1,565 research outputs found
Source and Sink Strength of Carbon Dioxide, Methane and Distribution of Sulfate in Salt-marsh Soils at the Wadden Sea Coast of Northern Germany
A field study was conducted at Schleswig-Holstein of Kiel in Germany to evaluate the factors controlling carbon and sulfate dynamics along a toposequence of coastal salt marsh soils. The soil at the top end of the salt marsh was salic silty to clayic Typic Sulfaquent (Salzrohmarsh) and the bottom end was sandy to silty Haplic Sulfaquent Ubergangsmischwatt). The mean (depth: 0-100 cm) values of pH andrH were 6.8-6.9; 6.8-7.0 and 17.3-8.1; 15-8.6 for the Typic Sulfaquent (TS) and Haplic Sulfaquent (HS) throughout the year, respectively. The net-emission of CO2 was negative (-14.0 g m-2 yr-1) for the HS but highly positive (857 g m-2 yr-1) for the TS throughout the year. The annual emissions of CH4 were almost 10fold higher in HS (0.3 g m-2 yr-1) than that of the TS (0.03 g m-2 yr-1). The concentrations of CH4 at different seasons showed almost inverse relationships with the concentrations of CO2, varied significantly (p.0.05) with the seasons and depth function, and showed no dependence to temperature. The SO4 contents were observed maximum in the TS than that of HS during all the seasons. There was no noticeable correlation (r=-0.09) between SO4 and CH4 concentrations. Moreover, even CH4 was determined at depths where the SO4concentration was about 1200 mg SO4 L-
Improving the performance of bright quantum dot single photon sources using amplitude modulation
Single epitaxially-grown semiconductor quantum dots have great potential as
single photon sources for photonic quantum technologies, though in practice
devices often exhibit non-ideal behavior. Here, we demonstrate that amplitude
modulation can improve the performance of quantum-dot-based sources. Starting
with a bright source consisting of a single quantum dot in a fiber-coupled
microdisk cavity, we use synchronized amplitude modulation to temporally filter
the emitted light. We observe that the single photon purity, temporal overlap
between successive emission events, and indistinguishability can be greatly
improved with this technique. As this method can be applied to any triggered
single photon source, independent of geometry and after device fabrication, it
is a flexible approach to improve the performance of solid-state systems, which
often suffer from excess dephasing and multi-photon background emission
Defining and Detecting Crossover-Interference Mutants in Yeast
The analysis of crossover interference in many creatures is complicated by the presence of two kinds of crossovers, interfering and noninterfering. In such creatures, the values of the traditional indicators of interference are subject not only to the strength of interference but also to the relative frequencies of crossing over contributed by the two kinds. We formalize the relationship among these variables and illustrate the possibilities and limitations of classical interference analysis with meiotic tetrad data from wild-type Saccharomyces cerevisiae and from mlh1 and ndj1 mutants
Toward a Unified Genetic Map of Higher Plants, Transcending the Monocot-Dicot Divergence
Closely related (confamilial) genera often retain large chromosomal tracts in which gene order is colinear, punctuated by structural mutations such as inversions and translocations 1. To explore the possibility that conservation of gene order might extrapolate to more distantly related taxa, we first estimated an average structural mutation rate. Nine pairs of taxa, for which there exist both comparative genetic maps and plausible estimates of divergence time, showed an average of0.14 (±0.06) structural mutations per chromosome per million years of divergence (Myr; Table 1). This value is offered as a first approximation, acknowledging that refined comparative data and/or divergence estimates may impel revision
New tumour entities in the 4th edition of the World Health Organization Classification of Head and Neck tumours: odontogenic and maxillofacial bone tumours.
The latest (4th) edition of the World Health Organization Classification of Head and Neck tumours has recently been published with a number of significant changes across all tumour sites. In particular, there has been a major attempt to simplify classifications and to use defining criteria which can be used globally in all situations, avoiding wherever possible the use of complex molecular techniques which may not be affordable or widely available. This review summarises the changes in Chapter 8: Odontogenic and maxillofacial bone lesions. The most significant change is the re-introduction of the classification of the odontogenic cysts, restoring this books status as the only text which classifies and defines the full range of lesions of the odontogenic tissues. The consensus group considered carefully the terminology of lesions and were concerned to ensure that the names used properly reflected the best evidence regarding the true nature of specific entities. For this reason, this new edition restores the odontogenic keratocyst and calcifying odontogenic cyst to the classification of odontogenic cysts and rejects the previous terminology (keratocystic odontogenic tumour and calcifying cystic odontogenic tumour) which were intended to suggest that they are true neoplasms. New entities which have been introduced include the sclerosing odontogenic carcinoma and primordial odontogenic tumour. In addition, some previously poorly defined lesions have been removed, including the ameloblastic fibrodentinoma, ameloblastic fibro-odontoma, which are probably developing odontomas, and the odontoameloblastoma, which is not regarded as an entity. Finally, the terminology "cemento" has been restored to cemento-ossifying fibroma and cemento-osseous dysplasias, to properly reflect that they are of odontogenic origin and are found in the tooth-bearing areas of the jaws
An integrated MR/PET system: prospective applications
Radiology is strongly depending on medical imaging technology and consequently directing technological progress. A novel technology can only be established, however, if improved diagnostic accuracy influence on therapeutic management and/or overall reduced cost can be evidenced. It has been demonstrated recently that Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) can technologically be integrated into one single hybrid system. Some scientific arguments on the benefits are obvious, e.g., that simultaneous imaging of morphological and functional information will improve tissue characterization. However, crossfire of questions still remains: What unmet radiological needs are addressed by the novel system? What level of hardware integration is reasonable, or would software-based image co-registration be sufficient? Will MR/PET achieve higher diagnostic accuracy compared to separate imaging? What is the added value compared to other hybrid imaging modalities like PET/CT? And finally, is the system economically reasonable and has the potential to reduce overall costs for therapy planning and monitoring? This article tries to highlight some perspectives of applying an integrated MR/PET system for simultaneous morphologic and functional imaging
Recovery and resilience of tropical forests after disturbance
The time taken for forested tropical ecosystems to re-establish post-disturbance is of widespread interest. Yet to date there has been no comparative study across tropical biomes to determine rates of forest re-growth, and how they vary through space and time. Here we present results from a meta-analysis of palaeoecological records that use fossil pollen as a proxy for vegetation change over the past 20,000 years. A total of 283 forest disturbance and recovery events, reported in 71 studies, are identified across four tropical regions. Results indicate that forests in Central America and Africa generally recover faster from past disturbances than those in South America and Asia, as do forests exposed to natural large infrequent disturbances compared with post-climatic and human impacts. Results also demonstrate that increasing frequency of disturbance events at a site through time elevates recovery rates, indicating a degree of resilience in forests exposed to recurrent past disturbance
- …