54 research outputs found

    The placenta protects the fetal circulation from anxiety-driven elevations in maternal serum levels of brain-derived neurotrophic factor.

    Get PDF
    Brain-derived neurotrophic factor (BDNF) plays crucial roles in brain function. Numerous studies report alterations in BDNF levels in human serum in various neurological conditions, including mood disorders such as depression. However, little is known about BDNF levels in the blood during pregnancy. We asked whether maternal depression and/or anxiety during pregnancy were associated with altered serum BDNF levels in mothers (n = 251) and their new-born infants (n = 212). As prenatal exposure to maternal mood disorders significantly increases the risk of neurological conditions in later life, we also examined the possibility of placental BDNF transfer by developing a new mouse model. We found no association between maternal symptoms of depression and either maternal or infant cord blood serum BDNF. However, maternal symptoms of anxiety correlated with significantly raised maternal serum BDNF exclusively in mothers of boys (r = 0.281; P = 0.005; n = 99). Serum BDNF was significantly lower in male infants than female infants but neither correlated with maternal anxiety symptoms. Consistent with this observation, we found no evidence for BDNF transfer across the placenta. We conclude that the placenta protects the developing fetus from maternal changes in serum BDNF that could otherwise have adverse consequences for fetal development

    CCR2 of Tumor Microenvironmental Cells Is a Relevant Modulator of Glioma Biology.

    Get PDF
    Glioblastoma multiforme (GBM) shows a high influx of tumor-associated macrophages (TAMs). The CCR2/CCL2 pathway is considered a relevant signal for the recruitment of TAMs and has been suggested as a therapeutic target in malignant gliomas. We found that TAMs of human GBM specimens and of a syngeneic glioma model express CCR2 to varying extents. Using a Ccr2-deficient strain for glioma inoculation revealed a 30% reduction of TAMs intratumorally. This diminished immune cell infiltration occurred with augmented tumor volumes likely based on increased cell proliferation. Remaining TAMs in Ccr2-/- mice showed comparable surface marker expression patterns in comparison to wildtype mice, but expression levels of inflammatory transcription factors (Stat3, Irf7, Cox2) and cytokines (Ifnβ, Il1β, Il12α) were considerably affected. Furthermore, we demonstrated an impact on blood vessel integrity, while vascularization of tumors appeared similar between mouse strains. The higher stability and attenuated leakiness of the tumor vasculature imply improved sustenance of glioma tissue in Ccr2-/- mice. Additionally, despite TAMs residing in the perivascular niche in Ccr2-/- mice, their pro-angiogenic activity was reduced by the downregulation of Vegf. In conclusion, lacking CCR2 solely on tumor microenvironmental cells leads to enhanced tumor progression, whereby high numbers of TAMs infiltrate gliomas independently of the CCR2/CCL2 signal

    Glyphosate targets fish monoaminergic systems leading to oxidative stress and anxiety

    Get PDF
    Artículo científico indizadoGlyphosate is the active ingredient of some of the most highly produced and used herbicides worldwide. The intensive applications of glyphosate-based herbicides and its half-life in water lead to its presence in many aquatic ecosystems. Whereas recent studies have reported neurotoxic effects of glyphosate including autism- related effects, most of them used extremely high (mg/L to g/L) concentrations, so it is still unclear if chronic, low environmentally relevant concentrations of this compound (ng/L to μg/L) can induce neurotoxicity. In this study we analyzed the neurotoxicity of glyphosate in adult zebrafish after waterborne exposure to environmentally relevant concentrations (0.3 and 3 μg/L) for two weeks. Our data showed that exposed fish presented a significant impairment of exploratory and social behaviors consistent with increased anxiety. The anterior brain of the exposed fish presented a significant increase in dopamine and serotonin levels, as well as in the DOPAC/dopamine and homovanillic acid/dopamine turnover ratios. Moreover, the expression of genes involved in the dopaminergic system, as th1, th2, comtb, and scl6a3 was downregulated. Finally, the brain of exposed fish presented a significant increase in the catalase and superoxide dismutase activities, with a concomitant decrease of glutathione stores. These changes in the antioxidant defense system are consistent with the observed increase in oxidative stress, reflected by the increase in the levels of lipid peroxidation in the brain. The presented results show that current glyphosate concentrations commonly found in many aquatic ecosystems may have detrimental consequences on fish survival by decreasing exploration of the environment or altering social interactions. Furthermore, as zebrafish is also a vertebrate model widely used in human neurobehavioral studies, these results are relevant not only for environmental risk assessment, but also for understanding the risk of chronic low-dose exposures on human health.This work was supported by the Spanish Government with FEDER Funds (CTM2017-83242-R; D.R.) and the network of recognized research groups by the Catalan Government (2017 SGR_902). J.B. was supported by a Spanish fellowship PRE2018-083513. Mention of spe- cific products or trade names does not indicate endorsement by the US federal government

    Dynamic Maize Responses to Aphid Feeding Are Revealed by a Time Series of Transcriptomic and Metabolomic Assays

    Get PDF
    As a response to insect attack, maize (Zea mays) has inducible defenses that involve large changes in gene expression and metabolism. Piercing/sucking insects such as corn leaf aphid (Rhopalosiphum maidis) cause direct damage by acquiring phloem nutrients as well as indirect damage through the transmission of plant viruses. To elucidate the metabolic processes and gene expression changes involved in maize responses to aphid attack, leaves of inbred line B73 were infested with corn leaf aphids for 2 to 96 h. Analysis of infested maize leaves showed two distinct response phases, with the most significant transcriptional and metabolic changes occurring in the first few hours after the initiation of aphid feeding. After 4 d, both gene expression and metabolite profiles of aphid-infested maize reverted to being more similar to those of control plants. Although there was a predominant effect of salicylic acid regulation, gene expression changes also indicated prolonged induction of oxylipins, although not necessarily jasmonic acid, in aphid-infested maize. The role of specific metabolic pathways was confirmed using Dissociator transposon insertions in maize inbred line W22. Mutations in three benzoxazinoid biosynthesis genes, Bx1, Bx2, and Bx6, increased aphid reproduction. In contrast, progeny production was greatly decreased by a transposon insertion in the single W22 homolog of the previously uncharacterized B73 terpene synthases TPS2 and TPS3. Together, these results show that maize leaves shift to implementation of physical and chemical defenses within hours after the initiation of aphid feeding and that the production of specific metabolites can have major effects in maize-aphid interactions.Peer reviewe
    • …
    corecore