8,603 research outputs found
Recommended from our members
Dissection of hippocampal CRH-CRHR1 signalling in early life stress-induced learning and memory deficits
Form Factors in N=4 Super Yang-Mills and Periodic Wilson Loops
We calculate form factors of half-BPS operators in N=4 super Yang-Mills
theory at tree level and one loop using novel applications of recursion
relations and unitarity. In particular, we determine the expression of the
one-loop form factors with two scalars and an arbitrary number of
positive-helicity gluons. These quantities resemble closely the MHV scattering
amplitudes, including holomorphicity of the tree-level form factor, and the
expansion in terms of two-mass easy box functions of the one-loop result. Next,
we compare our result for these form factors to the calculation of a particular
periodic Wilson loop at one loop, finding agreement. This suggests a novel
duality relating form factors to periodic Wilson loops.Comment: 26 pages, 10 figures. v2: typos fixed, comments adde
Deep Inelastic Scattering in Conformal QCD
We consider the Regge limit of a CFT correlation function of two vector and
two scalar operators, as appropriate to study small-x deep inelastic scattering
in N=4 SYM or in QCD assuming approximate conformal symmetry. After clarifying
the nature of the Regge limit for a CFT correlator, we use its conformal
partial wave expansion to obtain an impact parameter representation encoding
the exchange of a spin j Reggeon for any value of the coupling constant. The
CFT impact parameter space is the three-dimensional hyperbolic space H3, which
is the impact parameter space for high energy scattering in the dual AdS space.
We determine the small-x structure functions associated to the exchange of a
Reggeon. We discuss unitarization from the point of view of scattering in AdS
and comment on the validity of the eikonal approximation.
We then focus on the weak coupling limit of the theory where the amplitude is
dominated by the exchange of the BFKL pomeron. Conformal invariance fixes the
form of the vector impact factor and its decomposition in transverse spin 0 and
spin 2 components. Our formalism reproduces exactly the general results predict
by the Regge theory, both for a scalar target and for gamma*-gamma* scattering.
We compute current impact factors for the specific examples of N=4 SYM and QCD,
obtaining very simple results. In the case of the R-current of N=4 SYM, we show
that the transverse spin 2 component vanishes. We conjecture that the impact
factors of all chiral primary operators of N=4 SYM only have components with 0
transverse spin.Comment: 44+16 pages, 7 figures. Some correction
High Energy Bounds on Soft N=4 SYM Amplitudes from AdS/CFT
Using the AdS/CFT correspondence, we study the high-energy behavior of
colorless dipole elastic scattering amplitudes in N=4 SYM gauge theory through
the Wilson loop correlator formalism and Euclidean to Minkowskian analytic
continuation. The purely elastic behavior obtained at large impact-parameter L,
through duality from disconnected AdS_5 minimal surfaces beyond the
Gross-Ooguri transition point, is combined with unitarity and analyticity
constraints in the central region. In this way we obtain an absolute bound on
the high-energy behavior of the forward scattering amplitude due to the
graviton interaction between minimal surfaces in the bulk. The dominant
"Pomeron" intercept is bounded by alpha less than or equal to 11/7 using the
AdS/CFT constraint of a weak gravitational field in the bulk. Assuming the
elastic eikonal approximation in a larger impact-parameter range gives alpha
between 4/3 and 11/7. The actual intercept becomes 4/3 if one assumes the
elastic eikonal approximation within its maximally allowed range L larger than
exp{Y/3}, where Y is the total rapidity. Subleading AdS/CFT contributions at
large impact-parameter due to the other d=10 supergravity fields are obtained.
A divergence in the real part of the tachyonic KK scalar is cured by
analyticity but signals the need for a theoretical completion of the AdS/CFT
scheme.Comment: 25 pages, 3 eps figure
Emergent Properties of Tumor Microenvironment in a Real-life Model of Multicell Tumor Spheroids
Multicellular tumor spheroids are an important {\it in vitro} model of the
pre-vascular phase of solid tumors, for sizes well below the diagnostic limit:
therefore a biophysical model of spheroids has the ability to shed light on the
internal workings and organization of tumors at a critical phase of their
development. To this end, we have developed a computer program that integrates
the behavior of individual cells and their interactions with other cells and
the surrounding environment. It is based on a quantitative description of
metabolism, growth, proliferation and death of single tumor cells, and on
equations that model biochemical and mechanical cell-cell and cell-environment
interactions. The program reproduces existing experimental data on spheroids,
and yields unique views of their microenvironment. Simulations show complex
internal flows and motions of nutrients, metabolites and cells, that are
otherwise unobservable with current experimental techniques, and give novel
clues on tumor development and strong hints for future therapies.Comment: 20 pages, 10 figures. Accepted for publication in PLOS One. The
published version contains links to a supplementary text and three video
file
The Regge Limit for Green Functions in Conformal Field Theory
We define a Regge limit for off-shell Green functions in quantum field
theory, and study it in the particular case of conformal field theories (CFT).
Our limit differs from that defined in arXiv:0801.3002, the latter being only a
particular corner of the Regge regime. By studying the limit for free CFTs, we
are able to reproduce the Low-Nussinov, BFKL approach to the pomeron at weak
coupling. The dominance of Feynman graphs where only two high momentum lines
are exchanged in the t-channel, follows simply from the free field analysis. We
can then define the BFKL kernel in terms of the two point function of a simple
light-like bilocal operator. We also include a brief discussion of the gravity
dual predictions for the Regge limit at strong coupling.Comment: 23 pages 2 figures, v2: Clarification of relation of the Regge limit
defined here and previous work in CFT. Clarification of causal orderings in
the limit. References adde
Two-neutron knockout from neutron-deficient Ar, S, and Si
Two-neutron knockout reactions from nuclei in the proximity of the proton
dripline have been studied using intermediate-energy beams of neutron-deficient
Ar, S, and Si. The inclusive cross sections, and also the
partial cross sections for the population of individual bound final states of
the Ar, S and Si knockout residues, have been determined
using the combination of particle and -ray spectroscopy. Similar to the
two-proton knockout mechanism on the neutron-rich side of the nuclear chart,
these two-neutron removal reactions from already neutron-deficient nuclei are
also shown to be consistent with a direct reaction mechanism.Comment: Phys. Rev. C, rapid communication, in pres
Reggeon exchange from gauge/gravity duality
We perform the analysis of quark-antiquark Reggeon exchange in meson-meson
scattering, in the framework of the gauge/gravity correspondence in a confining
background. On the gauge theory side, Reggeon exchange is described as
quark-antiquark exchange in the t channel between fast projectiles. The
corresponding amplitude is represented in terms of Wilson loops running along
the trajectories of the constituent quarks and antiquarks. The paths of the
exchanged fermions are integrated over, while the "spectator" fermions are
dealt with in an eikonal approximation. On the gravity side, we follow a
previously proposed approach, and we evaluate the Wilson-loop expectation value
by making use of gauge/gravity duality for a generic confining gauge theory.
The amplitude is obtained in a saddle-point approximation through the
determination near the confining horizon of a Euclidean "minimal surface with
floating boundaries", i.e., by fixing the trajectories of the exchanged quark
and antiquark by means of a minimisation procedure, which involves both area
and length terms. After discussing, as a warm-up exercise, a simpler problem on
a plane involving a soap film with floating boundaries, we solve the
variational problem relevant to Reggeon exchange, in which the basic geometry
is that of a helicoid. A compact expression for the Reggeon-exchange amplitude,
including the effects of a small fermion mass, is then obtained through
analytic continuation from Euclidean to Minkowski space-time. We find in
particular a linear Regge trajectory, corresponding to a Regge-pole singularity
supplemented by a logarithmic cut induced by the non-zero quark mass. The
analytic continuation leads also to companion contributions, corresponding to
the convolution of the same Reggeon-exchange amplitude with multiple elastic
rescattering interactions between the colliding mesons.Comment: 60+1 pages, 14 figure
The use of happiness research for public policy
Research on happiness tends to follow a "benevolent dictator" approach where politicians pursue people's happiness. This paper takes an antithetic approach based on the insights of public choice theory. First, we inquire how the results of happiness research may be used to improve the choice of institutions. Second, we show that the policy approach matters for the choice of research questions and the kind of knowledge happiness research aims to provide. Third, we emphasize that there is no shortcut to an optimal policy maximizing some happiness indicator or social welfare function since governments have an incentive to manipulate this indicator
Non-Global Logarithms in Filtered Jet Algorithms
We analytically and numerically study the effect of perturbative gluons
emission on the "Filtering analysis", which is part of a subjet analysis
procedure proposed two years ago to possibly identify a low-mass Higgs boson
decaying into b\bar{b} at the LHC. This leads us to examine the non-global
structure of the resulting perturbative series in the leading single-log
large-N_c approximation, including all-orders numerical results, simple
analytical approximations to them and comments on the structure of their series
expansion. We then use these results to semi-analytically optimize the
parameters of the Filtering analysis so as to suppress as much as possible the
effect of underlying event and pile-up on the Higgs mass peak reconstruction
while keeping the major part of the perturbative radiation from the b\bar{b}
dipole.Comment: 47 pages, 25 figures, 1 figure and a few comments added, version
accepted for publication in JHE
- …
