97 research outputs found
The High Cadence Transit Survey (HiTS): Compilation and Characterization of Light-curve Catalogs
Indexación: Scopus.J.M. acknowledges support from CONICYT-Chile through CONICYT-PCHA/Doctorado-Nacional/2014-21140892. J.M., F.F., G.C.V., and G.M. acknowledge support from the Ministry of Economy, Development, and Tourism’s Millennium Science Initiative through grant IC120009, awarded to the Millennium Institute of Astrophysics (MAS). F.F. acknowledges support from Conicyt through the Fondecyt Initiation into Research project No. 11130228. J.M., F.F., J.S.M., G.C.V., and S.G. acknowledge support from Basal Project PFB-03, Centro de Modelamiento Matemáico (CMM), Universidad de Chile. P.L. acknowledges support by Fondecyt through project #1161184. G.C.V. gratefully acknowledges financial support from CON-ICYT-Chile through FONDECYT postdoctoral grant number 3160747 and CONICYT-Chile and NSF through the Programme of International Cooperation project DPI201400090. P.H. acknowledges support from FONDECYT through grant 1170305. L.G. was supported in part by the US National Science Foundation under grant AST-1311862. G.M. acknowledges support from Conicyt through CONICYT-PCHA/Magís-terNacional/2016-22162353. Support for T.d.J. has been provided by US NSF grant AST-1211916, the TABASGO Foundation, and Gary and Cynthia Bengier. R.R.M. acknowledges partial support from BASAL Project PFB-06, as well as FONDECYT project N◦1170364. Powered@NLHPC: this research was supported by the High Performance Computing infrastructure of the National Laboratory for High Performance Computing (NLHPC), PIA ECM-02, CONICYT. This project used data obtained with the Dark Energy Camera (DECam), which was constructed by the Dark Energy Survey (DES) collaborating institutions: Argonne National Lab, the University of California Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologi-cas-Madrid, the University of Chicago, University College London, the DES-Brazil consortium, the University of Edinburgh, ETH-Zurich, the University of Illinois at Urbana-Champaign, Institut de Ciencies de l’Espai, Institut de Fisica d’Altes Energies, Lawrence Berkeley National Lab, Ludwig-Maximilians Universitat, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Lab, Stanford University, the University of Sussex, and Texas A&M University. Funding for DES, including DECam, has been provided by the U.S. Department of Energy, National Science Foundation, Ministry of Education and Science (Spain), Science and Technology Facilities Council (UK), Higher Education Funding Council (England), National Center for Supercomputing Applications, Kavli Institute for Cosmological Physics, Financia-dora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo a Pesquisa, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência e Tecnologia (Brazil), the German Research Foundation-sponsored cluster of excellence “Origin and Structure of the universe,” and the DES collaborating institutions. Facility: CTIO:1.5 m (DECam).The High Cadence Transient Survey (HiTS) aims to discover and study transient objects with characteristic timescales between hours and days, such as pulsating, eclipsing, and exploding stars. This survey represents a unique laboratory to explore large etendue observations from cadences of about 0.1 days and test new computational tools for the analysis of large data. This work follows a fully data science approach, from the raw data to the analysis and classification of variable sources. We compile a catalog of ∼15 million object detections and a catalog of ∼2.5 million light curves classified by variability. The typical depth of the survey is 24.2, 24.3, 24.1, and 23.8 in the u, g, r, and i bands, respectively. We classified all point-like nonmoving sources by first extracting features from their light curves and then applying a random forest classifier. For the classification, we used a training set constructed using a combination of cross-matched catalogs, visual inspection, transfer/active learning, and data augmentation. The classification model consists of several random forest classifiers organized in a hierarchical scheme. The classifier accuracy estimated on a test set is approximately 97%. In the unlabeled data, 3485 sources were classified as variables, of which 1321 were classified as periodic. Among the periodic classes, we discovered with high confidence one δ Scuti, 39 eclipsing binaries, 48 rotational variables, and 90 RR Lyrae, and for the nonperiodic classes, we discovered one cataclysmic variable, 630 QSOs, and one supernova candidate. The first data release can be accessed in the project archive of HiTS (http://astro.cmm.uchile.cl/HiTS/). © 2018. The American Astronomical Society. All rights reserved.https://iopscience.iop.org/article/10.3847/1538-3881/aadfd
A lower limit on the dark particle mass from dSphs
We use dwarf spheroidal galaxies as a tool to attempt to put precise lower
limits on the mass of the dark matter particle, assuming it is a sterile
neutrino. We begin by making cored dark halo fits to the line of sight velocity
dispersions as a function of projected radius (taken from Walker et al. 2007)
for six of the Milky Way's dwarf spheroidal galaxies. We test Osipkov-Merritt
velocity anisotropy profiles, but find that no benefit is gained over constant
velocity anisotropy. In contrast to previous attempts, we do not assume any
relation between the stellar velocity dispersions and the dark matter ones, but
instead we solve directly for the sterile neutrino velocity dispersion at all
radii by using the equation of state for a partially degenerate neutrino gas
(which ensures hydrostatic equilibrium of the sterile neutrino halo). This
yields a 1:1 relation between the sterile neutrino density and velocity
dispersion, and therefore gives us an accurate estimate of the Tremaine-Gunn
limit at all radii. By varying the sterile neutrino particle mass, we locate
the minimum mass for all six dwarf spheroidals such that the Tremaine-Gunn
limit is not exceeded at any radius (in particular at the centre). We find
sizeable differences between the ranges of feasible sterile neutrino particle
mass for each dwarf, but interestingly there exists a small range 270-280eV
which is consistent with all dSphs at the 1- level.Comment: 13 pages, 2 figures, 1 tabl
Dark Matter signals from Draco and Willman 1: Prospects for MAGIC II and CTA
The next generation of ground-based Imaging Air Cherenkov Telescopes (IACTs)
will play an important role in indirect dark matter searches. In this article,
we consider two particularly promising candidate sources for dark matter
annihilation signals, the nearby dwarf galaxies Draco and Willman 1, and study
the prospects of detecting such a signal for the soon-operating MAGIC II
telescope system as well as for the planned installation of CTA, taking special
care of describing the experimental features that affect the detectional
prospects. For the first time in such a study, we fully take into account the
effect of internal bremsstrahlung, which has recently been shown to
considerably enhance, in some cases, the gamma-ray flux at the high energies
where Atmospheric Cherenkov Telescopes operate, thus leading to significantly
harder annihilation spectra than traditionally considered. While the detection
of the spectral features introduced by internal bremsstrahlung would constitute
a smoking gun signature for dark matter annihilation, we find that for most
models the overall flux still remains at a level that will be challenging to
detect unless one adopts rather (though by no means overly) optimistic
astrophysical assumptions about the distribution of dark matter in the dwarfs.Comment: 10 pages, 4 figures, minor changes, matches the published version
(JCAP
Participación comunitaria y procesos de comunicación en la implementación de programas de reasentamiento de familias dentro del contexto del desarrollo urbano en Barranquilla (Colombia)
Planning processes of development and growth of the city of Barranquilla have required the relocation of the population living in areas of intervention actions. As part of the implementation of the New Management Plan Territorial (POT), the city plans to revitalize an area around the Magdalena River with a view to improving the quality of life of citizens and to increase competitiveness of the city. The revitalization project is known as project “La Loma “. Under the current Land Use Plan of Barranquilla (POT), the urban development project “La Loma” includes, among other activities, the transfer of a large number of people currently living in this area. For this reason, this article aims to review the current POT and documents from City Council and the Mayor’s office associated with the POT and “La Loma” project, in order to identify and analyze the component of community participation and communication related to the implementation of this project. The results of the documents revealed the presence of regulatory elements associated with community participation. The results also showed potentially useful spaces for the implementation of inclusive communication processes. Therefore, this article proposes a guide for the formulation of a strategic communication plan with a focus on participatory communication and dialogue facilitator to be used during the execution of urban projects that include the relocation of families. © 2016, Universidad del Norte. All rights reserved
A lower bound on the mass of Dark Matter particles
We discuss the bounds on the mass of Dark Matter (DM) particles, coming from
the analysis of DM phase-space distribution in dwarf spheroidal galaxies
(dSphs). After reviewing the existing approaches, we choose two methods to
derive such a bound. The first one depends on the information about the current
phase space distribution of DM particles only, while the second one uses both
the initial and final distributions. We discuss the recent data on dSphs as
well as astronomical uncertainties in relevant parameters. As an application,
we present lower bounds on the mass of DM particles, coming from various dSphs,
using both methods. The model-independent bound holds for any type of fermionic
DM. Stronger, model-dependent bounds are quoted for several DM models (thermal
relics, non-resonantly and resonantly produced sterile neutrinos, etc.). The
latter bounds rely on the assumption that baryonic feedback cannot
significantly increase the maximum of a distribution function of DM particles.
For the scenario in which all the DM is made of sterile neutrinos produced via
non-resonant mixing with the active neutrinos (NRP) this gives m_nrp > 1.7 keV.
Combining these results in their most conservative form with the X-ray bounds
of DM decay lines, we conclude that the NRP scenario remains allowed in a very
narrow parameter window only. This conclusion is independent of the results of
the Lyman-alpha analysis. The DM model in which sterile neutrinos are
resonantly produced in the presence of lepton asymmetry remains viable. Within
the minimal neutrino extension of the Standard Model (the nuMSM), both mass and
the mixing angle of the DM sterile neutrino are bounded from above and below,
which suggests the possibility for its experimental search.Comment: 20 pages, published in JCA
Perfil esteroideo urinario tras la realización de una sesión de ejercicio concéntrico y otra concéntrico/excéntrico con similar carga de trabajo total
- …
