73 research outputs found
Analysis of degree of errors in handwritten medication prescriptions in Rafha, Saudi Arabia
Purpose: To assess the prevalence of handwritten prescription errors in Rafha Central Hospital in Saudi Arabia, and to determine the most predominant type of prescription error.
Methods: A cross-sectional study was carried out on randomly selected samples of hand-written prescriptions in out-patient and in-patient pharmacies of Rafha Central Hospital over a five-month period (October 2016 to February 2017). A data collection sheet specially designed for this purpose was used to collect relevant information. The collected prescriptions were analyzed for the presence of prescription errors based on prescription parameters defined by the World Health Organization (WHO) and current guidelines published in British National Formulary (BNF). Descriptive statistics and Microsoft Office were used for processing and analyzing the data collected.
Results: Overall, 1019 prescription errors were identified. More than half of the total errors (610; 60 %) were associated with missing patient's information. Moreover, the parameters related to drug and prescriber information were absent in 204 (20 %) and 5 (0.4 %) prescriptions, respectively. In addition, 200 (19 %) miscellaneous errors related to date, legible handwriting and directions for patients were identified.
Conclusion: This study discovered errors in hand-written prescriptions. A majority of the prescriptions did not adhere to accepted guidelines. The most common errors are absence of generic names of drugs, non-indication of duration of therapy or prescriber’s contact address, and absence of patient’s weight. Moreover, illegible handwriting was obvious in a substantial number of prescriptions
Design of high gain base station antenna array for mm-wave cellular communication systems
Millimeter wave (mm-Wave) wireless communication systems require high gain antennas to overcome path loss effects and thereby enhance system coverage. This paper presents the design and analysis of an antenna array for high gain performance of future mm-wave 5G communication systems. The proposed antenna is based on planar microstrip technology and fabricated on 0.254 mm thick dielectric substrate (Rogers-5880) having a relative permittivity of 2.2 and loss tangent of 0.0009. The single radiating element used to construct the antenna array is a microstrip patch that has a configuration resembling a two-pronged fork. The single radiator has a realized gain of 7.6 dBi. To achieve the gain required by 5G base stations, a 64-element array antenna design is proposed which has a bore side gain of 21.2 dBi at 37.2 GHz. The 8 × 8, 8 × 16, and 8 × 32 antenna array designs described here were simulated and optimized using CST Microwave Studio, which is a 3D full-wave electromagnetic solver. The overall characteristics of the array in terms of reflection-coefficient and radiation patterns makes the proposed design suitable for mm-Wave 5G and other communication systems.Dr. Mohammad Alibakhshikenari acknowledges support from the CONEX-Plus programme funded by Universidad Carlos III de Madrid and the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 801538. In addition, this work was partially supported by Ministerio de Ciencia, Innovación y Universidades, Gobierno de España (Agencia Estatal de Investigación, Fondo Europeo de Desarrollo Regional -FEDER-, European Union) under the research grant PID2021-127409OB-C31 CONDOR. The authors also sincerely appreciate funding from Researchers Supporting Project number (RSP2023R58), King Saud University, Riyadh, Saudi Arabia
Design of high gain base station antenna array for mm-wave cellular communication systems
Millimeter wave (mm-Wave) wireless communication systems require high gain antennas to overcome path loss effects and thereby enhance system coverage. This paper presents the design and analysis of an antenna array for high gain performance of future mm-wave 5G communication systems. The proposed antenna is based on planar microstrip technology and fabricated on 0.254 mm thick dielectric substrate (Rogers-5880) having a relative permittivity of 2.2 and loss tangent of 0.0009. The single radiating element used to construct the antenna array is a microstrip patch that has a configuration resembling a two-pronged fork. The single radiator has a realized gain of 7.6 dBi. To achieve the gain required by 5G base stations, a 64-element array antenna design is proposed which has a bore side gain of 21.2 dBi at 37.2 GHz. The 8 × 8, 8 × 16, and 8 × 32 antenna array designs described here were simulated and optimized using CST Microwave Studio, which is a 3D full-wave electromagnetic solver. The overall characteristics of the array in terms of reflection-coefficient and radiation patterns makes the proposed design suitable for mm-Wave 5G and other communication systems
National guidelines for the diagnosis and treatment of hilar cholangiocarcinoma
©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.Peer reviewe
Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial
Suppression of PGE2 production via disruption of MAPK phosphorylation by unsymmetrical dicarbonyl curcumin derivatives
Curcumin is an important molecule found in turmeric plants and has been reported to exhibit some profound anti-inflammatory activities by interacting with several important molecular targets found in the mitogen-activated protein kinase and NF-κβ pathways. As part of our continuing effort to search for new anti-inflammatory agents with better in vitro and in vivo efficacies, we have synthesized a series of new unsymmetrical dicarbonyl curcumin derivatives and tested their effects on prostaglandin E2 secretion level in interferon-γ/lipopolysaccharide-activated macrophage cells. Among those, five compounds exhibited remarkable suppression on prostaglandin E2 production with IC50 values ranging from 0.87 to 18.41 µM. The most potent compound 17f was found to down-regulate the expression of cyclooxygenase-2 mRNA suggesting that this series of compounds could possibly target the mitogen-activated protein kinase signal transduction pathway. Whilst the compound did not affect the expression of the conventional mitogen-activated protein kinases, the results suggest that it could disrupt the phosphorylation and activation of the proteins particularly the c-Jun N-terminal kinases. Finally, the binding interactions were examined using the molecular docking and dynamics simulation approaches
Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study
Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised
Formulation and in vitro Characterization of Donepezil-loaded Chitosan Nanoparticles
Millions of people are affected globally by alzheimer’s disease and it is regarded as a dangerous progressive medical and socio-economic burden. The drug delivery to brain is hindered due to the presence of blood brain barrier. Nanoparticle mediated drug delivery is a promising approach in this regard. Chitosan is a hydrophilic polysaccharide polymer of N-acetylglycosamine and glucosamine. Owing to its biodegradability, nontoxicity and biocompatibility it is regarded as a safe excipient. The aim of the study was to fabricate donepezil-loaded sustained release chitosan nanoparticles as a simple way to deliver nano-drugs to the brain. The nanoparticles were fabricated using ionic gelation method using different concentrations of Sodium tripolyphosphate (TPP) and chitosan. The fabricated nanoparticles were assessed for particle size, zeta potential, encapsulation efficiency and in vitro drug release. The effect of sonication time on the particle size of nanoparticles was also studied. The nanoparticles exhibited mean particle size (between 135-1487 nm) and zeta potential (between +3.9-+38mV) depending on chitosan and TPP concentration used. The rise in the sonication time from 25 to 125 sec exhibited a decrease in particle size. The encapsulation efficiency was found to be in the range of 39.1-74.4%. Sustained and slow release of donepezil at a constant rate was exhibited from nanoparticles. The nanoparticles show potential to deliver donepezil to brain with enhanced encapsulation efficiency.</jats:p
Development and Characterization of Mitoxantrone-Loaded Glutaraldehyde Crosslinked Sodium Alginate Nanoparticles for the Delivery of Anticancer Drugs
Every year millions of new cases of various types of cancers are diagnosed, leading to an alarming rate of fatalities. Mitoxantrone is an anthracenedione antineoplastic agent which is used in the treatment of various types of cancer, mostly acute myeloid leukemia and prostate cancer. In spite of its therapeutic applications, it possesses numerous limitations and side effects including specific targeting and systemic toxicity. Sodium alginate is a biodegradable, mucoadhesive and biocompatible polymer commonly used in drug delivery applications. Glutaraldehyde is a saturated dialdehyde and is used as a polymer cross linker. In this study, mitoxantrone-loaded glutaraldehyde-sodium alginate nanoparticles were developed by ionic gelation method and characterized (determination of particle size, drug entrapment efficiency, drug release and its kinetics) for the delivery of anticancer drugs. The nanoparticles mean particle size was found to be within the acceptable range. The entrapment efficiency was also on the higher side with sustained drug release. The findings of this study reveal promising potential of delivery system and project the way forward for further in vitro and in vivo investigations.</jats:p
Development and Characterization of Liposome-Enriched Ketoprofen Liposomal Hydrogels
The purpose of this study was to develop liposome-enriched Ketoprofen liposomal hydrogels and carry out in vitro release profile experiment. The aim was to achieve sustained topical drug delivery for extended time interval from liposomal gels. Phosphatidylcholine, Cholesterol and Ketoprofen were dissolved in chloroform/methanol (2:1, v/v) mixture and subsequently transferred to a flask attached to rotavapor. The liposomes were assessed for particle size and percent drug entrapment. F-7 and F-8 batches were found to be optimized batches having optimum sizes, drug entrapment efficiencies and cumulative drug releases. F-8 batch was further evaluated for stability. The results show that the prepared liposomes of Ketoprofen might turn out to be potential candidates for effective and safe sustained drug delivery thereby resulting in the reduction of dosing frequency.</jats:p
- …
