77 research outputs found
Integral inequalities of hermite-hadamard type and their applications
A thesis submitted to the Faculty of Science, University of the
Witwatersrand, Johannesburg, South Africa, in fulfilment of the
requirements for the degree of Doctor of Philosophy. Johannesburg, 17 October 2016.The role of mathematical inequalities in the growth of different branches of mathematics
as well as in other areas of science is well recognized in the past several years. The uses of
contributions of Newton and Euler in mathematical analysis have resulted in a numerous
applications of modern mathematics in physical sciences, engineering and other areas
sciences and hence have employed a dominat effect on mathematical inequalities.
Mathematical inequalities play a dynamic role in numerical analysis for approximation of
errors in some quadrature rules. Speaking more specifically, the error approximation in
quadrature rules such as the mid-point rule, trapezoidal rule and Simpson rule etc. have
been investigated extensively and hence, a number of bounds for these quadrature rules in
terms of at most second derivative are proven by a number of researchers during the past
few years.
The theorey of mathematical inequalities heavily based on theory of convex functions.
Actually, the theory of convex functions is very old and its commencement is found to be
the end of the nineteenth century. The fundamental contributions of the theory of convex
functions can be found in the in the works of O. Hölder [50], O. Stolz [151] and J.
Hadamard [48]. At the beginning of the last century J. L. W. V. Jensen [72] first realized
the importance convex functions and commenced the symmetric study of the convex
functions. In years thereafter this research resulted in the appearance of the theory of
convex functions as an independent domain of mathematical analysis.
Although, there are a number of results based on convex function but the most celebrated
results about convex functions is the Hermite-Hadamard inequality, due to its rich
geometrical significance and many applications in the theory of means and in numerical
analysis. A huge number of research articles have been written during the last decade by a
number of mathematicians which give new proofs, generalizations, extensions and
refitments of the Hermite-Hadamard inequality.
Applications of the results for these classes of functions are
given. The research upshots of this thesis make significant contributions in the theory of
means and the theory of inequalities.MT 201
Generalized double-integral Ostrowski type inequalities on time scales
AbstractAn Ostrowski type inequality for a double integral is derived via a ΔΔ-integral on time scales; this generalizes an Ostrowski type inequality and some related results from Liu et al. (2010) [1]. Some new applications are also given
New Integral Inequalities of Hermite-Hadamard type for n-times Differentiable s-Logarithimcally Convex With Applications
In this paper, some new integral inequalities of Hermite-Hadamard type are presented for functions whose nth derivatives in absolute value are s-logarithmically convex. From our results, several inequalities of Hermite-Hadamard type can be derived in terms of functions whose first and second derivatives in absolute value are s-logarithmically convex functions as special cases. Our results may provide refinements of some results for s-logarithmically convex functions already exist in literature. Finally, applications to special means of the established results are given
Rational Use of Antibiotics and Requisition of Pharmacist
ABSTRACT
Background: Direct consequence of microbes developing resistance against antibiotics is prolonged hospitalization, increased treatment cost and duration. Increased duration of hospitalization causes prolonged use antibiotics which results towards side effects.
Primary Study Objective: The purpose of antibiotics use is either to kill the microbes (bactericidal) or slows down their growth (bacteriostatic). Irrational use of antibiotics makes them do their exact opposite. Instead of killing microbes or slowing down their growth, it allows microbes to develop resistance against antibiotics.
Methods/Design: An observational concurrent study was performed in which data was collected. Individuals were interviewed using structured questionnaire. Percentage of rationality and irrationality of antibiotics use was observed. Additionally percentage of prescribed class of antibiotics was also observed in patients.
Setting: Health care system includes: Quaid e Azam International Hospital Islamabad, Benazir Hospital Rawalpindi, CMH Rawalakot AJK, Amna Hospital Rawalakot AJK, DHQ Kotli AJK Pakistan.
Participants: This study was conducted on 100 patients of different health care systems, to whom antibiotics were prescribed. Most patients interviewed were female with UTI aged above 30 and adults male with RTI or chest infection.
Intervention: Different patients were interviewed in different hospital settings to evaluate the rational use of antibiotics
Primary Outcome Measures: Rational use of antibiotics is using antibiotics according to the guidelines provided by WHO. Major guidelines include: patient receives medication according to their clinical needs, dosage appropriate to the individual requirements and for specific duration of time with low cost.
Results: 47 percent of these patients were using antibiotics rationally and 53 percent were taking antibiotics medication irrationally. The most prevalent form of irrational use was patients without counseling about the antibiotics use. Patients with poor knowledge about the use of antibiotics were 84 among the 100. Irrational use of antibiotics in the form of pre-mature discontinuation was reported 56 patients among the 100. Patient who irrationally use antibiotics as OTC or Self medications were 38 among the 100.
Conclusion: Major form of irrationality found in the study was no proper counseling provided to the patients by specialist physician or Pharmacists. The reason we critically observed for this is the burden of patients on physicians due to which they are not able to properly guide patients. The community on which this study was conducted has a major absence of pharmacist. Dispensers and pharmacy technicians are performing pharmacist’s tasks. Absence of pharmacist leads to dosage dispensing errors, lack of professional medical counseling, and no drug utilization revie
National guidelines for the diagnosis and treatment of hilar cholangiocarcinoma
©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.Peer reviewe
Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021
Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
- …