168 research outputs found

    Geomorphological regionalisation of Croatia

    Get PDF
    Na temelju morfostrukturnih, morfogenetskih, orografskih i litoloĆĄkih datosti izvrĆĄena je regionalizacija reljefa Hrvatske. Kao dopunski čimbenik uzeta je u obzir hidrografska mreĆŸa. Načelno svaka regionalna geomorfoloĆĄka cjelina izdvojena je na principu homogenosti parcijalnih datosti, odnosno njihove sličnosti. Pri izdvajanju pojedinih regija vrednovani su morfo-litogeni čimbenici pojedinačno ali i intergralno. U određenim slučajevima koriĆĄten je i kriterij prostornih veza. Klasifikacija i hijerarhizacija regionalnih taskonomskih jedinica provedena je na temelju najuspjeĆĄnijih do sada razrađenih i primijenjenih kriterija diferencijacija reljefa u svijetu.The relief regionalisation of Croatia is based on morphostructural, morphogenetic, orographic and lithologic conditions. Hydrographic network was taken into account as an additional factor. Basically, every regional geomorphological entity was singled out according to the principle of homogeneity of particular conditions, i. e. their mutual similarity. While singling out particular regions, morpho-lithogenic factors were evaluated individually, as well as integrally. The criterion of spatial connections was also used in certain cases. The classification and hierarchy of the regional taxonomic units was carried out on the basis of most successful investigations and applied criteria related to relief differentiation performed worldwide so far

    Clinical effectiveness and efficacy of chiropractic spinal manipulation for spine pain

    Get PDF
    Spine pain is a highly prevalent condition affecting over 11% of the world's population. It is the single leading cause of activity limitation and ranks fourth in years lost to disability globally, representing a significant personal, social, and economic burden. For the vast majority of patients with back and neck pain, a specific pathology cannot be identified as the cause for their pain, which is then labeled as non-specific. In a growing proportion of these cases, pain persists beyond 3 months and is referred to as chronic primary back or neck pain. To decrease the global burden of spine pain, current data suggest that a conservative approach may be preferable. One of the conservative management options available is spinal manipulative therapy (SMT), the main intervention used by chiropractors and other manual therapists. The aim of this narrative review is to highlight the most relevant and up-to-date evidence on the effectiveness (as it compares to other interventions in more pragmatic settings) and efficacy (as it compares to inactive controls under highly controlled conditions) of SMT for the management of neck pain and low back pain. Additionally, a perspective on the current recommendations on SMT for spine pain and the needs for future research will be provided. In summary, SMT may be as effective as other recommended therapies for the management of non-specific and chronic primary spine pain, including standard medical care or physical therapy. Currently, SMT is recommended in combination with exercise for neck pain as part of a multimodal approach. It may also be recommended as a frontline intervention for low back pain. Despite some remaining discrepancies, current clinical practice guidelines almost universally recommend the use of SMT for spine pain. Due to the low quality of evidence, the efficacy of SMT compared with a placebo or no treatment remains uncertain. Therefore, future research is needed to clarify the specific effects of SMT to further validate this intervention. In addition, factors that predict these effects remain to be determined to target patients who are more likely to obtain positive outcomes from SMT

    Chiropractic spinal manipulation prevents secondary hyperalgesia induced by topical capsaicin in healthy individuals

    Get PDF
    Background and Aims: Spinal manipulation (SM) is currently recommended for the management of back pain. Experimental studies indicate that the hypoalgesic mechanisms of SM may rely on inhibition of segmental processes related to temporal summation of pain and, possibly, on central sensitization, although this remains unclear. The aim of this study was to determine whether experimental back pain, secondary hyperalgesia, and pain-related brain activity induced by capsaicin are decreased by segmental SM. Methods: Seventy-three healthy volunteers were randomly allocated to one of four experimental groups: SM at T5 vertebral level (segmental), SM at T9 vertebral level (heterosegmental), placebo intervention at T5 vertebral level, or no intervention. Topical capsaicin was applied to the area of T5 vertebra for 40 min. After 20 min, the interventions were administered. Pressure pain thresholds (PPTs) were assessed outside the area of capsaicin application at 0 and 40 min to examine secondary hyperalgesia. Capsaicin pain intensity and unpleasantness were reported every 4 min. Frontal high-gamma oscillations were also measured with electroencephalography. Results: Pain ratings and brain activity were not significantly different between groups over time (p > 0.5). However, PPTs were significantly decreased in the placebo and control groups (p < 0.01), indicative of secondary hyperalgesia, while no hyperalgesia was observed for groups receiving SM (p = 1.0). This effect was independent of expectations and greater than placebo for segmental (p < 0.01) but not heterosegmental SM (p = 1.0). Conclusions: These results indicate that segmental SM can prevent secondary hyperalgesia, independently of expectations. This has implications for the management of back pain, particularly when central sensitization is involved

    A climate-sensitive forest model for assessing impacts of forest management in Europe

    Get PDF
    FORMIT-M is a widely applicable, open-access, simple and flexible, climate-sensitive forest management simulator requiring only standard forest inventory data as input. It combines a process-based carbon balance approach with a strong inventory-based empirical component. The model has been linked to the global forest sector model EFI-GTM to secure consistency between timber cutting and demand, although prescribed harvest scenarios can also be used. Here we introduce the structure of the model and demonstrate its use with example simulations until the end of the 21st century in Europe, comparing different management scenarios in different regions under climate change. The model was consistent with country-level statistics of growing stock volumes (R-2=0.938) and its projections of climate impact on growth agreed with other studies. The management changes had a greater impact on growing stocks, harvest potential and carbon balance than projected climate change, at least in the absence of increased disturbance rates.Peer reviewe

    Gene Expression Profiling of Human Decidual Macrophages: Evidence for Immunosuppressive Phenotype

    Get PDF
    Background: Although uterine macrophages are thought to play an important regulatory role at the maternal-fetal interface, their global gene expression profile is not known. Methodology/Principal Findings: Using micro-array comprising approximately 14,000 genes, the gene expression pattern of human first trimester decidual CD14+ monocytes/macrophages was characterized and compared with the expression profile of the corresponding cells in blood. Some of the key findings were confirmed by real time PCR or by secreted protein. A unique gene expression pattern intrinsic of first trimester decidual CD14+ cells was demonstrated. A large number of regulated genes were functionally related to immunomodulation and tissue remodelling, corroborating polarization patterns of differentiated macrophages mainly of the alternatively activated M2 phenotype. These include known M2 markers such as CCL-18, CD209, insulin-like growth factor (IGF)-1, mannose receptor c type (MRC)-1 and fibronectin-1. Further, the selective up-regulation of triggering receptor expressed on myeloid cells (TREM)-2, alpha-2-macroglobulin (A2M) and prostaglandin D2 synthase (PGDS) provides new insights into the regulatory function of decidual macrophages in pregnancy that may have implications in pregnancy complications. Conclusions/Significance: The molecular characterization of decidual macrophages presents a unique transcriptional profile replete with important components for fetal immunoprotection and provides several clues for further studies of these cells.Original Publication:Charlotte Gustafsson (Lidström), Jenny Mjösberg, Andreas Matussek, Robert Geffers, Leif Matthiesen, Göran Berg, Surendra Sharma, Jan Buer and Jan Ernerudh, Gene expression profiling of human decidual macrophages: Evidence for immunosuppressive phenotype, 2008, PLoS ONE, (3), 4, e2078.http://dx.doi.org/10.1371/journal.pone.0002078Copyright: Public Library of Science (PLoS)http://www.plos.org

    Comprehensive In Vitro Toxicity Testing of a Panel of Representative Oxide Nanomaterials: First Steps towards an Intelligent Testing Strategy

    Get PDF
    Nanomaterials (NMs) display many unique and useful physico-chemical properties. However, reliable approaches are needed for risk assessment of NMs. The present study was performed in the FP7-MARINA project, with the objective to identify and evaluate in vitro test methods for toxicity assessment in order to facilitate the development of an intelligent testing strategy (ITS). Six representative oxide NMs provided by the EC-JRC Nanomaterials Repository were tested in nine laboratories. The in vitro toxicity of NMs was evaluated in 12 cellular models representing 6 different target organs/systems (immune system, respiratory system, gastrointestinal system, reproductive organs, kidney and embryonic tissues). The toxicity assessment was conducted using 10 different assays for cytotoxicity, embryotoxicity, epithelial integrity, cytokine secretion and oxidative stress. Thorough physico-chemical characterization was performed for all tested NMs. Commercially relevant NMs with different physico-chemical properties were selected: two TiO2 NMs with different surface chemistry – hydrophilic (NM-103) and hydrophobic (NM-104), two forms of ZnO – uncoated (NM-110) and coated with triethoxycapryl silane (NM-111) and two SiO2 NMs produced by two different manufacturing techniques – precipitated (NM-200) and pyrogenic (NM-203). Cell specific toxicity effects of all NMs were observed; macrophages were the most sensitive cell type after short-term exposures (24-72h) (ZnO>SiO2>TiO2). Longer term exposure (7 to 21 days) significantly affected the cell barrier integrity in the presence of ZnO, but not TiO2 and SiO2, while the embryonic stem cell test (EST) classified the TiO2 NMs as potentially ‘weak-embryotoxic’ and ZnO and SiO2 NMs as ‘non-embryotoxic’. A hazard ranking could be established for the representative NMs tested (ZnO NM-110 > ZnO NM-111 > SiO2 NM-203 > SiO2 NM-200 > TiO2 NM-104 > TiO2 NM-103). This ranking was different in the case of embryonic tissues, for which TiO2 displayed higher toxicity compared with ZnO and SiO2. Importantly, the in vitro methodology applied could identify cell- and NM-specific responses, with a low variability observed between different test assays. Overall, this testing approach, based on a battery of cellular systems and test assays, complemented by an exhaustive physico-chemical characterization of NMs, could be deployed for the development of an ITS suitable for risk assessment of NMs. This study also provides a rich source of data for modeling of NM effects

    Isotopic analysis of cyanobacterial nitrogen fixation associated with subarctic lichen and bryophyte species.

    Get PDF
    Dinitrogen fixation by cyanobacteria is of particular importance for the nutrient economy of cold biomes, constituting the main pathway for new N supplies to tundra ecosystems. It is prevalent in cyanobacterial colonies on bryophytes and in obligate associations within cyanolichens. Recent studies, applying interspecific variation in plant functional traits to upscale species effects on ecosystems, have all but neglected cryptogams and their association with cyanobacteria. Here we looked for species-specific patterns that determine cryptogam-mediated rates of N-2 fixation in the Subarctic. We hypothesised a contrast in N-2 fixation rates (1) between the structurally and physiologically different lichens and bryophytes, and (2) within bryophytes based on their respective plant functional types. Throughout the survey we supplied N-15-labelled N-2 gas to quantify fixation rates for monospecific moss, liverwort and lichen turfs. We sampled fifteen species in a design that captures spatial and temporal variations during the growing season in Abisko region, Sweden. We measured N-2 fixation potential of each turf in a common environment and in its field sampling site, in order to embrace both comparativeness and realism. Cyanolichens and bryophytes differed significantly in their cyanobacterial N-2 fixation capacity, which was not driven by microhabitat characteristics, but rather by morphology and physiology. Cyanolichens were much more prominent fixers than bryophytes per unit dry weight, but not per unit area due to their low specific thallus weight. Mosses did not exhibit consistent differences in N-2 fixation rates across species and functional types. Liverworts did not fix detectable amounts of N-2. Despite the very high rates of N-2 fixation associated with cyanolichens, large cover of mosses per unit area at the landscape scale compensates for their lower fixation rates, thereby probably making them the primary regional atmospheric nitrogen sink
    • 

    corecore