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 2 

Abstract. Hospital-associated methicillin-resistant Staphylococcus aureus strains typically 24 

express high level, homogenous (HoR) -lactam resistance, whereas community-associated 25 

MRSA (CA-MRSA) more commonly express low level heterogeneous (HeR) resistance. 26 

Expression of the HoR phenotype typically requires both increased expression of 27 

the mecA gene, carried on the Staphylococcus cassette chromosome SCCmec element, and 28 

additional mutational event(s) elsewhere on the chromosome. Here the oxacillin 29 

concentration in a chemostat culture of the CA-MRSA strain USA300 was increased from 8 30 

μg/ml to 130 μg/ml over 13 days to isolate highly oxacillin resistant derivatives. A stable, 31 

small colony variant, designated HoR34, which had become established in the chemostat 32 

culture was found to have acquired mutations in gdpP, clpX, guaA and camS. Closer 33 

inspection of the genome sequence data further revealed that reads covering SCCmec were 34 

~10 times over-represented compared to other parts of the chromosome. qPCR confirmed 35 

>10-fold higher levels of mecA DNA on the HoR34 chromosome, and MinION genome 36 

sequencing verified the presence of 10 tandem repeats of the SCCmec element. qPCR 37 

further demonstrated that sub-culture of HoR34 in varying concentrations of oxacillin (0–38 

100 μg/ml) was accompanied by accordion-like contraction and amplification of the SCCmec 39 

element. Although slower growing than USA300, HoR34 out-competed the parent strain in 40 

the presence of sub-inhibitory oxacillin. These data identify tandem amplification of the 41 

SCCmec element as a new mechanism of high-level methicillin resistance in MRSA, which 42 

may provide a competitive advantage for MRSA under antibiotic selection.  43 

44 
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 3 

Introduction 45 

In recent decades, the overall incidence of methicillin resistant Staphylococcus aureus 46 

infections has greatly increased due to the emergence of community-associated MRSA (CA-47 

MRSA), which are increasingly displacing hospital associated-MRSA (HA-MRSA) strains in 48 

healthcare settings (1). Methicillin resistance is mediated by the mecA-encoded low affinity 49 

penicillin binding protein 2a carried on the mobile Staphylococcus cassette chromosome 50 

mec element (SCCmec). Heterogeneity is a feature of S. aureus methicillin resistance (2). In 51 

general clinical CA-MRSA isolates exhibit low level, heterogeneous methicillin resistance 52 

(HeR) under laboratory growth conditions, whereas HA-MRSA isolates can exhibit high-level, 53 

homogeneous methicillin resistance (HoR). HeR strains can express a HoR phenotype after 54 

selection on elevated concentrations of -lactam antibiotics, via mechanism(s) involving the 55 

stringent response and altered c-di-AMP signalling (2). 56 

In general, the capacity of pathogens like MRSA to become resistant to new drugs only 57 

becomes apparent months or years after their introduction into clinical practice, during 58 

which time exposure of the pathogen to new drugs gradually increases, as does the 59 

likelihood that endogenous resistance will emerge. This clinical scenario can be mimicked in 60 

the laboratory using standard, batch culture techniques to isolate bacterial mutants 61 

exhibiting resistance to an antimicrobial drug. However, such artificial culture conditions can 62 

mask the impact of acquired antimicrobial resistance (AMR) on bacterial fitness (3, 4), a 63 

phenomenon that plays a significant role in determining maintenance and spread of the 64 

AMR genotype in natural bacterial populations, and affects the disease-causing capacity of 65 

the pathogen. Here we used a continuous-growth chemostat to address this limitation by 66 

creating a more dynamic and competitive environment from which to isolate 67 

physiologically-relevant -lactam resistant mutants. A USA300 culture was exposed to 68 
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 4 

increasing concentrations of oxacillin (8-130 g/ml) over a thirteen-day period. Among the 69 

hyper-resistant mutants isolated was a stable small colony variant in which the tandem 70 

amplification of the SCCmec element was identified as a new mechanism of high-level -71 

lactam resistance in MRSA.   72 
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 5 

Results and discussion 73 

Isolation of USA300 oxacillin hyper-resistant mutants. A USA300 nutrient broth culture was 74 

grown in a chemostat for 13 days. A sub-MIC concentration of oxacillin was used at the start 75 

of the chemostat culture and increased on an incremental, daily basis up to 130 μg/ml 76 

(equivalent to 800 μg/ml on Mueller Hinton, BHI or nutrient agar), as described in the 77 

methods. Isolated hyper resistant mutants were readily differentiated into i) white coloured 78 

small colony variants and ii) regular-sized, pigmented colonies (Fig. 1A). Using population 79 

analysis profiling as described previously (5), all the mutants were shown to be 80 

homogeneously resistant (HoR) (data not shown) and exhibited oxacillin MICs = 800 g/ml. 81 

Further analysis revealed that the small colony mutants appeared to be phenotypically 82 

similar, exhibiting the same biofilm forming capacity and repressed -haemolysis (data not 83 

shown). In contrast the faster growing HoR mutants appeared to be heterogeneous, 84 

exhibiting different levels of biofilm forming capacity and -haemolytic activity on sheep 85 

blood agar (data not shown). Whole genome sequencing further revealed a variety of 86 

different mutations in nine HoR mutants recovered from the chemostat (Table 1). These 87 

included four mutants with Ser67Lys amino acid substitutions in DacA, the diadenylate 88 

cyclase responsible for synthesis of c-di-AMP, which has previously been implicated in 89 

the HoR phenotype (2, 6, 7), four mutants with five different mutations in genes 90 

encoding predicted lipoproteins and one mutant with a Glu227Gln substitution in a 91 

predicted ABC transporter designated abcA (8). Mutation of the abcA gene has 92 

previously been shown to increase -lactam resistance and is associated with 93 

upregulation of the adjacent pbpD gene, which encodes penicillin binding protein 4 (8).  94 
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 6 

In addition to a small colony size (Fig. 1A), impaired growth (Fig. 1B) and expression of 95 

hyper-resistance to oxacillin, a representative SCV HoR, designated HoR34, also exhibited 96 

altered cell morphology including defective septa formation (Fig. 1C) and an approximately 97 

2-fold increase in cell wall thickness (18.6 ± 1.8 nm in USA300 versus 36.1 ± 4.2 nm in 98 

HoR34)(Fig. 1D). Whole genome sequence analysis of HoR34 and the parent USA300 strain 99 

compared to the publically-available USA300 FPR3757 genome, revealed that plasmid 100 

pUSA02 (which carries tetracycline resistance) had been lost and identified non-101 

synonymous mutations in the gdpP (c-di-AMP phosphodiesterase (2, 7)), guaA (GMP 102 

synthetase (9)), clpX (chaperone protein (10)) and camS (membrane lipoprotein (11)) genes 103 

(Table 1). GdpP is an c-di-AMP phosphodiesterase responsible for turnover of c-di-AMP 104 

synthesised by DacA, and has previously been implicated in the HoR phenotype (2, 7) but 105 

not a small colony phenotype, which is clinically important in persistent infections (12). 106 

Therefore to determine if the guaA, clpX or camS mutations (alone or in combination) were 107 

involved in the small colony size of HoR34, the mutant was subjected to daily subculture in 108 

the absence of antibiotic selection for 2 weeks in an effort to isolate fast-growing 109 

revertants. The SCV phenotype of HoR34 was stable and no fast growing revertants were 110 

isolated even after repeated attempts. However the oxacillin MIC of the passaged HoR34 111 

strain, designated HoR34p, was reduced from 800 g/ml to 300 g/ml, indicating that 112 

although the strain continued to be hyper-resistant, oxacillin resistance levels in this strain 113 

can be regulated.  114 

To further tease out the contributions of the guaA, clpX, camS and gdpP mutations to the 115 

HoR34 phenotypes, wild type alleles of the four genes, including their upstream promoter 116 

sequences, were cloned on the medium copy number E. coli-Staphylococcus shuttle plasmid 117 

pLI50 and introduced into HoR34. The multicopy clpX plasmid was unstable in HoR34 and 118 
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rapidly lost in the absence of antibiotic selection. Furthermore imposition of continuous 119 

antibiotic selection for the pclpX plasmid in HoR34 appeared to be accompanied by the 120 

selection of compensatory mutations, as evidenced by the rapid emergence of fast growing 121 

colonies among the HoR34 small colony variants. Although we were unable to progress this 122 

complementation experiment further, two previous studies have shown that mutation of 123 

clpX is associated with increased resistance to -lactam antibiotics (albeit not to the levels 124 

measured in HoR34) (10, 13), suggesting that the clpX mutation may contribute in part to 125 

increased oxacillin resistance in HoR34. The remaining complementation experiments 126 

revealed that neither gdpP, nor the camS and guaA genes had any significant effect on the 127 

colony morphology (data not shown) or oxacillin MIC of HoR34, as measured by Etest (Fig. 128 

2A) and agar dilutions (data not shown). Furthermore, the doubling times for HoR34 (31.9 129 

min), HoR34 pguaA (33.0 min), HoR34 pgdpP (31.7 min) and HoR34 pcamS (28.9 min) were 130 

all substantially slower than USA300 (22.6 min) and HoR34 grown in Ox 0.5 g/ml (32.70 131 

min), but not significantly different from each other indicating that the guaA, camS and 132 

gdpP mutations alone did not affect growth rate. Because GdpP and c-di-AMP signalling also 133 

contributes to the regulation of autolytic activity (2, 14), we further investigated this 134 

phenotype. Consistent with previous studies, the gdpP mutation in HoR34 was associated 135 

with increased autolytic activity that was successfully complemented only by gdpP and not 136 

camS or guaA (Fig. 2B). The potential roles of the identified mutations in guaA, clpX and 137 

camS in the HoR phenotype remain unclear but they may have emerged initially to support 138 

growth or maintain fitness at relatively lower oxacillin concentrations during the early 139 

stages of growth in the chemostat. It seems unlikely that the mutations in camS, clpX or 140 

guaA are accompanied by any gain of function; the clpX and camS genes contain mutations 141 

introducing stop codons (Table 1), while predicted loss of function mutations in guaA have 142 
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 8 

previously been implicated in the HoR phenotype (7). Taken together, these data suggest 143 

that the mutations in guaA, clpX, camS and gdpP, at least on their own, are not responsible 144 

for the HoR34 oxacillin hyper-resistance phenotype, and raised the possibility that other 145 

genomic rearrangements were responsible for this phenotype.  146 

Chromosomal amplification of the SCCmec element in HoR34. A number of recent studies 147 

have indicated that large regions of the S. aureus chromosome can undergo duplication and 148 

amplification events (15, 16). To investigate if such genomic rearrangements had taken 149 

place in HoR34, read coverage across the genome was analysed. Illumina sequence reads 150 

covering the SCCmec element were >10 times over-represented compared to other parts of 151 

the chromosome (Fig. 3). LightCycler qPCR confirmed 10-fold higher levels of mecA in HoR34 152 

gDNA samples compared to USA300 (data not shown). To determine whether the SCCmec 153 

element had amplified on the chromosome or excised and re-integrated at multiple sites 154 

around the chromosome, we attempted to assemble the Illumina sequence reads 155 

corresponding to the SCCmec element into contigs. However these efforts were hampered 156 

by the short reads. To address this we re-sequenced the HoR34 genome using MinION 157 

technology, which generates sequence reads of 10Kb onto which the Illumina sequence 158 

reads were mapped. The combined MinION/Illumina sequence data revealed the presence 159 

of 10 tandem SCCmec element repeats on the HoR34 chromosome (Fig. 4). All 10 copies of 160 

SCCmec were completely intact and no additional DNA sequences were identified at the join 161 

sites. Oligonucleotide primers designed to span the join sites of tandem SCCmec elements 162 

amplified PCR produced of the predicted size from HoR34 but not USA300, whereas control 163 

primers targeting mecA amplified PCR products of the predicted size from both HoR34 and 164 

USA300 (Fig. 5A).  165 
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Stability of the SCCmec amplification event. The reduction in oxacillin MIC in the HoR34 166 

strain passaged in BHI media (from 800 to 300 g/ml) indicated that the amplified SCCmec 167 

elements may be unstable in the absence of antibiotic selection. To measure SCCmec copy 168 

number, LightCycler qPCR was used to compare the relative abundance of mecA in HoR34 169 

grown in the presence and absence of oxacillin. These experiments revealed that the mecA 170 

copy number in the HoR34p strain that had been passaged daily in antibiotic-free BHI media 171 

for 2 weeks (oxacillin MIC = 300 g/ml), was only 3-fold higher than USA300 (Fig. 5B), 172 

indicating that up to seven of the amplified SCCmec elements were excised/lost from the 173 

original chemostat isolate during this time. Interestingly the doubling time of HoR34p (32.70 174 

min) was not significantly different to that of HoR34 (31.9 min), indicating that a reduction 175 

in the number of amplified SCCmec elements was not sufficient to alleviate the growth 176 

defect. However further passage of HoR34p in 0.5, 64 and 100g/ml oxacillin was 177 

accompanied by a significant, concentration-dependent increase in mecA copy numbers (up 178 

to 17-fold compared to USA300)(Fig. 5B), and an increase in MIC to ≥800 g/ml. PCR 179 

amplification and sequencing was used to confirm that the identified mutations in the guaA, 180 

gdpP, clpX and camS genes of HoR34 had not reverted to wild type following passage in 181 

antibiotic free media (data not shown). These data suggest that recombination between the 182 

tandem SCCmec elements in HoR34 facilitates accordion-like contraction and expansion in 183 

response to oxacillin exposure. Consistent with these qPCR data, Western blot analysis of 184 

HoR34 grown in 0, 0.5, 64 and 100 g/ml oxacillin also revealed concentration-dependent 185 

increases in PBP2a expression (Fig. 5C).  186 

To investigate why a small colony variant may have been selected and maintained in the 187 

chemostat, we performed competition experiments between USA300 and HoR34. 188 

Predictably USA300 out-competed the slower-growing HoR34 in the absence of antibiotic 189 
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selection (Fig. 5D). However in the presence of sub-inhibitory oxacillin (0.5 g/ml), HoR34 190 

strongly outcompeted the wild type (Fig. 5D). Collectively these data identify tandem 191 

amplification of the SCCmec element as a new mechanism of high-level methicillin 192 

resistance in MRSA, which may provide a competitive advantage for MRSA under antibiotic 193 

selection. 194 

Concluding remarks. Several genetic mechanisms may have contributed alone or in 195 

combination to the SCCmec amplification event in HoR34. Expression of the ccr recombinase 196 

genes which excise SCCmec (17) can be increased by β-lactams and vancomycin (18), 197 

potentially generating multiple, extrachromosomal copies of SCCmec capable of subsequent 198 

reintegration. This possibility is supported by a recent study which identified a replication 199 

initiator gene upstream of the ccr recombinase genes suggesting that the element may be 200 

replicative (19). Other mechanisms that may have contributed to the SCCmec amplification, 201 

alone or in combination with Ccr-mediated excision, include RecA-dependent non-equal 202 

homologous recombination or RecA-independent mechanisms such as recombination 203 

between single-stranded repetitive sequence on sister chromatids at the replication fork 204 

(20). The absence of repeat sequences flanking the SCCmec amplification may also suggest 205 

that an initial double-strand break (DSB), followed by RecA-dependent DSB repair during 206 

rolling circle replication may drive the production of long tandem arrays in a single 207 

generation, which have previously been implicated in fast adaption to drug treatment (21). 208 

Following the initial SCCmec duplication/amplification, the long stretches of homology are 209 

likely to facilitate RecA-mediated expansion and contraction of the element in different 210 

concentrations of oxacillin, as recently observed in a S. lugdenensis strain carrying an 211 

amplified isd locus (16). Recombination events leading to partial deletion of the SCCmec 212 

locus have been described previously. For instance, increased vancomycin resistance has 213 
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been linked to site-specific insertion sequence-mediated excision of SCCmec (22), suggesting 214 

that distinct RecA-independent mechanisms may favour high or low copy numbers of mecA 215 

in high β-lactam or vancomycin environments, respectively. 216 

Even though multiple copies of SCCmec were maintained by HoR34 following repeated 217 

subculture in the absence of oxacillin selection, no evidence for SCCmec amplification was 218 

found in a search of 404 MRSA genomes using read coverage of the mecA gene normalised 219 

with read coverage of three single copy genes (data not shown). The clinical relevance of 220 

this data merits further investigation, particularly given that -lactams are not typically part 221 

of the treatment regimen for MRSA infections. However, this may change in view of ongoing 222 

clinical trials showing the therapeutic value of combining flucloxacillin and vancomycin for 223 

the treatment of MRSA sepsis (23, 24). Our growth competition experiments revealed the 224 

increased competitiveness of HoR34 in the presence of oxacillin was balanced by a 225 

significant loss of competitiveness in the absence of antibiotic selection, suggesting that 226 

MRSA strains carrying multiple SCCmec elements are unlikely to be maintained under 227 

physiological conditions or in clinical environments where exposure to antibiotics is 228 

sporadic. Taken together our data identify chromosomal amplification of the SCCmec 229 

element as a new mechanism that may be used by MRSA to adapt to, and be more 230 

competitive in, high oxacillin environments.  231 

 on July 19, 2017 by U
N

IV
 C

O
LLE

G
E

 D
U

B
LIN

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org/


 12 

Materials and Methods 232 

Strains and culture conditions. Strains used in this study are listed in Table 2 and were 233 

grown at 37°C in LB (Sigma), BHI (Oxoid), Mueller Hinton (Oxoid) or nutrient (Oxoid) broth 234 

supplemented with ampicillin (50 μg/ml), oxacillin (0.5, 64, 100 or 130 μg/ml), 235 

chloramphenicol (10 μg/ml) or erythromycin (10 μg/ml) as indicated. S. aureus strains were 236 

also grown on BHI agar media plates supplemented with oxacillin concentrations up to 1200 237 

μg/ml. 238 

 239 

Measurement of oxacillin minimum inhibitory concentration (MIC). The oxacillin MIC for 240 

the S. aureus strains used in this study was determined in accordance with the Clinical 241 

Laboratory Standards Institute (CLSI) guidelines and using E-tests strips from Biomerieux on 242 

Mueller Hinton agar (Oxoid) containing 2% NaCl.   243 

 244 

Isolation of USA300 oxacillin hyper-resistant mutants using chemostat system. The 245 

community-associated CA-MRSA strain, USA300 FPR3757, which expresses a HeR 246 

phenotype with an oxacillin minimum inhibitory concentration (MIC) on brain heart infusion 247 

or nutrient agar of 32 g/ml was used in this study. A 580 ml capacity laboratory reactor 248 

containing 500 ml of nutrient broth (Oxoid) was used as described previously (25). USA300 249 

was inoculated into the chemostat and allowed to grow to stationary phase for 2 days at 250 

37oC in the absence of any antibiotic selection or media replacement. A growth media 251 

reservoir containing 20 l of nutrient broth was then connected to the chemostat and fed to 252 

the chemostat using a peristaltic pump at a flow rate of 100 ml/h, replacing the entire 253 

nutrient broth volume of the chemostat every 5h. After 24 hours continuous culture growth 254 

in the absence of antibiotic selection, the nutrient broth in the feeding tank was 255 

supplemented with oxacillin at a concentration of 8 mg/l. Thereafter the oxacillin 256 

concentration in the growth medium reservoir was increased in a step-wise manner every 257 

day reaching a final concentration of 130 mg/l on Day 12. Culture samples were collected 258 

aseptically from the chemostat after 24 hours culture at each oxacillin concentration before 259 

being serially diluted and inoculated onto BHI agar supplemented with oxacillin 100 g/ml. 260 

The MICs of colonies recovered from these plates were determined on BHI agar 261 

supplemented with oxacillin ranging from 100-1000 g/ml. All isolates examined were 262 
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hyper-resistant and capable of robust growth on BHI agar supplemented with 800 g/ml 263 

oxacillin. Phenotypic and whole genome sequence analysis of the hyper-resistant mutants is 264 

described in the supplementary methods. 265 

 266 

Haemolysis, biofilm and autolysis assays. Beta haemolysis was assessed on BHI agar 267 

supplemented with 5% sheep blood following overnight growth at 37oC and a further 24 268 

hours at 4oC. Semi-quantitative measurements of biofilm formation were determined under 269 

static conditions using Nunclon Hydrophilic tissue culture treated 96 well polystyrene plates 270 

(Nunc, Denmark) as described previously (26). Triton X-100 induced autolysis was measured 271 

essentially as described previously (27). Each experiment was repeated at least three times 272 

and average data presented. 273 

 274 

Transmission Electron Microscopy (TEM). Overnight BHI cultures were diluted 1:200 in 275 

fresh BHI and grown at 37°C to an A600 = 1.0. 10 ml culture aliquots were subjected to 276 

centrifugation at 8,000 × g, and the cell pellets were re-suspended in fixation solution (2.5% 277 

glutaraldehyde in 0.1 M cacodylate buffer [pH 7.4]) and incubated overnight at 4°C. The 278 

fixed cells were further treated with 2% osmium tetroxide, followed by 0.25% uranyl acetate 279 

for contrast enhancement. The pellets were then dehydrated in increasing concentrations 280 

of ethanol as described above for the SEM cell preparation, followed by pure propylene 281 

oxide, and transferred to a series of resin and propylene oxide mixtures (50:50, 75:25, pure 282 

resin) before being embedded in Epon resin. Thin sections were cut on an ultramicrotome. 283 

Images were analysed using AMT v.542 software using a Hitachi H7000 instrument. At least 284 

3 to 5 measurements of cell wall thickness were performed on each cell and 88 cells were 285 

measured for each sample. 286 

 287 
PCR and Quantitative PCR. Amplification of the mecA gene and the SCCmec junctions in 288 

HoR34 was achieved using the following primers (Table 3): mecA_Fwd and mecA_Rev (for 289 

mecA) and SCCmecJNFwd and SCCmecJnRev (for the SCCmec junctions). Quantitative PCR 290 

(qPCR) for mecA was performed on the Roche LightCycler 480 instrument using the 291 

LightCycler 480 Sybr Green Kit (Roche) and the following primers: mecA1_Fwd and 292 

mecA2_Rev. Cycling conditions were 95 oC for 5 minutes and followed by 45 cycles of 95 oC 293 

for 10 seconds, 58 oC for 20 seconds and 72oC for 20 seconds. Melt curve analysis was 294 
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performed at 95 oC for 5 seconds followed by 65 oC for one minute up to 97 oC at a ramp rate 295 

of 0.11c/sec with five readings taken for every degree of temperature increase. The gyrB 296 

gene was used as an internal standard for all reactions using previous described primers (2). 297 

For each reaction, the ratio of mecA and gyrB transcript number was calculated as follows: 298 

2(Ct gyrB - Ct mecA). Each qPCR experiment was performed at least three times and average data 299 

and standard errors are presented.  300 

 301 
Analysis of PBP2a expression: Total cell protein preparations were prepared from overnight 302 

cultures grown in 0, 0.5, 64 or 100 μg/ml oxacillin. Cell pellets were re-suspended in distilled 303 

water containing 5 µg/ml lysostaphin, 10 units of DNase I, and 50 l of 10% SDS before 304 

being incubated at 37oC for 30 minutes. Insoluble material was pelleted by centrifugation 305 

and the supernatant used for Western blotting. Protein concentration was assessed using 306 

the Pierce BCA protein assay kit (Thermo Scientific).  Protein samples were separated on a 307 

10% SDS gel (Thermo Scientific) and transferred to nitrocellulose membranes (Thermo 308 

Scientific) using a TE 70 semidry transfer unit (Amersham). Anti-PBP2a antibodies (Abnova) 309 

were used at a 1:2000 dilution. A 1:200 dilution of protein G-horseradish peroxidase (HRP) 310 

conjugate (Sigma) was used to detect bound antibody and visualisation was achieved using 311 

a colorimetric detection system (Bio-Rad).  312 

 313 
Complementation of HoR34 with gdpP, guaA, camS and clpX. The gdpP, guaA, camS and 314 

clpX genes were amplified from USA300 genomic DNA by PCR using primers listed in Table 315 

2, before being cloned into the cloning vector pDrive (Quigen) in Escherichia coli TOP10. The 316 

sequence of inserts in recombinant plasmids was verified by Sanger sequencing (Source 317 

Biosciences) before being subcloned on EcoRI or BamHI/HindIII restriction fragments into 318 

the E. coli - Staphylococcus shuttle plasmid pLI50. The plasmids were transformed by 319 

electroporation into the restriction-deficient strain RN4220, and subsequently into HoR34. 320 

All plasmid-harbouring strains were cultured in medium supplemented with 100 µg/ml 321 

ampicillin (E. coli) or 10 μg/ml chloramphenicol (S. aureus) for plasmid selection. 322 

 323 
Growth competition experiments.  Overnight cultures of USA300 and HoR34 cultures were 324 

diluted to A600 = 0.05 in fresh BHI media and grown for 6h. The cell density of both 325 

exponential phase cultures was adjusted to A600 = 0.1 in 500 ml flasks containing 50ml BHI or 326 

BHI supplemented with 0.5 g/ml oxacillin and incubated at 37oC with shaking. The number 327 
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of colony forming units in samples collected at 0, 2, 4, 8, 24 and 48h was determined by 328 

plating serial dilutions on BHI agar. Colonies formed by each strain were readily 329 

differentiated based on their tetracycline resistance and appearance i.e. the HoR34 colonies 330 

were tetracycline sensitive and had a white-coloured, small colony phenotype whereas 331 

USA300 colonies were regular sized, tetracycline resistant and pigmented. 332 

 333 
Statistical analysis. Two-tailed, two-sample equal variance Student’s t-Tests were used to 334 

determine statistically significant differences in assays performed during this study. A P 335 

value <0.05 was deemed significant. 336 

 337 

Quality control of genome sequence data. Read quality was assessed by screening the read 338 

length, nucleotide and quality score distributions using FastQC 339 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and the FASTX-Toolkit 340 

(http://hannonlab.cshl.edu/fastx_toolkit/index.html). The DNA reads were trimmed based 341 

on quality scores. Potential adaptor sequence was removed using Trimmomatic v0.32 (28), 342 

which scanned reads using a four-base sliding window and trimmed reads where the 343 

average Phred base quality of the window was below 30. All ambiguous ‘N’ bases and reads 344 

shorter than 35 bp were removed. The first 20 bases of the DNA reads were removed 345 

because they had a nucleotide content that deviated from the expected 25% rate for each 346 

base. The DNA reads were corrected using BayesHammer (29) to reduce sequencing errors 347 

that can reduce the alignment quality, increase false positive SNP rates and reduce the 348 

number of valid SNPs (30). These steps retained 84% of the initial DNA reads among HoR 349 

isolates from the chemostat yielding median quality values > 30 across the reads. Insert 350 

sizes were an average of 185. Read lengths after trimming and filtering averaged 185 bp and 351 

the average coverage per sample on the chromosome, calculated using the Bedtools 352 

genomecov function (31) on mapped reads, ranged from 47 to 197.  353 

Genome assembly. The error-corrected paired and unpaired reads for each DNA sample 354 

were assembled using SPAdes v3.1.1 [5] with k-mers 21, 33, 55, 77, 99 and 127 and the 355 

‘careful’ parameter, which minimized the number of mismatches in the contigs (32). The 356 

resulting assemblies were compared to the reference USA300_FPR3757 (PMID:16517273) 357 

chromosome using QUAST v2.3 (33). The GC content of each assembly was 32.6%, and there 358 
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were between 31 and 51 scaffolds per assembly, with N50 values > 200 Kb. One or two 359 

short gaps (<500 bp) were found in each assembly that could not be fully closed using 360 

Gapfiller (34).  361 

Single nucleotide polymorphism (SNP) calling using assembly and read-mapping. The 362 

chromosome and three plasmids (GenBank accessions NC_007790-NC_007793) were 363 

indexed with k-mer of thirteen and step size of two using SMALT v5.7 364 

(http://www.sanger.ac.uk/science/tools/smalt-0). The error-corrected DNA reads were 365 

mapped to the genome with SMALT, which applied a Smith-Waterman sequence alignment 366 

algorithm. The SAM (sequence alignment/map) files were converted to BAM (binary 367 

alignment/map) files using Samtools v0.1.18 (35). The BAM files were then coordinate-368 

sorted, the paired and unpaired files were merged, and PCR duplicate reads were removed. 369 

Candidate SNPs were detected where the base quality (BQ) was >25, the mapping quality 370 

(MQ) was >30, and the read depth was <100 using Samtools Mpileup v0.1.18, Bcftools 371 

v0.1.17-dev, and the Samtools v0.1.11 vcfutils.pl function. The read depth allele frequency 372 

of the non-reference allele (RDAF) and local coverage were estimated using Samtools Pileup 373 

v0.1.11.  374 

To call SNPs using an assembly-based approach, the scaffolds produced by SPAdes were 375 

aligned to the USA300 reference genome using nucmer in the MUMmer v3.23 package. This 376 

was followed by eliminating conflicting repeat copies using the ‘delta-filter’ command and 377 

the ‘show-snps’ comand to call SNPs and indels. The union of SNPs called by nucmer and 378 

SNPs called by Bcftools was used as a candidate SNP set. These sites were queried across all 379 

samples using the Samtools Pileup files to find false negative SNPs uncalled by nucmer or 380 

Bcftools. The RDAF of the non-reference alleles was reported for each SNP using Samtools 381 

Pileup output. Each candidate SNP was assessed using the following additional criteria: 382 

 383 

1) SNP Quality (SQ) >30 384 

2) read coverage >5 385 

3) forward-reverse read coverage ratio between 0.1 and 0.9  386 

4) non-reference read allele frequency >0.1 387 

5) 2+ forward reads 388 
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6) 2+ reverse reads 389 

Results were converted to variant call format (VCF) and annotated. SNPs were homozygous 390 

if the RDAF was ≥ 0.85 and heterozygous if 0.1 < RDAF < 0.85. Insufficient read depth 391 

coverage was present to predict SNPs with RDAF < 0.1.  392 

Indel calling using split-read mapping. Deletions and short insertions (indels) were called 393 

using the samtopindel script to convert the BAM files, and then with Pindel (36) to only keep 394 

indels with at least ten supporting reads. The RDAF of the indels smaller than the read 395 

length were calculated using the BAM files in IGV (number of reads with indel at locus / all 396 

reads at the locus). For indels greater than one bp in length, the sum of the number of reads 397 

with the indel was divided by the sum of the number of reads at each site in the indel. This 398 

approach may be limited by uneven coverage at a locus. If the indel was longer than the 399 

read length, then a lack of read coverage at the sites predicted to have the mutation was 400 

considered evidence of the deletion and the RDAF was set to one.  401 

Variant annotation. The functional effect of SNPs and indels was estimated by annotation 402 

with SnpEff v4.0e (37) using the ‘Staphylococcus_aureus_USA300_FPR3757_uid58555’ 403 

database file from the SnpEff database. Results were manually checked using the reference 404 

genome annotation.  405 

Copy number variation detection using read coverage. Copy number variants (CNVs) were 406 

screened using the BAM files containing reads with MQ > 30 to reduce false positive rates 407 

[12–14]. Coverage was calculated for every base using genomecov in Bedtools with the ‘-d’ 408 

flag (31) so that the median chromosomal coverage could be calculated for each sample. 409 

Genome-wide coverage levels were analysed in 10 Kb and 25 Kb windows and plotted as 5 410 

Kb sliding windows with a 2.5 Kb step using the Bedtools makewindows function (31). 411 

Coverage for each window was normalised by dividing it by the median coverage of the 412 

chromosome to produce a copy number estimate. Windows with copy number ≥ 2 were 413 

reported. The copy number of plasmids was determined by dividing the median read 414 

coverage of the plasmid by the median read coverage of the chromosome.  415 

MinION long-read genome sequencing. To evaluate the number of SCCmec copies and their 416 

location contiguous with or excised from the chromosome, genomic DNA from HoR34 was 417 
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amplified to generate long reads using a Oxford Nanopore Technologies (ONT) MinION.  418 

MinION sequencing library construction was carried out according to manufacturer’s 419 

instructions and as previously described (38).  The library was sequenced on an R7.3 MinION 420 

flowcell using the 2D sequencing protocol.  The run produced 26859 FAST5 files, which were 421 

processed using poRe (39), yielding  17254 2D reads.  These reads were used with the MiSeq 422 

data in a hybrid assembly using SPAdes (32) and SSPACE-LongRead (40) to produce a single 423 

contig. 424 

 425 

 426 

  427 
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Figure Legends 428 

 429 

Figure 1. Growth and cell morphology phenotypes of USA300 and HoR34. A. Small colony 430 

variants and other isolates recovered from the chemostat culture after 13 days at a final 431 

oxacillin concentration of 130 mg/l grown on BHI agar for 24 h. B. Growth curve of USA300 432 

and HoR34 grown for 20 hours in BHI media at 37oC with vigorous aeration. The number of 433 

colony forming units per ml in culture samples removed at regular intervals was determined 434 

by plating on BHI agar. C. Cell morphology of USA300 and HoR34 imaged using transmission 435 

electron microscopy (TEM) at 8,000× magnification. D. Cell wall thickness of USA300 and 436 

HoR34 determined using TEM at 100,000× magnification and AMT v.542 imaging software.  437 

 438 

Figure 2. Oxacillin susceptibility and autolysis phenotypes of USA300 and HoR34. A. 439 

Oxacillin MIC of USA300, HoR34 and HoR34 carrying plasmids pLI50 (control), pgdpP, pguaA 440 

and pcamS determined using Etests. B. Autolytic activity in USA300 and HoR34. USA300, 441 

HoR34, HoR34 carrying plasmids pLI50 (control), pgdpP, pguaA and pcamS, and a USA300 442 

JE2 atl mutant (negative control) were grown to early exponential phase in BHI at 37°C and 443 

washed in PBS and adjusted to A600 = 1.0 in 0.01% Triton X-100. The A600 was measured 444 

initially and at 15 min intervals thereafter with shaking incubation at 37°C. Autolytic activity 445 

is expressed as a percentage of the initial A600. Average results from three independent 446 

experiments shown. 447 

 448 

Figure 3. Copy number as determined by Illumina sequence read coverage across SCCmec 449 

for USA300 (Sample 1A_S1), HoR34 (Sample 8A_S8, highlighted with blue box) and eight 450 

other isolates from the chemostat culture. The position on the chromosome is indicated, 451 

with SCCmec coordinates between 0.034 and 0.057 Mb. The blue lines depict locally 452 

weighted scatterplot smoothing (lowess) applied to the data points (black). Note that the y-453 

axis for HoR34 differs from the other samples. 454 

 455 

Figure 4. Chromosomal organisation of HoR34 depicting expansion of the SCCmec element 456 

and locations of gdpP, clpX, camS and guaA mutations. On the circular map, the inner track 457 

shows copy number of 10 kb non-overlapping loci across the genome with loci that had 458 

copy number greater than two shown in red and those with copy number less than two 459 
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shown in blue. The next track shows black blocks illustrating different regions on the 460 

genome e.g. SCCmec and ACME. Single nucleotide polymorphisms are shown on the third 461 

track. Missense mutations are labelled in green whereas stop gain mutations are labelled in 462 

blue. Genes are shown in the outermost tracks. Genes transcribed in the forward (5’ -> 3’) 463 

direction are labelled in green and are in the outside track whereas those transcribed in the 464 

reverse direction are labelled in red. 465 

 466 

Figure 5. Chromosomal amplification of SCCmec can drive high level oxacillin resistance. A. 467 

PCR amplification across the SCCmec junctions in HoR34. Amplification of the mecA gene in 468 

both USA300 and HoR34 was used as a control. B. Comparison of relative mecA abundance 469 

by LightCycler qPCR in USA300 and HoR34 grown for 24 h in BHI supplemented with 0, 0.5, 470 

64 or 100 mg/ml oxacillin. C. Comparison of relative PBP2a expression by Western blot 471 

analysis in USA300 and HoR34 grown in BHI and BHI supplemented with 0, 0.5, 64 or 100 472 

mg/ml oxacillin. D. Competitive growth of USA300 and HoR34 over 48 hours in BHI and BHI 473 

supplemented with oxacillin (0.5 mg/ml). The CFU of each strain was enumerated on BHI 474 

agar to count all bacteria and BHI oxacillin (30 mg/ml) to count HoR34. The ratio of the two 475 

strains in each culture is shown. The data presented are mean and SD of three experiments. 476 

Statistical evaluation was performed using a paired two tailed t-test.  477 

 478 

 479 

  480 
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Table 1. Genetic alterations in USA300 oxacillin hyper-resistant mutants from the 484 
chemostat culture 485 

  486 

 

Isolate, growth 
chafracteristic 

 

Genome  
position 

 

Nucleotide  
change 

 

Amino acid  
change 

 

Locus tag/gene 

 
HoR20,  
fast-growing 

 
703854 

 
G-C 

 
Glu227Gln 

 
RS03375/abcA 

 
HoR18, 21, 27, 36;  
fast-growing 

 
110748, 
110752,111618, 
111630, 111648 

 
Multiple 

 
Multiple 

 
RS00520-RS00525 
/uncharacterized lipoprotein genes 

 
HoR33, 41, 43, 46;  
fast-growing 

 
2288896 

 
G-A 

 
Ser67Lys 

 
RS11640/dacA 

HoR34,  
slow-growing 

19122 

 
44078 
441379 

A-C Thr260Pro gdpP (c-di-AMP phosphodiesterase 
(14)) 

C-T Ala314Val guaA (GMP synthetase (9)) 
 G-T Glu511Asp guaA 

 1775825 C-A Glu37STOP clpX (Chaperone with ClpP-
dependent role in protein 
degradation and ClpP-independent 
role in protein folding (10)) 

 2046530 G-A Gln305STOP camS (membrane lipoprotein 
involve in sex pheromone 
biosynthesis (11)) 
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 487 

Table 2. Bacterial strains and plasmids used in this study 488 

Strains/plasmids Relevant Details  

S. aureus  

RN4220 Restriction-deficient laboratory S. aureus. 

USA300 CA-MRSA expressing heterogeneous resistance to oxacillin 

HoR34 USA300 derivative expressing high level resistance to oxacillin  

ATCC 29213 MSSA strain for susceptibility testing 

JE2 atl::erm Transposon mutation in the major autolysin gene atl of strain JE2, a USA300 

derivate used in the construction of the Nebraska Transposon mutant library 

(41). Exhibits impaired autolytic activity. 

E. coli E. coli Top10 cloning strain. 

Plasmids  

pLI50 E. coli-Staphylococcus shuttle vector. Apr (E. coli), Cmr (Staphylococcus). 

pDrive E. coli cloning vector 

 489 
 490 
 491 
  492 
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Table 3. Oligonucleotide primers used in this study 493 

Target Gene Primer Name Primer Sequence (5’-3’) 

gdpP gdpP_Fwd GCCGAATGCAGTAACGATTT 

 gdpP_Rev TTGTTGGCGTTCTTGTTTTG 

guaA guaA_Fwd AGAGGACAAAGCGCCTAAGA 

 guaA_Rev CCTTACCCCTTTTCCGTCCT 

clpX clpX_Fwd AACGCAAAGTTCGTTGAAGG 

 clpX_Rev TGAGCGTCAACTTTGATTGG 

camS camS_Fwd GCTGGTGAAGATGCAGGTTC 

 camS_Rev CCTGGTGCATTTGTTGAAACTG 

mecA mecA_Fwd CATATCGTGAGCAATGAACTGA 

 mecA_Rev CATCGTTACGGATTGCTTCA 

SCCmec Junction SCCmecJn_Fwd CTTGCTGGGTGCTATTTGA 

 SCCmecJn_Rev CGCTGTCTTCCTGTATTTCG 

mecA  mecA1_Fwd TGCTCAATATAAAATTAAAACAAACTACGGTAAC 

 mecA1_Rev GAATAATGACGCTATGATCCCAA 

gyrB gyrB_Fwd CCAGGTAAATTAGCCGATTGC 

 gyrB_Rev AAATCGCCTGCGTTCTAGAG 

 494 
  495 
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