51 research outputs found

    Novel Riboswitch Ligand Analogs as Selective Inhibitors of Guanine-Related Metabolic Pathways

    Get PDF
    Riboswitches are regulatory elements modulating gene expression in response to specific metabolite binding. It has been recently reported that riboswitch agonists may exhibit antimicrobial properties by binding to the riboswitch domain. Guanine riboswitches are involved in the regulation of transport and biosynthesis of purine metabolites, which are critical for the nucleotides cellular pool. Upon guanine binding, these riboswitches stabilize a 5′-untranslated mRNA structure that causes transcription attenuation of the downstream open reading frame. In principle, any agonistic compound targeting a guanine riboswitch could cause gene repression even when the cell is starved for guanine. Antibiotics binding to riboswitches provide novel antimicrobial compounds that can be rationally designed from riboswitch crystal structures. Using this, we have identified a pyrimidine compound (PC1) binding guanine riboswitches that shows bactericidal activity against a subgroup of bacterial species including well-known nosocomial pathogens. This selective bacterial killing is only achieved when guaA, a gene coding for a GMP synthetase, is under the control of the riboswitch. Among the bacterial strains tested, several clinical strains exhibiting multiple drug resistance were inhibited suggesting that PC1 targets a different metabolic pathway. As a proof of principle, we have used a mouse model to show a direct correlation between the administration of PC1 and the reduction of Staphylococcus aureus infection in mammary glands. This work establishes the possibility of using existing structural knowledge to design novel guanine riboswitch-targeting antibiotics as powerful and selective antimicrobial compounds. Particularly, the finding of this new guanine riboswitch target is crucial as community-acquired bacterial infections have recently started to emerge

    The Staphylococcus aureus RNome and Its Commitment to Virulence

    Get PDF
    Staphylococcus aureus is a major human pathogen causing a wide spectrum of nosocomial and community-associated infections with high morbidity and mortality. S. aureus generates a large number of virulence factors whose timing and expression levels are precisely tuned by regulatory proteins and RNAs. The aptitude of bacteria to use RNAs to rapidly modify gene expression, including virulence factors in response to stress or environmental changes, and to survive in a host is an evolving concept. Here, we focus on the recently inventoried S. aureus regulatory RNAs, with emphasis on those with identified functions, two of which are directly involved in pathogenicity

    Cartography of Methicillin-Resistant S. aureus Transcripts: Detection, Orientation and Temporal Expression during Growth Phase and Stress Conditions

    Get PDF
    BACKGROUND: Staphylococcus aureus is a versatile bacterial opportunist responsible for a wide spectrum of infections. The severity of these infections is highly variable and depends on multiple parameters including the genome content of the bacterium as well as the condition of the infected host. Clinically and epidemiologically, S. aureus shows a particular capacity to survive and adapt to drastic environmental changes including the presence of numerous antimicrobial agents. Mechanisms triggering this adaptation remain largely unknown despite important research efforts. Most studies evaluating gene content have so far neglected to analyze the so-called intergenic regions as well as potential antisense RNA molecules. PRINCIPAL FINDINGS: Using high-throughput sequencing technology, we performed an inventory of the whole transcriptome of S. aureus strain N315. In addition to the annotated transcription units, we identified more than 195 small transcribed regions, in the chromosome and the plasmid of S. aureus strain N315. The coding strand of each transcript was identified and structural analysis enabled classification of all discovered transcripts. RNA purified at four time-points during the growth phase of the bacterium allowed us to define the temporal expression of such transcripts. A selection of 26 transcripts of interest dispersed along the intergenic regions was assessed for expression changes in the presence of various stress conditions including pH, temperature, oxidative shocks and growth in a stringent medium. Most of these transcripts showed expression patterns specific for the defined stress conditions that we tested. CONCLUSIONS: These RNA molecules potentially represent important effectors of S. aureus adaptation and more generally could support some of the epidemiological characteristics of the bacterium

    Tandem amplification of SCCmec can drive high level methicillin resistance in MRSA

    Get PDF
    Hospital-associated methicillin-resistant Staphylococcus aureus (MRSA) strains typically express high-level, homogeneous (HoR) beta-lactam resistance, whereas community-associated MRSA (CA-MRSA) more commonly express low-level heterogeneous (HeR) resistance. Expression of the HoR phenotype typically requires both increased expression of the mecA gene, carried on the staphylococcal cassette chromosome mec element (SCCmec), and additional mutational event(s) elsewhere on the chromosome. Here the oxacillin concentration in a chemostat culture of the CA-MRSA strain USA300 was increased from 8 mu g/ml to 130 mu g/ml over 13 days to isolate highly oxacillin-resistant derivatives. A stable, small-colony variant, designated HoR34, which had become established in the chemostat culture was found to have acquired mutations in gdpP, clpX, guaA, and camS. Closer inspection of the genome sequence data further revealed that reads covering SCCmec were similar to 10 times overrepresented compared to other parts of the chromosome. Quantitative PCR (qPCR) confirmed >10-fold-higher levels of mecA DNA on the HoR34 chromosome, and MinION genome sequencing verified the presence of 10 tandem repeats of the SCCmec element. qPCR further demonstrated that subculture of HoR34 in various concentrations of oxacillin (0 to 100 mu g/ml) was accompanied by accordion-like contraction and amplification of the SCCmec element. Although slower growing than strain USA300, HoR34 outcompeted the parent strain in the presence of subinhibitory oxacillin. These data identify tandem amplification of the SCCmec element as a new mechanism of high-level methicillin resistance in MRSA, which may provide a competitive advantage for MRSA under antibiotic selection

    Molecular insights into the ligand-controlled organization of SAM-I riboswitch

    No full text
    S-adenosylmethionine (SAM) riboswitches are widespread in bacteria, and up to five different SAM riboswitch families have been reported, highlighting the relevance of SAM regulation. On the basis of crystallographic and biochemical data, it has been postulated, but never demonstrated, that ligand recognition by SAM riboswitches involves key conformational changes in the RNA architecture. We show here that the aptamer follows a two-step hierarchical folding selectively induced by metal ions and ligand binding, each of them leading to the formation of one of the two helical stacks observed in the crystal structure. Moreover, we find that the anti-antiterminator P1 stem is rotated along its helical axis upon ligand binding, a mechanistic feature that could be common to other riboswitches. We also show that the nonconserved P4 helical domain is used as an auxiliary element to enhance the ligand-binding affinity. This work provides the first comprehensive characterization, to our knowledge, of a ligand-controlled riboswitch folding pathway
    corecore