5,713 research outputs found

    Ultrasound-induced acoustophoretic motion of microparticles in three dimensions

    Get PDF
    We derive analytical expressions for the three-dimensional (3D) acoustophoretic motion of spherical microparticles in rectangular microchannels. The motion is generated by the acoustic radiation force and the acoustic streaming-induced drag force. In contrast to the classical theory of Rayleigh streaming in shallow, infinite, parallel-plate channels, our theory does include the effect of the microchannel side walls. The resulting predictions agree well with numerics and experimental measurements of the acoustophoretic motion of polystyrene spheres with nominal diameters of 0.537 um and 5.33 um. The 3D particle motion was recorded using astigmatism particle tracking velocimetry under controlled thermal and acoustic conditions in a long, straight, rectangular microchannel actuated in one of its transverse standing ultrasound-wave resonance modes with one or two half-wavelengths. The acoustic energy density is calibrated in situ based on measurements of the radiation dominated motion of large 5-um-diam particles, allowing for quantitative comparison between theoretical predictions and measurements of the streaming induced motion of small 0.5-um-diam particles.Comment: 13 pages, 8 figures, Revtex 4.

    Subpixel-Scale Topography Retrieval of Mars Using Single-Image DTM Estimation and Super-Resolution Restoration

    Get PDF
    We propose using coupled deep learning based super-resolution restoration (SRR) and single-image digital terrain model (DTM) estimation (SDE) methods to produce subpixel-scale topography from single-view ESA Trace Gas Orbiter Colour and Stereo Surface Imaging System (CaSSIS) and NASA Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) images. We present qualitative and quantitative assessments of the resultant 2 m/pixel CaSSIS SRR DTM mosaic over the ESA and Roscosmos Rosalind Franklin ExoMars rover’s (RFEXM22) planned landing site at Oxia Planum. Quantitative evaluation shows SRR improves the effective resolution of the resultant CaSSIS DTM by a factor of 4 or more, while achieving a fairly good height accuracy measured by root mean squared error (1.876 m) and structural similarity (0.607), compared to the ultra-high-resolution HiRISE SRR DTMs at 12.5 cm/pixel. We make available, along with this paper, the resultant CaSSIS SRR image and SRR DTM mosaics, as well as HiRISE full-strip SRR images and SRR DTMs, to support landing site characterisation and future rover engineering for the RFEXM22

    From field to plate - How do bacterial enteric pathogens interact with ready-to-eat fruit and vegetables, causing disease outbreaks?

    Get PDF
    Ready-to-eat fruit and vegetables are a convenient source of nutrients and fibre for consumers, and are generally safe to eat, but are vulnerable to contamination with human enteric bacterial pathogens. Over the last decade, Salmonella spp., pathogenic Escherichia coli, and Listeria monocytogenes have been linked to most of the bacterial outbreaks of foodborne illness associated with fresh produce. The origins of these outbreaks have been traced to multiple sources of contamination from pre-harvest (soil, seeds, irrigation water, domestic and wild animal faecal matter) or post-harvest operations (storage, preparation and packaging). These pathogens have developed multiple processes for successful attachment, survival and colonization conferring them the ability to adapt to multiple environments. However, these processes differ across bacterial strains from the same species, and across different plant species or cultivars. In a competitive environment, additional risk factors are the plant microbiome phyllosphere and the plant responses; both factors directly modulate the survival of the pathogens on the leaf's surface. Understanding the mechanisms involved in bacterial attachment to, colonization of, and proliferation, on fresh produce and the role of the plant in resisting bacterial contamination is therefore crucial to reducing future outbreaks

    The clinical assessment study of the foot (CASF): study protocol for a prospective observational study of foot pain and foot osteoarthritis in the general population.

    Get PDF
    BACKGROUND: Symptomatic osteoarthritis (OA) affects approximately 10% of adults aged over 60 years. The foot joint complex is commonly affected by OA, yet there is relatively little research into OA of the foot, compared with other frequently affected sites such as the knee and hand. Existing epidemiological studies of foot OA have focussed predominantly on the first metatarsophalangeal joint at the expense of other joints. This three-year prospective population-based observational cohort study will describe the prevalence of symptomatic radiographic foot OA, relate its occurrence to symptoms, examination findings and life-style-factors, describe the natural history of foot OA, and examine how it presents to, and is diagnosed and managed in primary care. METHODS: All adults aged 50 years and over registered with four general practices in North Staffordshire, UK, will be invited to participate in a postal Health Survey questionnaire. Respondents to the questionnaire who indicate that they have experienced foot pain in the preceding twelve months will be invited to attend a research clinic for a detailed clinical assessment. This assessment will consist of: clinical interview; physical examination; digital photography of both feet and ankles; plain x-rays of both feet, ankles and hands; ultrasound examination of the plantar fascia; anthropometric measurement; and a further self-complete questionnaire. Follow-up will be undertaken in consenting participants by postal questionnaire at 18 months (clinic attenders only) and three years (clinic attenders and survey participants), and also by review of medical records. DISCUSSION: This three-year prospective epidemiological study will combine survey data, comprehensive clinical, x-ray and ultrasound assessment, and review of primary care records to identify radiographic phenotypes of foot OA in a population of community-dwelling older adults, and describe their impact on symptoms, function and clinical examination findings, and their presentation, diagnosis and management in primary care

    Joint inversions of three types of electromagnetic data explicitly constrained by seismic observations: results from the central Okavango Delta, Botswana

    Get PDF
    The Okavango Delta of northern Botswana is one of the world's largest inland deltas or megafans. To obtain information on the character of sediments and basement depths, audiomagnetotelluric (AMT), controlled-source audiomagnetotelluric (CSAMT) and central-loop transient electromagnetic (TEM) data were collected on the largest island within the delta. The data were inverted individually and jointly for 1-D models of electric resistivity. Distortion effects in the AMT and CSAMT data were accounted for by including galvanic distortion tensors as free parameters in the inversions. By employing Marquardt-Levenberg inversion, we found that a 3-layer model comprising a resistive layer overlying sequentially a conductive layer and a deeper resistive layer was sufficient to explain all of the electromagnetic data. However, the top of the basal resistive layer from electromagnetic-only inversions was much shallower than the well-determined basement depth observed in high-quality seismic reflection images and seismic refraction velocity tomograms. To resolve this discrepancy, we jointly inverted the electromagnetic data for 4-layer models by including seismic depths to an interface between sedimentary units and to basement as explicit a priori constraints. We have also estimated the interconnected porosities, clay contents and pore-fluid resistivities of the sedimentary units from their electrical resistivities and seismic P-wave velocities using appropriate petrophysical models. In the interpretation of our preferred model, a shallow∼40 m thick freshwater sandy aquifer with 85-100 Ωm resistivity, 10-32 per cent interconnected porosity and <13 per cent clay content overlies a 105-115m thick conductive sequence of clay and intercalated salt-water-saturated sands with 15-20 Ωm total resistivity, 1−27 per cent interconnected porosity and 15-60 per cent clay content. A third∼60 m thick sandy layer with 40-50 Ωm resistivity, 10-33 per cent interconnected porosity and <15 per cent clay content is underlain by the basement with 3200-4000 Ωm total resistivity. According to an interpretation of helicopter TEM data that cover the entire Okavango Delta and borehole logs, the second and third layers may represent lacustrine sediments from Paleo Lake Makgadikgadi and a moderately resistive freshwater aquifer comprising sediments of the recently proposed Paleo Okavango Megafan, respectivel

    Elasticity of entangled polymer loops: Olympic gels

    Full text link
    In this note we present a scaling theory for the elasticity of olympic gels, i.e., gels where the elasticity is a consequence of topology only. It is shown that two deformation regimes exist. The first is the non affine deformation regime where the free energy scales linear with the deformation. In the large (affine) deformation regime the free energy is shown to scale as Fλ5/2F \propto \lambda^{5/2} where λ\lambda is the deformation ratio. Thus a highly non Hookian stress - strain relation is predicted.Comment: latex, no figures, accepted in PRE Rapid Communicatio

    Fine structure, magnetic field and heating of sunspot penumbrae

    Full text link
    We interpret penumbral filaments as due to convection in field-free, radially aligned gaps just below the visible surface of the penumbra, intruding into a nearly potential field above. This solves the classical discrepancy between the large heat flux and the low vertical velocities observed in the penumbra. The presence of the gaps causes strong small-scale fluctuations in inclination, azimuth angle and field strength, but without strong forces acting on the gas. The field is nearly horizontal in a region around the cusp-shaped top of the gap, thereby providing an environment for Evershed flows. We identify this region with the recently discovered dark penumbral cores. Its darkness has the same cause as the dark lanes in umbral light-bridges, reproduced in numerical simulations by Nordlund and Stein (2005). We predict that the large vertical and horizontal gradients of the magnetic field inclination and azimuth in the potential field model will produce the net circular polarization seen in observations. The model also explains the significant elevation of bright filaments above their surroundings. It predicts that dark areas in the penumbra are of two different kinds: dark filament cores containing the most inclined (horizontal) fields, and regions between bright filaments, containing the least inclined field lines.Comment: submitted to A&

    Timeline analysis and wavelet multiscale analysis of the AKARI All-Sky Survey at 90 micron

    Get PDF
    We present a careful analysis of the point source detection limit of the AKARI All-Sky Survey in the WIDE-S 90 μ\mum band near the North Ecliptic Pole (NEP). Timeline Analysis is used to detect IRAS sources and then a conversion factor is derived to transform the peak timeline signal to the interpolated 90 μ\mum flux of a source. Combined with a robust noise measurement, the point source flux detection limit at S/N >5>5 for a single detector row is 1.1±0.11.1\pm0.1 Jy which corresponds to a point source detection limit of the survey of \sim0.4 Jy. Wavelet transform offers a multiscale representation of the Time Series Data (TSD). We calculate the continuous wavelet transform of the TSD and then search for significant wavelet coefficients considered as potential source detections. To discriminate real sources from spurious or moving objects, only sources with confirmation are selected. In our multiscale analysis, IRAS sources selected above 4σ4\sigma can be identified as the only real sources at the Point Source Scales. We also investigate the correlation between the non-IRAS sources detected in Timeline Analysis and cirrus emission using wavelet transform and contour plots of wavelet power spectrum. It is shown that the non-IRAS sources are most likely to be caused by excessive noise over a large range of spatial scales rather than real extended structures such as cirrus clouds.Comment: 16 pages, 19 figures, 5 tables, accepted for publication in MNRA

    Reversible magnetization below Tc in high-quality superconducting ceramics

    Get PDF
    International audienceWe have investigated the reversible magnetization below Tc in high-quality YBa2Cu307_d (Y-123), YBa2Cu4Os (Y-124), Y2Ba4Cu7O15+x (Y-247) and Bi2Sr2CaCu2O8+x (Bi-2212), Tl2Ba2Cu106+d (Tl-2201) and Tl2Ba2CalCu2O8+d (T1-2212) ceramics. Except for the stoichiometric Y-124 phase, the oxygen concentration was optimized in order to obtain the highest value of the critical temperature for which the normal-state susceptibility becomes temperature independent. Using the simple London model, we are able to fit the reversible magnetization M(T, H) outside the region near Tc with good accuracy for the nearly three-dimensional YBaCuO phases. For the very anisotropic BiSrCaCuO and TlBaCaCuO phases, we have to include an additional term to take into account the fluctuations of vortices. An important result is that Y-123 exhibits a critical field clearly higher than those of the BiSrCaCuO or TlBaCaCuO phases. We obtain for the Y-123 phase a slope at Tc μodHC2,C/dT = -4.3 T/K and an extrapolated μoHC2,C (0) = 280 T

    Thomas rotation and Thomas precession

    Get PDF
    Exact and simple calculation of Thomas rotation and Thomas precessions along a circular world line is presented in an absolute (coordinate-free) formulation of special relativity. Besides the simplicity of calculations the absolute treatment of spacetime allows us to gain a deeper insight into the phenomena of Thomas rotation and Thomas precession.Comment: 20 pages, to appear in Int. J. Theo. Phy
    corecore