281 research outputs found

    Secondary zoospores in the algal endoparasite Maullinia ectocarpii (Plasmodiophorea).

    Get PDF
    The present paper deals with the ultrastructure of zoospores produced by the plasmodiophorid Maullinia ectocarpii , living in the marine algal host Ectocarpus siliculosus. The zoospores described here are very similar to secondary zoospores of Polymyxa graminis and Phagomyxa sp. (the latter an algal endopara- site, also). Our results indicate that M. ectocarpii produces two types of plasmodia, and suggest that is a species with a complete life cycle, as it is known for all the Plasmodiophormycota that have been studied. Sporogenic and sporangial plasmodia produce, respectively, primary zoospores with parallel flagella within thick walled resting sporangia, and secondary zoospores with opposite flagella within thin walled sporangia.Fil: Parodi, Elisa Rosalia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur; ArgentinaFil: Caceres, Eduardo Jorge. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia. Laboratorio de Ficología y Micología; ArgentinaFil: Westermeier, Renato. Universidad Austral de Chile; ChileFil: Muller, Dieter G.. Universität Konstanz; Alemani

    Evaluating Depressive Symptoms in Schizophrenia: A Psychometric Comparison of the Calgary Depression Scale for Schizophrenia and the Hamilton Depression Rating Scale

    Get PDF
    Background: The aim of this study was to compare two measures of depression in patients with schizophrenia and schizophrenia spectrum disorder, including patients with delusional and schizoaffective disorder, to conclude implications for their application. Sampling and Methods: A total of 278 patients were assessed using the Calgary Depression Scale for Schizophrenia (CDSS) and the Hamilton Depression Rating Scale (HAMD-17). The Positive and Negative Syndrome Scale (PANSS) was also applied. At admission and discharge, a principal component analysis was performed with each depression scale. The two depression rating scales were furthermore compared using correlation and regression analyses. Results: Three factors were revealed for the CDSS and HAMD-17 factor component analysis. A very similar item loading was found for the CDSS at admission and discharge, whereas results of the loadings of the HAMD-17 items were less stable. The first two factors of the CDSS revealed correlations with positive, negative and general psychopathology. In contrast, multiple significant correlations were found for the HAMD-17 factors and the PANSS sub-scores. Multiple regression analyses demonstrated that the HAMD-17 accounted more for the positive and negative symptom domains than the CDSS. Conclusions:The present results suggest that compared to the HAMD-17, the CDSS is a more specific instrument to measure depressive symptoms in schizophrenia and schizophrenia spectrum disorder, especially in acutely ill patients. Copyright (c) 2012 S. Karger AG, Base

    Differential proteomic analysis of abnormal intramyoplasmic aggregates in desminopathy

    Get PDF
    Desminopathy is a subtype of myofibrillar myopathy caused by desmin mutations and characterized by protein aggregates accumulating in muscle fibers. The aim of this study was to assess the protein composition of these aggregates. Aggregates and intact myofiber sections were obtained from skeletal muscle biopsies of five desminopathy patients by laser microdissection and analyzed by a label-free spectral count-based proteomic approach. We identified 397 proteins with 22 showing significantly higher spectral indices in aggregates (ratio >1.8, p <0.05). Fifteen of these proteins not previously reported as specific aggregate components provide new insights regarding pathomechanisms of desminopathy. Results of proteomic analysis were supported by immunolocalization studies and parallel reaction monitoring. Three mutant desmin variants were detected directly on the protein level as components of the aggregates, suggesting their direct involvement in aggregate-formation and demonstrating for the first time that proteomic analysis can be used for direct identification of a disease-causing mutation in myofibrillar myopathy. Comparison of the proteomic results in desminopathy with our previous analysis of aggregate composition in filaminopathy, another myofibrillar myopathy subtype, allows to determine subtype-specific proteomic profile that facilitates identification of the specific disorder. Biological significance Our proteomic analysis provides essential new insights in the composition of pathological protein aggregates in skeletal muscle fibers of desminopathy patients. The results contribute to a better understanding of pathomechanisms in myofibrillar myopathies and provide the basis for hypothesis-driven studies. The detection of specific proteomic profiles in different myofibrillar myopathy subtypes indicates that proteomic analysis may become a useful tool in differential diagnosis of protein aggregate myopathies. This article is part of a Special Issue entitled: From Genome to Proteome: Open Innovations. (C) 2013 Elsevier B.V. All rights reserved

    An integrated MR/PET system: prospective applications

    Get PDF
    Radiology is strongly depending on medical imaging technology and consequently directing technological progress. A novel technology can only be established, however, if improved diagnostic accuracy influence on therapeutic management and/or overall reduced cost can be evidenced. It has been demonstrated recently that Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) can technologically be integrated into one single hybrid system. Some scientific arguments on the benefits are obvious, e.g., that simultaneous imaging of morphological and functional information will improve tissue characterization. However, crossfire of questions still remains: What unmet radiological needs are addressed by the novel system? What level of hardware integration is reasonable, or would software-based image co-registration be sufficient? Will MR/PET achieve higher diagnostic accuracy compared to separate imaging? What is the added value compared to other hybrid imaging modalities like PET/CT? And finally, is the system economically reasonable and has the potential to reduce overall costs for therapy planning and monitoring? This article tries to highlight some perspectives of applying an integrated MR/PET system for simultaneous morphologic and functional imaging

    Dynamic force microscopy for imaging of viruses under physiological conditions

    Get PDF
    Dynamic force microscopy (DFM) allows imaging of the structure and the assessment of the function of biological specimens in their physiological environment. In DFM, the cantilever is oscillated at a given frequency and touches the sample only at the end of its downward movement. Accordingly, the problem of lateral forces displacing or even destroying bio-molecules is virtually inexistent as the contact time and friction forces are reduced. Here, we describe the use of DFM in studies of human rhinovirus serotype 2 (HRV2) weakly adhering to mica surfaces. The capsid of HRV2 was reproducibly imaged without any displacement of the virus. Release of the genomic RNA from the virions was initiated by exposure to low pH buffer and snapshots of the extrusion process were obtained. In the following, the technical details of previous DFM investigations of HRV2 are summarized

    An Introduction to Gas Accretion onto Galaxies

    Full text link
    Evidence for gas accretion onto galaxies can be found throughout the universe. In this chapter, I summarize the direct and indirect signatures of this process and discuss the primary sources. The evidence for gas accretion includes the star formation rates and metallicities of galaxies, the evolution of the cold gas content of the universe with time, numerous indirect indicators for individual galaxies, and a few direct detections of inflow. The primary sources of gas accretion are the intergalactic medium, satellite gas and feedback material. There is support for each of these sources from observations and simulations, but the methods with which the fuel ultimately settles in to form stars remain murky.Comment: 14 pages, 5 figures, Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springe

    Insights into the Mechanism of Ligand Binding to Octopine Dehydrogenase from Pecten maximus by NMR and Crystallography

    Get PDF
    Octopine dehydrogenase (OcDH) from the adductor muscle of the great scallop, Pecten maximus, catalyzes the NADH dependent, reductive condensation of L-arginine and pyruvate to octopine, NAD+, and water during escape swimming and/or subsequent recovery. The structure of OcDH was recently solved and a reaction mechanism was proposed which implied an ordered binding of NADH, L-arginine and finally pyruvate. Here, the order of substrate binding as well as the underlying conformational changes were investigated by NMR confirming the model derived from the crystal structures. Furthermore, the crystal structure of the OcDH/NADH/agmatine complex was determined which suggests a key role of the side chain of L-arginine in protein cataylsis. Thus, the order of substrate binding to OcDH as well as the molecular signals involved in octopine formation can now be described in molecular detail

    SerpinA3N is a novel hypothalamic gene upregulated by a high-fat diet and leptin in mice

    Get PDF
    Background: Energy homeostasis is regulated by the hypothalamus but fails when animals are fed a high-fat diet (HFD), and leptin insensitivity and obesity develops. To elucidate the possible mechanisms underlying these effects, a microarray-based transcriptomics approach was used to identify novel genes regulated by HFD and leptin in the mouse hypothalamus. Results: Mouse global array data identified serpinA3N as a novel gene highly upregulated by both a HFD and leptin challenge. In situ hybridisation showed serpinA3N expression upregulation by HFD and leptin in all major hypothalamic nuclei in agreement with transcriptomic gene expression data. Immunohistochemistry and studies in the hypothalamic clonal neuronal cell line, mHypoE-N42 (N42), confirmed that alpha 1-antichymotrypsin (α1AC), the protein encoded by serpinA3, is localised to neurons and revealed that it is secreted into the media. SerpinA3N expression in N42 neurons is upregulated by palmitic acid and by leptin, together with IL-6 and TNFα, and all three genes are downregulated by the anti-inflammatory monounsaturated fat, oleic acid. Additionally, palmitate upregulation of serpinA3 in N42 neurons is blocked by the NFκB inhibitor, BAY11, and the upregulation of serpinA3N expression in the hypothalamus by HFD is blunted in IL-1 receptor 1 knockout (IL-1R1−/−) mice. Conclusions: These data demonstrate that serpinA3 expression is implicated in nutritionally mediated hypothalamic inflammation

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO
    corecore