

PubMed search for articles from 2000 to 2019 involving CDH1 and any of ‘cleft lip/palate’, ‘hereditary 

diffuse gastric cancer/HDGC’ or ‘blepharocheilodontic syndrome/BCDS’ was undertaken. Articles 

were reviewed for strictly germline variants reported to be associated with HDGC, CL/P, or BCDS 

which were then collated [5,6], [8–10], [12], [16–52]. Local sequencing results from a cohort including 

five previously unreported patients with CL/P (unpublished data) were also included. A further 

search was conducted of the Leiden Open Variation Database (LOVD) [25] and the ClinVar Database 

[17]. Variants were accepted for inclusion from these databases if they had appropriate phenotypes 

and met ACMG criteria for ‘Likely Pathogenic’ or ‘Pathogenic’ (see Table S1, Supplementary 

Materials, for full list of variants and their classification). The CDH1-specific modified ACMG criteria 

created by the ClinGen expert panel were also considered in the assessment of HDGC variants [53]. 

Articles reporting somatic mutations within tumors were excluded. Variants were grouped into three 

categories based on phenotype: ‘HDGC’, ‘HDGC+CL/P’, and ‘CL/P’. 

2.2. Characterization of Type of Mutation 

Within each phenotype group, variants were categorized according to their type: missense 

variants, in-frame deletions, ‘start codon lost’ variants, truncating variants (including nonsense 

variants, frameshift variants, partial and entire exon deletions), and splice region variants. The in-

frame deletions were grouped with missense mutations for statistical analysis, and the ‘start codon 

lost’ and truncating variants were combined, because of similarities in their predicted effect on the 

protein. Differences between the phenotype groups were assessed using the Chi-squared test. 

2.3. Characterization of Mutation Location 

Exonic mutations were grouped, based on data from the UniProt database [54], as falling within 

the signal/pro-peptide region (S/PP), extracellular region (ER), or ‘transmembrane and intracellular’ 

(TM/IC) region. The proportions of mutations located in these three regions were compared across 

phenotype groups using Fisher’s exact test. The proportions of missense variants in each group that 

occurred in the ‘linker region’ between extracellular domains were mapped on the mouse E-cadherin 

ectodomain three-dimensional structure (PDB 3Q2V) [3] using PyMol [55], and compared using the 

Chi-squared test. 

2.4. Characterization of Missense Mutations by In Silico Prediction Scores 

Once compiled, mutations were entered into the VarCards database [56]. Each variant was 

assessed using up to 23 different predictive in silico tools, providing a deleterious:all (D:A) algorithm 

score. The Combined Annotation Dependent Depletion (CADD) score was included separately given 

its utility in assessing pathogenicity of non-missense variants. Variants were uploaded in appropriate 

format to the CADD database [57]; the output data were created using CADD v1.4. Variants from the 

‘HDGC’, ‘HDGC+CL/P’, and ‘CL/P’ groups were compared in regard to their pathogenicity scores 

using the Kruskal–Wallis Test [58]. 

2.5. Characterization of Missense Mutations by Amino Acid Tolerance 

Tolerance of individual amino acids to substitution was assessed using MetaDome, a platform 

assessing tolerance to variation developed at the Centre for Molecular and Biomolecular Informatics 

at the Radboud University Medical Centre in Nijmegen [59]. This database assesses each amino acid 
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change by the ratio of non-synonymous/synonymous changes (dn/ds) at homologous protein 

domains throughout the genome. There were insufficient data in the ‘HDGC+CL/P’ group for 

statistical analysis; hence the remaining two groups (‘HDGC’ and ‘CL/P’) were compared using the 

Mann–Whitney U Test.  

3. Results 

3.1. Differences in Mutation Type Between Phenotype Groups 

Collating all of the available literature (see Table S1, Supplementary Materials), there were a 

total of 280 variants in CDH1 analyzed. This comprised 245 (88%) mutations causing HDGC, 27 (10%) 

mutations causing CL/P, and eight (3%) manifesting as both phenotypes within the same pedigree. 

The mutations were grouped into nonsense, missense, and splice mutations as in Table 1. 

Table 1. Numbers of variants by variant type and phenotype. 

 Nonsense Missense Splice Total 

HDGC 175 11 59 245 

HDGC+CL/P 3 1 4 8 

CL/P 3 19 5 27 

Total 181 31 68 280 

HDGC: hereditary diffuse gastric cancer; CL/P: cleft lip/palate. 

Nonsense mutations comprised 71% of mutations in the ‘HDGC’ group but represented only 

38% and 11% of variants in the ‘HDGC+CL/P’ and ‘CL/P’ groups, respectively, consistent with an 

upward trend in the presence of a cancer phenotype. Conversely, there was a marked preponderance 

of missense mutations in the ‘CL/P’ group (70%) compared with the ‘HDGC’ group (4%). The 

‘HDGC+CL/P’ group had a high proportion of splice variants (50%) compared to the other two 

groups (24% and 19%, respectively). Given there were comparatively few variants in all classes of the 

‘HDGC+CL/P’ group, we removed this group from the statistical analysis. There was a statistically 

significant difference in the proportions of different types of mutations between the ‘HDGC’ and 

‘CL/P’ groups (Chi-square statistic 109.5, p < 0.00001).  

3.2. Differences in Location of Variants Between Phenotype Groups 

The location of missense variants, in-frame deletions, start codon lost variants, and coding 

region truncating variants were represented on the E-cadherin protein primary sequence (Figure 1) 

while splice variants were represented on the CDH1 gene structure (Figure 2). These representations 

appeared to show a number of differences in the distribution of different variant types between the 

‘HDGC’ and ‘CL/P’ groups. Whilst the numbers of variants are small in two of the groups, we note 

that all splice variants (5/5) in the ‘CL/P’ group reside at the same splice donor site (exon 9-intron 9 

boundary). None of those splice variants in the ‘HDGC’ (0/59) and ‘HDGC+CL/P’ (0/4) groups are 

located at this donor site; they are spread over other donor and acceptor sites or create new sites. 

Splice variants at this junction generally lead to in-frame deletions involving parts of the third 

extracellular domain, and hence are thought to have a deleterious effect on protein function. 

However, this notable difference between the ‘HDGC’ and ‘CL/P’ groups indicates that there could 

be differential impacts of splice variants in CDH1 that warrant further experimental follow up. 

For non-truncating (missense and in-frame) variants, where there are sufficient numbers for 

statistical comparison, we also observed a difference in distribution. To quantify this, we divided 

variants into those that occurred in the signal/pro-peptide (amino acids 1–154), extracellular (155–

697), and transmembrane/intracellular (amino acids 698–882) regions. Table 2 demonstrates that 18% 

of ‘missense and in-frame’ HDGC variants occur within the signal/pro-peptide region, with 73% in 

the extracellular region, and 9% in the transmembrane/intracellular region. This is in contrast to CL/P 

variants, where no ‘likely pathogenic’ or ‘pathogenic’ variants have been reported in the signal/pro-

peptide region, and 89% occur within the extracellular region. In head-to-head comparison between 
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the ‘HDGC’ and ‘CL/P’ groups, this difference was not statistically significant (Fisher’s Exact Test p 

= 0.16). The one missense variant in the ‘HDGC+CL/P’ group occurred within the extracellular region 

but was not included in the statistical analysis due to limited sample numbers. 

Table 2. Missense and in-frame variants in each phenotypic group by location. 

 S/PP ER TM/IC Total 

HDGC 2 8 1 11 

HDGC+CL/P 0 1 0 1 

CL/P 0 17 2 19 

Total 2 26 3 31 

S/PP: signal/pro-peptide region; ER: extracellular region; TM/IC: transmembrane and intracellular region. 

3.3. Localization of CL/P Variants to Linker Regions  

Figure 2 provides a linear representation of the locations of variants stratified by group. Despite 

there being no statistically significant difference by region on a broad scale, CL/P variants appeared 

to be more frequently located at or near the linker regions between individual extracellular domains 

than HDGC variants. Given the importance of this area in calcium-binding and providing stability to 

the overall extracellular region, we pursued this further by mapping CL/P and HDGC missense 

variants (and in-frame deletions) onto a three-dimensional E-cadherin protein structure (Figure 3). In 

contrast to the linear mapping where seven of the CL/P variants appeared to map in the linker 

regions, this 3D mapping demonstrated that 13 of the 19 missense variants cluster around linker 

regions, with an additional variant involving the key tryptophan (W156) facilitating strong in trans 

interaction. A further two of the six remaining variants (V412A and T522I) not within the defined 

linker regions mapped to positions immediately adjacent the defined regions. The interaction of 

distinct residues to form the 3D linker regions is shown on the linear structure depicted in Figure 4. 

This figure also demonstrates the stark contrast with the variants that cause HDGC: none of the 10 

missense variants, nor the in-frame deletion variant, occur within the linker regions (although L583R 

and the two distinct F626V variants map immediately adjacent to the defined regions). This difference 

is statistically significant (Chi-square >10.5, p < 0.001). The single missense variant seen in the 

‘HDGC+CL/P’ group also maps to the linker region. Of note, two HDGC missense variants (D244G 

and I326N) map to the cis-interface—the interacting surfaces between EC1 and EC2 from two 

independent in cis E-cadherin monomers [3]. 
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Figure 1. Location of all variants with respect to the epithelial cadherin (E-cadherin) domain structure 

grouped by mutation type and phenotype (HDGC: hereditary diffuse gastric cancer; CL/P: cleft 

lip/palate). Variant positions are marked by vertical lines that correspond on the x-axis to the amino 

acid residue number. The height of the vertical lines corresponds to the number of variants located at 

that given residue position (y-axis). The color of the vertical lines represents the type of variant: start 

lost (blue), truncating (orange), missense (green), and in-frame deletion (purple). For each phenotype, 

variants are grouped by type: start lost and truncating variant (upper); missense and in-frame deletion 

variants (lower). For reference, numbers on the schematic of the protein represent the start and end 

residues of each domain. 

 

Figure 2. Location of splice variants in CDH1 grouped by phenotype (HDGC: hereditary diffuse 

gastric cancer; CL/P: cleft lip/palate). Vertical lines correspond to the approximate location of the 

variants with respect to the gene structure (schematic; x-axis). Exons are shown as boxes: coding 
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region (blue); untranslated regions (grey). Introns (tan) and exons are not drawn to scale. The height 

of the vertical lines corresponds to the number of variants located at that given position (y-axis). The 

color of the vertical lines represents the type of variant: splice donor/acceptor variants (red), new 

splice donor (light blue). 

 

Figure 3. Homologous location of likely pathogenic and pathogenic human missense and in-frame 

deletion variants causing CL/P (left panel) and HDGC (right panel) on the three-dimensional 

ectodomain structure of E-cadherin. The extracellular region of mature mouse E-cadherin (PDB 

3Q2V) [3], comprised of five EC domains, is shown in grey. The positions of CL/P variants are shown 

as red spheres (left image); HDGC variants are shown as pink spheres (right image). The location of 

the CL/P variant in the tryptophan (W156) that is critical for in trans interaction of E-cadherin is shown 

in orange. Chelated calcium ions are shown as green spheres. Note apparent clustering of CL/P 

variants around the linker regions, in contrast to the HDGC variants. LP/P—likely 

pathogenic/pathogenic. 
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Figure 4. Most pathogenic/likely pathogenic CL/P missense variants, but very few HDGC variants, 

cluster in the linker regions between the extracellular domains of E-cadherin. (A) Residues 

contributing to each linker are colored on the 3D structure (upper panel in (A)) in teal (EC1-EC2 

linker), orange (EC2-EC3 linker), blue (EC3-EC4 linker), and pink (EC4-EC5 linker). The locations of 

pathogenic/likely pathogenic missense CL/P variants (middle panel) and missense HDGC variants 

(lower panel) that map to near the respective 3D linker region structures are shown (colored and 

labeled). (B) Schematic of the E-cadherin primary sequence showing the different domains 

(rectangles): SS—single sequence; PRO—pro domain; EC1–5—extracellular domains 1–5; TM—

transmembrane domain; CYTO—cytoplasmic (intracellular) domain. A total of 15 of the 17 CL/P 

missense variants found within the extracellular region (and 15 of 19 total) are part of, or one residue 

adjacent to, the linker regions marked by arrows, as compared to only three (L583R and both F626V) 

of the 11 HDGC variants. Note: five distinct clusters of amino acids (horizontal colored lines joined 

by arcs in the schematic), spread across the primary sequence of two adjacent EC domains (grey 

rectangles) contribute to each of the respective linker regions in the 3D protein structure. As in (A), 

the clusters of amino acid residues in the schematic are colored in teal, orange, blue, and pink for 

those contributing to the EC1-EC2 linker, EC2-EC3 linker, EC3-EC4 linker, and EC4-EC5 linker, 

respectively. The variants indicated in brackets in (B), reside immediately adjacent a defined cluster. 

3.4. Lack of Differences in In Silico Prediction Scores, and Amino Acid Tolerance to Missense Substitution, 

Between Phenotype Groups 

The median D:A proportions for variants were 0.82 in the ‘HDGC’ group, 0.78 in the 

‘HDGC+CL/P’ group, and 0.91 in the ‘CL/P’ group. The median CADD scores for the same three 

groups were 30.0, 29.8, and 26.5. Neither of these in silico score differences were statistically different 

using the Kruskal–Wallis test (p = 0.31 and p = 0.42, respectively). This is consistent with variants 
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reaching a threshold for pathogenicity in all CDH1-associated phenotypes but that in silico models 

are unable to further differentiate whether a variant is likely to result in HDGC or CL/P. Similarly, 

the median MetaDome dn/ds score for the missense variants from the three groups were 0.61, 0.19 

(only one sample), and 0.52, respectively, with no statistically significant difference between the 

‘HDGC’ and ‘CL/P’ groups (U = 99, p = 0.48, figure not shown).  

4. Discussion 

CDH1 encodes E-cadherin, a major transmembrane adhesion protein of epithelial adherens 

junctions. Mature, plasma membrane-localized E-cadherin is composed of five extracellular domains 

(EC1-EC5), as well as a transmembrane and a short intracytoplasmic domain that facilitates 

connection to both the microtubule and actin cytoskeletons [60]. The adhesive activity of E-cadherin 

is controlled by both the levels of membrane localized protein and as well by the extracellular 

concentration of calcium ions. Extracellular calcium, when chelated by the linker regions between 

each EC domain, effectively rigidifies the extracellular domains, promoting stronger adhesion 

between E-cadherin protein on adjacent cells. Epithelial cell–cell adhesion is dynamically regulated 

by extracellular cues, including both calcium and various growth factors, as well as by intracellular 

signaling events [61].  

Underpinning the importance of tight regulation of adhesion in epithelial cells, adhesion 

strength is inversely correlated with the proliferative capacity of epithelia. Adhesion must therefore 

be sufficient to maintain the protective function of an intact epithelium yet permit growth of the 

epithelial layer as needed [62]. The ability to readily modulate the cell–cell adhesive strength also 

determines the behavior of entire epithelial tissues that characterize key morphogenetic events 

during embryogenesis, defined by tissue fusion in palatogenesis, epithelial-to-mesenchymal 

transitions in neural crest cell formation, and branching morphogenesis that underpins glandular 

development [60]. Loss, or deregulation, of intercellular adhesion is also characteristic of epithelial-

derived tumors and their metastases [62]. 

Genetic linkage analysis and subsequent DNA sequencing has identified germline CDH1 

mutations as a primary cause of HDGC (70%–80% lifetime risk with a positive family history) and 

lobular breast cancer in women (40% lifetime risk) [63]. However, germline CDH1 mutations have 

also been identified in individuals with both sporadic and familial forms of cleft lip/palate. In such 

cases, the CL/P can be syndromic (blepharocheilodontic syndrome; BCDS) or non-syndromic in its 

presentation [5,8,9,46,48]. Surprisingly, CDH1 mutations contribute to presentation of both cancer 

and CL/P in 3% of families. The nature of how germline mutations in CDH1 lead to such broadly 

different phenotypes remains under investigation.  

4.1. Evidence for Genotype–Phenotype Correlation for CDH1 Mutations 

There is evolving evidence in the literature regarding which CDH1 mutations are associated 

with HDGC compared with CL/P. We have identified a statistically significant difference in the 

frequency of missense versus nonsense mutations in HDGC compared with CL/P in the reported 

cohort of patients with CDH1 mutations. Although it is not yet possible to automatically predict 

whether a CDH1 mutation is HDGC-causing or CL/P-causing, extensive bioinformatic and functional 

characterization of the effects of mutations may ultimately facilitate development of a robust 

algorithm to assist in predicting which phenotype is more likely. Phenotypic variability is a common 

feature of many diseases and this variation is at least in part due to differences in the type of 

pathogenic variant [64]. For example, most classically, protein-truncating or frameshift mutations in 

the DMD gene cause the X-linked Duchenne Muscular Dystrophy; missense mutations or in-frame 

deletions generally cause the milder Becker Muscular Dystrophy [65]. 

It has been noted previously by Obermair et al. (2019) that CDH1 variants in families with both 

CL/P and HDGC are found in the extracellular domains [19]. Our review of the literature supports 

this, although there are only eight pathogenic/likely pathogenic variants reported in the context of 

both phenotypes. We noted a similar preponderance within the CL/P group. This observation cannot 
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however be used in isolation to predict phenotype, given there are also cases of HDGC caused by 

mutations in this region (and, in a few cases, the same residue).  

Building on the work of Obermair et al. (2019) [19], our analysis of CDH1 variants demonstrated 

that those encoding the linker regions between the extracellular domains are ‘hot spots’ for causing 

CL/P. This includes an area of the protein that is highly intolerant to missense substitution (dn/ds 

<0.25) from amino acids 253–260, which is responsible for chelation of calcium ions between the first 

and second EC domains. Five missense variants associated with CL/P occur in this region, as 

compared to none of the likely pathogenic/pathogenic HDGC variants considered in this study. It 

should be noted that variants in this region have been identified in patients with HDGC. These were 

not included in this review either because they were identified as somatic variants only or they did 

not currently meet the ACMG criteria for classification as likely pathogenic or pathogenic. Another 

eleven variants (three in-frame deletions, eight missense variants) in CL/P also occur close to the 

three-dimensional space occupied by calcium-binding sites between EC domains.  

Despite the differences identified from this analysis of all reported pathogenic and likely 

pathogenic CDH1 variants in HDGC and CL/P, none—either in isolation or collectively—accurately 

predicts which phenotype a variant will cause. There are likely to be additional mutational 

mechanisms underlying the dichotomous phenotypes, and these are discussed below.  

4.2. Other Potential Mutational Mechanisms in Genes Encoding Multiple Phenotypes  

Observing mutational mechanisms in other genes may shed light on further potential 

explanations for the phenotypic spectrum of germline CDH1 mutations. Disorders such as spinal 

muscular atrophy have phenotypic variability due to modifier genes [66]. It is conceivable that a 

modifier gene, acting as part of an oligogenic model, reduces the severity of (or even prevents) 

cleft/lip palate in some patients, or reduces risk of gastric cancer. Genome-wide association studies 

certainly support such an oligogenic or threshold model, and in such cases many of the additional 

‘influencing loci’ contain likely regulatory variants that affect expression of genes in cis. Another 

mechanism underlying phenotypic variability is altered splicing efficiency. Mutations that reduce the 

length of the polythymidine sequence of intron 8 (IVS8) in CFTR reduce efficiency of exon 9 splicing 

in patients with a R117H/C mutation. Poor splicing efficiency leads to a more severe phenotype 

(cystic fibrosis), whereas patients with improved splicing have a milder phenotype (isolated 

congenital absence of the vas deferens) [67]. Such a mechanism has been suggested in one family with 

HDGC by Zhang et al. (2014) [42]. Here, one member of the family—the only one who did not present 

with HDGC—carried the same pathogenic CDH1 variant as other affected family members but, in 

addition, also carried a common neighboring splice variant that none of the other family members 

inherited. Functional studies of patients with additional splice site variants in CDH1, as well as a 

broader search for intronic variants via whole genome sequencing, may be beneficial in 

characterizing this as a potential mechanism.  

Given variability in penetrance and severity of presentation of CL/P is also seen in many inbred 

mouse models, other factors also need to be considered. Foremost among such possible factors are 

epigenetic contributions that variably impact gene expression. Altered methylation, histone 

modification and imprinting are all mechanisms that would cause phenotypic variability with the 

same genetic change. Prader–Willi syndrome and Angelman syndrome are a key example of parental 

imprinting (via methylation) causing vastly different phenotypes. Studies of more extensive 

pedigrees would help evaluate whether this mechanism is contributing to CDH1 pleiotropy. 

Finally, many types of cancer are believed to arise as a result of “two mutational hits”—a 

principle germline mutation and a subsequent somatic mutation [68]. These ‘second’ hits typically 

arise in somatic tissue and can be in a different gene or in the second allele of the same gene [15][69]. 

In many cases of HDGC, a second, somatic hit in CDH1 (frequently affecting promoter methylation 

or less often, loss of heterozygosity) has been described [70][71] and thus may further reduce the 

adhesive strength below a threshold in that specific tissue, resulting in deregulated growth [72]. 

Alternatively, a second hit in a cell cycle regulator may increase the proliferative potential of cells 

already harboring reduced E-cadherin adhesive activity, promoting a similar outcome [69]. One must 
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also consider then the possible contribution of somatically-arising variants or epigenetic differences 

during embryogenesis as potential contributors to CL/P penetrance and variability. The embryonic 

facial prominences that form the lip and palate are some of the most rapidly dividing tissues and, at 

least conceptually, even a moderate impact somatic mutation or change in gene expression as a result 

of methylation differences could sufficiently affect the growth rate and hence disrupt the critical 

timing of fusion of already compromised early facial tissues. In support of this hypothesis, recent 

modeling of neural crest cell migration into the developing chick face based on live cell imaging data 

has suggested that even a fairly moderate reduction in the rate of cell division (< 20%) ultimately 

results in insufficient neural crest cells reaching their final destination in the anterior region of the 

developing face [73]. Such an impact on growth prior to fusion could be a major risk factor for cleft 

presentation.  

5. Conclusions 

This study provides evidence for some differences in CDH1 germline mutation type and location 

that are involved in creating the encountered phenotypic heterogeneity of CL/P and HDGC. In 

particular, we have identified that variants lying in close proximity to the ‘linker regions’ are more 

likely to be associated with CL/P. However, these differences are not yet robust enough to reliably 

differentiate these phenotypes prospectively. Databases of CDH1 variants and their clinical 

consequences will therefore have a substantial impact on genetic counselling in people where 

pathogenic CDH1 variants are detected. There may be other factors which are yet to be elucidated, 

such as modifier genes, altered splicing efficiency, epigenetic phenomena, or somatic mutations, that 

could be important contributory factors in defining susceptibility or risk of each condition. It is hoped 

that identification and analysis of further families may help unveil the mechanism underlying this 

pleiotropy, which in turn could lead to more specific clinical management. 
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