6 research outputs found

    CYTOTOXIC EFFECT OF AQUADEST, ETHANOLIC, AND CHLOROFORM EXTRACTS OF Spathoglottis plicata Blume ON BREAST CANCER CELLS LINE (T47D CELLS)

    Get PDF
    Breast cancer is one of cancer with high mortality. This cancer not only attacks women, but also men. Indonesia has many plants which potential as anticancer, such as orchids. Spathoglottis plicata is one of the orchid species that abundant in Indonesia and has a lot of antioxidant compounds which is guessed have anticancer properties. The objectives of this study were to study the cytotoxic activity and IC50 value of aquadest, ethanolic, and chloroform extracts of S. plicata’s pseudobulbs, leaves, and whole plants on T47D cells (breast cancer cells line) as well as cytotoxic activity of the specific fraction of the most toxic crude extract. S. plicata used in this study was obtained from Bungarinte nursery. Extractions were done by maceration method using aquadest, ethanol, and chloroform as the solvent. Cytotoxic test on T47D cells were done by MTT assay. The cytotoxic data were analyzed using one-way ANOVA followed by Tukey’s HSD test. The IC50 of each extracts were calculate by probit analysis. The lowest IC50 value among all extracts was fractionated and isolated by preparative TLC. The cytotoxic activity and IC50 of this fractions were analyzed. The results showed that only 2 from 9 crude extracts that able to calculate its IC50 because those two extracts have concentration dependent pattern of inhibition concentration. Chloroform extract have the lowest IC50 value (369,837 μg/mL). Then, this extract fractionated by eluen n-hexane : ethyl acetate 4:1. Four fractions were collected. The lowest IC50 value is fraction IV (144,41 μg/mL). Based on the results it could be concluded that S. plicata leaves have moderate potency to develop as anticancet agents, especially on breast cancer. Keywords: S. plicata, T47D cells, cytotoxic, MTT assay, preparative TLC.

    Fifteen emerging challenges and opportunities for vegetation science: A horizon scan by early career researchers

    Get PDF
    With the aim to identify future challenges and opportunities in vegetation science, we brought together a group of 22 early career vegetation scientists from diverse backgrounds to perform a horizon scan. In this contribution, we present a selection of 15 topics that were ranked by participants as the most emergent and impactful for vegetation science in the face of global change. We highlight methodological tools that we expect will play a critical role in resolving emerging issues by providing ways to unveil new aspects of plant community dynamics and structure. These tools include next generation sequencing, plant spectral imaging, process-based species distribution models, resurveying studies and permanent plots. Further, we stress the need to integrate long-term monitoring, the study of novel ecosystems, below-ground traits, pollination interactions and global networks of near-surface microclimate data at fine spatio-temporal resolutions to fully understand and predict the impacts of climate change on vegetation dynamics. We also emphasize the need to integrate traditional forms of knowledge and a diversity of stakeholders into research, teaching, management and policy-making to advance the field of vegetation science. The conclusions reached by this horizon scan naturally reflect the background, expertise and interests of a representative pool of early career vegetation scientists, which should serve as basis for future developments in the field

    The effects of shrub patch sizes on the colonization of pioneer plants on the volcano Mount Koma, northern Japan

    Get PDF
    Vegetation recovery on Mount Koma, Hokkaido, Japan, has been slow after the catastrophic eruption in 1929, due to undeveloped soil and limited plant colonization. Nowadays, the seedling establishment is supported mostly by a nurse plant, Salix reinii forming shrub patches, facilitates the plant colonization. Although the effects of shrub patches should differ with patch sizes, the size effects have not been examined well. To examine the size effects, seed-sowing experiments were conducted on two common pioneer herbaceous species, Misamthus sinensis and Polygonum sachalinense, in the field. The seed germination and seedling survival were monitored by the seeds sown into S. reinii patches (0.97 m(2)-4.12 m(2) in area) for 4 months during snow-free periods. Microenvironments altered by the patches were measured. Lab-experiments were performed to characterize the seed germination and seedling growth. Larger patches decreased light intensity and temperature more and increased litter and water content. The large patches promoted the seed germination of the two species. Interspecific interactions, examined by a seed mixture experiment, showed that the interaction increased the seed germination on M. sinensis and decreased that on P. sachalinense. On the lab-experiments at three temperatures (15, 20 and 25 degrees C), M. sinensis seeds germinated more at higher temperatures and obtained higher seedlings biomass. P. sachalinense germinated the seeds more at 20 degrees C and grew faster at lower temperatures. The total biomass of the two species was reduced by shade that intercepted 50% of light intensity. The seed germination and seedling growth of these two species became higher on litter with 2 cm in depth than on no litter. Soil water supported seed germination when the seeds of these two species were mixed while the water reduced the growth of P. sachalinense seedlings. Therefore, the dry soils were suitable for their growths. In all the treatments, P. sachalinense seedlings showed higher mortalities than M. sinensis. In conclusion, the large patches facilitated more to the colonization of pioneer plants via seed germination and growth. Large patches acted as a nursery supporting the natural regeneration in the disturbed area by improving litter accumulation, maintaining soil water, reducing strong light and/or protecting from heat

    Fifteen emerging challenges and opportunities for vegetation science - A horizon scan by early career researchers

    Get PDF
    With the aim to identify future challenges and opportuni-ties in vegetation science, we brought together a group of 22 early career vegetation scientists from diverse back-grounds to perform a horizon scan. In this contribution, we present a selection of 15 topics that were ranked by participants as the most emergent and impactful for vegetation science in the face of global change. We highlight methodological tools that we expect will play a critical role in resolving emerging issues by providing ways to unveil new aspects of plant community dynam-ics and structure. These tools include next generation se-quencing, plant spectral imaging, process- based species distribution models, resurveying studies and permanent plots. Further, we stress the need to integrate long-term monitoring, the study of novel ecosystems, below- ground traits, pollination interactions and global networks of near-surface microclimate data at fine spatio-temporal resolutions to fully understand and predict the impacts of climate change on vegetation dynamics. We also empha-size the need to integrate traditional forms of knowledge and a diversity of stakeholders into research, teaching, management and policy- making to advance the field of vegetation science. The conclusions reached by this hori-zon scan naturally reflect the background, expertise and interests of a representative pool of early career vegeta-tion scientists, which should serve as basis for future de-velopments in the fiel
    corecore