49 research outputs found

    Effect of Dairy Structures on Gastric Behaviour and Nutrient Digestion Kinetics using a Semi-Dynamic Model

    Get PDF
    Dairy products, due to manufacturing processes, exhibit an array of possible structures at different length scales and are associated with beneficial nutritional and health effects. However, to date there is very little mechanistic understanding of such links. Unravelling the fate of food in the gastrointestinal tract is essential to better understand the health effects of food. The investigation of different dairy structured matrices was performed using a semi-dynamic model of gastric digestion, developed in this thesis, to simulate the main dynamics of the adult stomach, i.e. gradual gastric acidification, fluid secretion and emptying. It was validated with two dairy matrices obtaining a similar gastric behaviour compared to the corresponding in vivo digestion. The ‘fast’ and ‘slow’ digestion kinetics of whey proteins and caseins were shown to be due to their behaviour in the stomach, presenting soluble aggregates and solid, firm coagulation, respectively, which was linked to a higher ex vivo Leu absorption at early and late stages of digestion. The gastric restructuring of caseins was modulated by changing the whey protein to casein ratio, addition of lipid, and processing by heating and homogenisation. The most intensive processing resulted in weaker, fragmented coagulation, leading to quicker kinetics of nutrient emptying and rapid protein hydrolysis. The latter was linked to an easier access of pepsin into the weaker structure. The modulation of nutrient digestion kinetics was also obtained by comparing specific dairy macrostructures of semi-solid versus liquid through different gastric behaviours, which could be linked to the satiety responses observed in vivo. This thesis clearly demonstrated the key role of the gastric phase on nutrient bioaccessibility, which can be associated to physiological responses of dairy products. The modulation of gastric behaviour should be further studied and can be exploited to develop food structures with improved and/or tailored biofunctional properties addressing health/nutritional requirements

    Simulating human digestion: developing our knowledge to create healthier and more sustainable foods

    Get PDF
    The gold standard for nutrition studies is clinical trials but they are expensive and variable, and do not always provide the mechanistic information required, hence the increased use of in vitro and increasingly in silico simulations of digestion. In this review, we give examples of the main simulations being used to model upper gastrointestinal tract digestion. This review ranges from the selection of enzymes to the interpretation of results from static models to fully dynamic models. We describe the modifications made to accommodate different demographic groups (infants, the elderly, etc.). We list examples of the application of the different models as well as giving the advantages and disadvantages. A model is only useful if it predicts or aids the understanding of physiological behaviour. Thus, the final section of the review makes a comparison of results obtained from experiments undertaken using in vitro simulations with those obtained in vivo. This comparison will help the reader understand the appropriateness of each model for the type of measurement to be undertaken. In particular, human studies tend to measure bioactive concentrations in blood and not in the gastrointestinal tract whereas in vitro studies often only produce data on release of nutrients into the gut lumen. This is the difficulty of comparing bioaccessibility as generated in vitro with bioavailability as generated in vivo. It is apparent that the models being used are increasingly being validated with in vivo data and this bodes well for the future

    Dairy food structures influence the rates of nutrient digestion through different in vitro gastric behaviour

    Get PDF
    peer-reviewedThe purpose of this study was to investigate in vitro the extent to which specific food structures alter gastric behaviour and could therefore impact on nutrient delivery and digestion in the small intestine. Results obtained from a specifically developed gastric digestion model, were compared to results from a previous human study on the same foods. The semi-dynamic model could simulate the main gastric dynamics including gradual acidification, lipolysis, proteolysis and emptying. Two dairy-based foods with the same caloric content but different structure were studied. The semi-solid meal comprised a mixture of cheese and yogurt and the liquid meal was an oil in water emulsion stabilised by milk proteins. Our findings showed similar gastric behaviour to that seen previously in vivo. Gastric behaviour was affected by the initial structure with creaming and sedimentation observed in the case of liquid and semi-solid samples, respectively. Lipid and protein digestion profiles showed clear differences in the amount of nutrients reaching the simulated small intestine and, consequently, the likely bioaccessibility after digestion. The semi-solid sample generated higher nutrient released into the small intestine at an early stage of digestion whereas nutrient accessibility from liquid sample was delayed due to the formation of a cream layer in the gastric phase. This shows the strong effect of the matrix on gastric behaviour, proteolysis and lipolysis, which explains the differences in physiological responses seen previously with these systems in terms of fullness and satiety.This work has funded by the Irish Dairy Levy Research Trust (project number MDDT6261). Ana-Isabel Mulet-Cabero was funded under Teagasc Walsh Fellowship scheme and BBSRC in the UK (grant BB/J004545/1)

    Impact of caseins and whey proteins ratio and lipid content on in vitro digestion and ex vivo absorption

    Get PDF
    Caseins and whey proteins are known as ‘slow’ and ‘fast’ proteins, respectively, based on their amino acid absorption rate. However, there is limited understanding of the mechanisms controlling their behaviour during gastro-intestinal transit. A protein model system (8% total protein) with varying casein:whey protein ratios (0:100, 20:80, 50:50 and 80:20) were subjected to in vitro gastro-intestinal digestion using a semi-dynamic gastric model, a static intestinal model and an ex vivo absorption model (Ussing chambers). The casein-rich (≥ 50%) samples showed the formation of solid coagula that were persistent throughout gastric digestion, which caused a delay in nutrient emptying, slower digestion and leucine absorption kinetics. In contrast, whey proteins formed more soluble aggregates during the gastric phase, which led to faster gastric emptying, rapid intestinal hydrolysis, and higher and faster leucine absorption. This work shows the key role of the gastric restructuring for the overall digestive mechanism and kinetics of food, in particular proteins

    Dairy structures and physiological responses: a matter of gastric digestion

    Get PDF
    Digestion and health properties of food do not solely rely on the sum of nutrients but are also influenced by food structure. Dairy products present an array of structures due to differences in the origin of milk components and the changes induced by processing. Some dairy structures have been observed to induce specific effects on digestion rates and physiological responses. However, the underlying mechanisms are not fully understood. Gastric digestion plays a key role in controlling digestion kinetics. The main objective of this review is to expose the relevance of gastric phase as the link between dairy structures and physiological responses. The focus is on human and animal studies, and physiological relevant in vitro digestion models. Data collected showed that the structure of dairy products have a profound impact on rate of nutrient bioavailability, absorption and physiological responses, suggesting gastric digestion as the main driver. Control of gastric digestion can be a tool for delivering specific rates of nutrient digestion. Therefore, the design of food structure targeting specific gastric behavior could be of great interest for particular population needs e.g. rapid nutrient digestion will benefit elderly, and slow nutrient digestion could help to enhance satiety

    Study on the digestion of milk with prebiotic carbohydrates in a simulated gastrointestinal model

    Get PDF
    The behaviour of oligosaccharides from lactulose (OsLu) included with milk was examined during in vitro gastrointestinal digestion using the Infogest protocol as well as some small intestine rat extract. The digestion was compared with commercial prebiotics GOS and Duphalac®. Electrophoretic analysis demonstrated that the prebiotic carbohydrates did not modify the gastric digestion of dairy proteins. Similarly, no significant effect of gastrointestinal digestion was shown on the prebiotic studied. In contrast, under the intestinal conditions using a rat extract, the oligosaccharides present in OsLu samples were less digested (<15%) than in GOS (35%). Moreover, lactulose was more prone to digestion than their corresponding trisaccharides. These results demonstrate the limited digestion of OsLu and their availability to reach the large intestine as prebiotic

    Structural mechanism and kinetics of in vitro gastric digestion are affected by process-induced changes in bovine milk

    Get PDF
    Bovine milk is commonly exposed to processing, which can alter the structure, biochemical composition, physico-chemical properties and sensory quality. While many of these changes have been studied extensively, little is known about their effect on digestive behaviour. In this study, heat treatments of pasteurisation at 72 °C for 15 s or Ultra-High-Temperature (UHT) treatment at 140 °C for 3 s and homogenisation at pilot-plant scale were applied to whole milk. The gastric behaviour was investigated using a recently developed semi-dynamic adult in vitro model. The emptied digesta were analysed to assess the nutrient delivery kinetics, changes in microstructure and protein digestion. All samples showed protein aggregation and coagulum formation within the first 15 min of gastric digestion at which time the pH ranged from 5.5 to 6. Homogenised samples creamed regardless of heat treatment, whereas all non-homogenised samples exhibited sedimentation. The consistency of the coagulum of the heated samples was more fragmented compared to those of the non-heated samples. Rheological analysis showed that the higher the temperature of the heat treatment, the softer the obtained coagulum and the higher the protein hydrolysis at the end of digestion. The study also confirmed that gastric emptying of caseins from milk is delayed due to coagulation in the stomach, while β-lactoglobulin was emptied throughout the gastric phase, except for UHT-treated milk. The gastric behaviour also had an impact on the lipid and protein content of the emptied chyme. The homogenised samples seemed to release more nutrients at the end of gastric digestion

    Dairy food structures influence the rates of nutrient digestion through different in vitro gastric behaviour

    Get PDF
    The purpose of this study was to investigate in vitro the extent to which specific food structures alter gastric behaviour and could therefore impact on nutrient delivery and digestion in the small intestine. Results obtained from a specifically developed gastric digestion model, were compared to results from a previous human study on the same foods. The semi-dynamic model could simulate the main gastric dynamics including gradual acidification, lipolysis, proteolysis and emptying. Two dairy-based foods with the same caloric content but different structure were studied. The semi-solid meal comprised a mixture of cheese and yogurt and the liquid meal was an oil in water emulsion stabilised by milk proteins. Our findings showed similar gastric behaviour to that seen previously in vivo. Gastric behaviour was affected by the initial structure with creaming and sedimentation observed in the case of liquid and semi-solid samples, respectively. Lipid and protein digestion profiles showed clear differences in the amount of nutrients reaching the simulated small intestine and, consequently, the likely bioaccessibility after digestion. The semi-solid sample generated higher nutrient released into the small intestine at an early stage of digestion whereas nutrient accessibility from liquid sample was delayed due to the formation of a cream layer in the gastric phase. This shows the strong effect of the matrix on gastric behaviour, proteolysis and lipolysis, which explains the differences in physiological responses seen previously with these systems in terms of fullness and satiety
    corecore