121 research outputs found

    Antimicrobial defenses of table eggs: Importance of antibacterial proteins in egg white as a function of hen age in an extended production cycle

    Get PDF
    The importance of egg natural defences to prevent bacterial contamination and their relation with hen age in extended production cycles were evaluated. Egg-white from eggs of different hen age groups (up 100-weeks-old) and lines (Hy-Line white and brown) were inoculated with Gram-positive Staphylococcus aureus or Gram-negative Salmonella Typhimurium, ranging from 103-106 CFU/mL. Our results show that concentrations of egg-white lysozyme and, particularly, ovotransferrin are important to modulate bacterial survival in a dose-dependent matter. Depending on protein concentration, their effect ranges from bactericidal to bacteriostatic, with a threshold for bacterial contamination that depends also on hen age and line. The concentrations of lysozyme and ovotransferrin increased with hen age (up to 2 and 22 w/w% of total protein, respectively), and eggs laid by older hens exhibited the greatest potential to prevent the growth of the highest Salmonella inoculum (106 CFU/ mL). Salmonella-penetration experiments demonstrated that non-contaminated eggs display significantly higher concentrations of antimicrobial proteins. However, eggs from older hens needed a higher concentration of these proteins (>20% ovotransferrin) to prevent bacterial contamination, showing that antimicrobial protein concentrations in egg-whites was not the only factor influencing bacterial contamination. Finally, this study demonstrated that egg-white of eggs produced by old hens are less prone to contamination by Salmonella.Spanish Government CGL 2015-64683-PPremio de Investigacion 2019 (Instituto del Huevo)Junta de Andalucia RNM-938Natural Sciences and Engineering Research Council of Canada (NSERC) RGPIN2022-0441

    Identification of Red Grapevine Cultivars (Vitis vinifera L.) Preserved in Ancient Vineyards in Axarquia (Andalusia, Spain)

    Get PDF
    A prospecting work at the Axarquia region (Malaga, Spain) was carried out in order to identify local red grapevine cultivars preserved in ancient vineyards. A total of 11 accessions were collected in seven different plots from four municipalities and analyzed using 25 microsatellite loci for cultivar identification. The accessions analyzed were identified as eight different genotypes, seven of them corresponding to known cultivars as 'Cabernet Sauvignon', 'Jaen Tinto', 'Molinera', 'Monastrell', 'Muscat of Alexandria', 'Parrel', and 'Rome'. In addition, one of them is referred to as the new genotype for 'Cabriel' cultivar. Additionally, an ampelographic characterization was carried out with 30 International Organisation of Vine and Wine (OIV) descriptors for two consecutive years for the eight accessions identified as local cultivars. This allowed the identification of a somatic variant of the 'Muscat of Alexandria' cultivar that affects the color of the berry and another of 'Rome' regarding bunch compactness

    Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone

    Get PDF
    El artĂ­culo original ha sido publicado por Chemosphere, de la Editorial Elsevier, disponible en: http://www.elsevier.com/wps/find/journaldescription.cws_home/362/description#description http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V74-4NF2NCX-1&_user=654849&_coverDate=08%2F31%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000035398&_version=1&_urlVersion=0&_userid=654849&md5=a44718f997b5057999cd6a5f100b7289&searchtype=aAlthough it has already been shown that calcareous stone can be consolidated by using a bacterially-inoculated culture media, a more user-friendly method is the in situ application of a sterile culture media that is able to activate, among the microbial community of the stone, those bacteria with a potential for calcium carbonate precipitation. In order to test this new method for stone consolidation, non-sterilized decayed porous limestone was immersed in sterile nutritional media. Results were compared to those of the runs in which stone sterilized prior to the treatment was used. The effects of the microbial community on stone consolidation were determined by recording the evolution of the culture media chemistry. The treated stones were tested for mechanical resistance and porosity. Results demonstrate that the tested media were able to activate bacteria from the microbial community of the stone. As a consequence of the growth of these bacteria, an alkalinization occurred that resulted in calcium carbonate precipitation. The new precipitate was compatible with the substrate and consolidated the stone without pore plugging. Therefore, a good candidate to in situ consolidate decayed porous limestone is the application of a sterile culture media with the characteristics specified in the present study.Proyectos MAT2005-03994, MAT2006-05411, CGL2004-03910 Grupo de InvestigaciĂłn de la Junta de AndalucĂ­a NMR 179, FQM 195 Departamento de MicrobiologĂ­a; Departamento de MineralogĂ­a y PetrologĂ­a (Universidad de Granada

    Motivation, satisfaction and achievement motivation: Are there really differences between Sciences and Humanities?

    Get PDF
    Tras tanta polĂ©mica entre "letras" y "ciencias" sobre cuĂĄl de los dos es mejor o mĂĄs difĂ­cil, se ha pretendido comprobar si existe algĂșn tipo de diferencia entre ambas especialidades en cuanto a motivaciĂłn, satisfacciĂłn o rendimiento; y a su vez, si existe algĂșn tipo de relaciĂłn entre estos tres constructos. Por lo tanto, participaron en el estudio una muestra de 120 alumnos de ambas ramas, obteniendo seis carreras diferentes con 20 alumnos en cada una. Los resultados no dieron ningĂșn valor significativo en cuanto a diferencias entre ambas especialidades, pero sĂ­ una correlaciĂłn entre motivaciĂłn y satisfacciĂłn.After so much controversy between "Humanities" and "Sciences" about which one is better or harder, we'd like to test if there are any differences between both specialties in terms of motivation, satisfaction and academic achievement; and at the same time, if there is some kind of relationship between these three constructs. Thus, participated a sample of 120 students of those two special i ties, from six different degrees, pi cking 20 st udents from each one . Results didn't provide any significant difference between both specialties, but did provide a correlation between motivation and satisfaction.ReiDoCrea. Departamento de PsicologĂ­a Social. Universidad de Granada

    Prognostic value of bioelectrical impedance analysis in head and neck cancer patients undergoing radiotherapy: a VALORÂź study

    Get PDF
    IntroductionBioelectrical impedance analysis (BIA) serves as a method to estimate body composition. Parameters such as phase angle (PA), standardized phase angle (SPA), body mass cell (BCM), BCM index (BCMI), and fat-free mass (FFM) might significantly impact the prognosis of head and neck cancer (HNC) patients. The present study aimed to investigate whether bioelectrical parameters can be used to predict survival in the HNC population and establish the optimal cutoff points for predictive accuracy.MethodsA multicenter observational study was performed across 12 tertiary hospitals in Andalusia (a region from the south of Spain). A total of 494 patients diagnosed with HNC between 2020 and 2022 at different stages were included in this study, with a minimum follow-up period of 12 months. The BIA assessment was carried out during the first 2 weeks of radical radiotherapy treatment with chemotherapy or other systemic treatments. A multivariate logistic regression analysis of overall survival, complications, hospital admission, and palliative care and its relationship with BIA nutritional assessment was performed.ResultsSignificant prognostic factors identified in the multivariable analysis encompassed phase angle (PA), standardized phase angle (SPA), body cell mass (BCM), and BCM index (BCMI). Lower PA and BCM values were significantly associated with adverse clinical outcomes. A BCM threshold above 17 kg/m2 was the most significant predictor for predicting survival within the overall HNC population. The PA values of <5.1° in male and <4.8° in female patients showed the best predictive potential for mortality. Increased PA (as a continuous variable) demonstrated a significantly reduced risk for mortality (OR, 0.64; 95% CI, 0.43–0.94; p < 0.05) and a decreased likelihood of hospital admission (OR, 0.75; 95% CI, 0.52–1.07; p < 0.05). Higher BCM correlated with a lower risk of mortality (OR, 0.88; 95% CI, 0.80–0.96; p < 0.01) and a diminished probability of hospital admission (OR, 0.91; 95% CI, 0.83–0.99; p < 0.05).ConclusionBIA is a crucial tool in the nutritional assessment of HNC patients. BCM and PA are the main bioelectrical parameters used to predict clinical outcomes in this population. Future studies are needed to validate BIA variables in a large cohort to ensure whether early intensification of nutritional treatment would improve survival

    Morphofunctional and Molecular Assessment of Nutritional Status in Head and Neck Cancer Patients Undergoing Systemic Treatment: Role of Inflammasome in Clinical Nutrition

    Get PDF
    Malnutrition in patients with head and neck cancer is frequent, multifactorial and widely associated with clinical evolution and prognosis. Accurate nutritional assessments allow for early identification of patients at risk of malnutrition in order to start nutritional support and prevent sarcopenia. We aimed to perform a novel morphofunctional nutritional evaluation and explore changes in inflammasome-machinery components in 45 patients with head and neck cancer who are undergoing systemic treatment. To this aim, an epidemiological/clinical/anthropometric/biochemical evaluation was performed. Serum RCP, IL6 and molecular expression of inflammasome-components and inflammatory-associated factors (NOD-like-receptors, inflammasome-activation-components, cytokines and inflammation/apoptosis-related components, cell-cycle and DNA-damage regulators) were evaluated in peripheral-blood mononuclear-cells (PBMCs). Clinical-molecular correlations/associations were analyzed. Coherent and complementary information was obtained in the morphofunctional nutritional assessment of the patients when bioimpedance, anthropometric and ultrasound data were analyzed. These factors were also correlated with different biochemical and molecular parameters, revealing the complementary aspect of the whole evaluation. Serum reactive C protein (RCP) and IL6 were the most reliable parameters for determining patients with decreased standardized phase angle, which is associated with increased mortality in patients with solid malignancies. Several inflammasome-components were dysregulated in patients with malnutrition, decreased phase angle and dependency grade or increased circulating inflammation markers. A molecular fingerprint based on gene-expression of certain inflammasome factors (p27/CCL2/ASC) in PBMCs accurately differentiated patients with and without malnutrition. In conclusion, malnutrition induces a profound alteration in the gene-expression pattern of inflammasome-machinery components in PBMCs. A comprehensive nutritional assessment including novel morphofunctional techniques and molecular markers allows a broad characterization of the nutritional status in cancer patients. Profile of certain inflammasome-components should be further studied as potential targets for nutrition-focused treatment strategies in cancer patients

    Investigation of metabolite-protein interactions by transient absorption spectroscopy and in silico methods

    Full text link
    [EN] Transient absorption spectroscopy in combination with in silico methods has been employed to study the interactions between human serum albumin (HSA) and the anti-psychotic agent chlorpromazine (CPZ) as well as its two demethylated metabolites (MCPZ and DCPZ). Thus, solutions containing CPZ, MCPZ or DCPZ and HSA (molar ligand:protein ratios between 1:0 and 1:3) were submitted to laser flash photolysis and the Delta A(max) value at lambda = 470 nm, corresponding to the triplet excited state, was monitored. In all cases, the protein-bound ligand exhibited higher Delta Amax values measured after the laser pulse and were also considerably longer-lived than the non-complexed forms. This is in agreement with an enhanced hydrophilicity of the metabolites, due to the replacement of methyl groups with H that led to a lower extent of protein binding. For the three compounds, laser flash photolysis displacement experiments using warfarin or ibuprofen indicated Sudlow site I as the main binding site. Docking and molecular dynamics simulation studies revealed that the binding mode of the two demethylated ligands with HSA would be remarkable different from CPZ, specially for DCPZ, which appears to come from the different ability of their terminal ammonium groups to stablish hydrogen bonding interactions with the negatively charged residues within the protein pocket (Glu153, Glu292) as well as to allocate the methyl groups in an apolar environment. DCPZ would be rotated 180 degrees in relation to CPZ locating the aromatic ring away from the Sudlow site I of HSA. (C) 2019 Elsevier B.V. All rights reserved.Financial support from Ministerio de Economia, Industria y Competitividad (CTQ2016-78875-P, SAF2016-75638-R, BES-2011-043706), Generalitat Valenciana (Prometeo 2017/075), Xunta de Galicia [Centro Singular de Investigacion de Galicia accreditation 2016-2019 (ED431G/09, ED431B 2018/04) and post-doctoral fellowship to E. L.] and European Union (European Regional Development Fund-ERDF) is gratefully acknowledged. I. A. holds a "Miguel Servet" contract (CP1116/00052) funded by the Carlos III Health Institute. We are grateful to the Centro de Supercomputacion de Galicia (CESGA) for computational facilities.Limones Herrero, D.; Palumbo, F.; Vendrell Criado, V.; Andreu Ros, MI.; Lence, E.; GonzĂĄlez-Bello, C.; Miranda Alonso, MÁ.... (2020). Investigation of metabolite-protein interactions by transient absorption spectroscopy and in silico methods. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy. 226:1-8. https://doi.org/10.1016/j.saa.2019.117652S18226Yang, G. X., Li, X., & Snyder, M. (2012). Investigating metabolite–protein interactions: An overview of available techniques. Methods, 57(4), 459-466. doi:10.1016/j.ymeth.2012.06.013S. Hage, D., Anguizola, J., Barnaby, O., Jackson, A., J. Yoo, M., Papastavros, E., 
 Tong, Z. (2011). Characterization of Drug Interactions with Serum Proteins by Using High-Performance Affinity Chromatography. Current Drug Metabolism, 12(4), 313-328. doi:10.2174/138920011795202938Matsuda, R., Bi, C., Anguizola, J., Sobansky, M., Rodriguez, E., Vargas Badilla, J., 
 Hage, D. S. (2014). Studies of metabolite–protein interactions: A review. Journal of Chromatography B, 966, 48-58. doi:10.1016/j.jchromb.2013.11.043LĂłpez-Muñoz, F., Alamo, C., cuenca, E., Shen, W., Clervoy, P., & Rubio, G. (2005). History of the Discovery and Clinical Introduction of Chlorpromazine. Annals of Clinical Psychiatry, 17(3), 113-135. doi:10.1080/10401230591002002Beckett, A. H., Beaven, M. A., & Robinson, A. E. (1963). Metabolism of chlorpromazine in humans. Biochemical Pharmacology, 12(8), 779-794. doi:10.1016/0006-2952(63)90108-4Chetty, M., Moodley, S. V., & Miller, R. (1994). Important Metabolites to Measure in Pharmacodynamic Studies of Chlorpromazine. Therapeutic Drug Monitoring, 16(1), 30-36. doi:10.1097/00007691-199402000-00004Hubbard, J. W., Midha, K. K., Hawes, E. M., McKAY, G., Marder, S. R., Aravagiri, M., & Korchinski, E. D. (1993). Metabolism of Phenothiazine and Butyrophenone Antipsychotic Drugs. British Journal of Psychiatry, 163(S22), 19-24. doi:10.1192/s0007125000292556GarcĂ­a, C., Oyola, R., Piñero, L. E., Arce, R., Silva, J., & SĂĄnchez, V. (2005). Substitution and Solvent Effects on the Photophysical Properties of Several Series of 10-Alkylated Phenothiazine Derivatives. The Journal of Physical Chemistry A, 109(15), 3360-3371. doi:10.1021/jp044530jNavaratnam, S., Parsons, B. J., Phillips, G. O., & Davies, A. K. (1978). Laser flash photolysis study of the photoionisation of chlorpromazine and promazine in solution. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 74(0), 1811. doi:10.1039/f19787401811Palumbo, F., Garcia-Lainez, G., Limones-Herrero, D., Coloma, M. D., Escobar, J., JimĂ©nez, M. C., 
 Andreu, I. (2016). Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites. Toxicology and Applied Pharmacology, 313, 131-137. doi:10.1016/j.taap.2016.10.024Garcia, C., Smith, G. A., McGimpsey, W. G., Kochevar, I. E., & Redmond, R. W. (1995). Mechanism and Solvent Dependence for Photoionization of Promazine and Chlorpromazine. Journal of the American Chemical Society, 117(44), 10871-10878. doi:10.1021/ja00149a010Nath, S., & Sapre, A. V. (2001). Photoinduced electron transfer from chloropromazine and promethazine to chloroalkanes accompanied by cleavage of C–Cl bond. Chemical Physics Letters, 344(1-2), 138-146. doi:10.1016/s0009-2614(01)00685-6Joshi, R., Ghanty, T. K., & Mukherjee, T. (2008). Reactions and structural investigation of chlorpromazine radical cation. Journal of Molecular Structure, 888(1-3), 401-408. doi:10.1016/j.molstruc.2008.01.025He, X. M., & Carter, D. C. (1992). Atomic structure and chemistry of human serum albumin. Nature, 358(6383), 209-215. doi:10.1038/358209a0Sharples, D. (1974). The binding of chlorpromazine to human serum albumin. Journal of Pharmacy and Pharmacology, 26(8), 640-641. doi:10.1111/j.2042-7158.1974.tb10679.xVerbeeck, R. K., Cardinal, J.-A., Hill, A. G., & Midha, K. K. (1983). Binding of phenothiazine neuroleptics to plasma proteins. Biochemical Pharmacology, 32(17), 2565-2570. doi:10.1016/0006-2952(83)90019-9Silva, D., Cortez, C. M., & Louro, S. R. W. (2004). Quenching of the intrinsic fluorescence of bovine serum albumin by chlorpromazine and hemin. Brazilian Journal of Medical and Biological Research, 37(7), 963-968. doi:10.1590/s0100-879x2004000700004LĂĄzaro, E., Lowe, P. J., Briand, X., & Faller, B. (2008). New Approach To Measure Protein Binding Based on a Parallel Artificial Membrane Assay and Human Serum Albumin. Journal of Medicinal Chemistry, 51(7), 2009-2017. doi:10.1021/jm7012826Kaddurah-Daouk, R., Kristal, B. S., & Weinshilboum, R. M. (2008). Metabolomics: A Global Biochemical Approach to Drug Response and Disease. Annual Review of Pharmacology and Toxicology, 48(1), 653-683. doi:10.1146/annurev.pharmtox.48.113006.094715Korkuć, P., & Walther, D. (2015). Physicochemical characteristics of structurally determined metabolite-protein and drug-protein binding events with respect to binding specificity. Frontiers in Molecular Biosciences, 2. doi:10.3389/fmolb.2015.00051Ohnmacht, C. M., Chen, S., Tong, Z., & Hage, D. S. (2006). Studies by biointeraction chromatography of binding by phenytoin metabolites to human serum albumin. Journal of Chromatography B, 836(1-2), 83-91. doi:10.1016/j.jchromb.2006.03.043Roelofs, K. G., Wang, J., Sintim, H. O., & Lee, V. T. (2011). Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions. Proceedings of the National Academy of Sciences, 108(37), 15528-15533. doi:10.1073/pnas.1018949108Jimenez, M., & Miranda, M. (2015). Triplet Excited States as a Source of Relevant (Bio)Chemical Information. Current Topics in Medicinal Chemistry, 14(23), 2734-2742. doi:10.2174/1568026614666141216100907JimĂ©nez, M. C., Miranda, M. A., & VayĂĄ, I. (2005). Triplet Excited States as Chiral Reporters for the Binding of Drugs to Transport Proteins. Journal of the American Chemical Society, 127(29), 10134-10135. doi:10.1021/ja0514489VayĂĄ, I., Bueno, C. J., JimĂ©nez, M. C., & Miranda, M. A. (2006). Use of Triplet Excited States for the Study of Drug Binding to Human and Bovine Serum Albumins. ChemMedChem, 1(9), 1015-1020. doi:10.1002/cmdc.200600061VayĂĄ, I., JimĂ©nez, M. C., & Miranda, M. A. (2008). Transient Absorption Spectroscopy for Determining Multiple Site Occupancy in Drug−Protein Conjugates. A Comparison between Human and Bovine Serum Albumins Using Flurbiprofen Methyl Ester as a Probe. The Journal of Physical Chemistry B, 112(9), 2694-2699. doi:10.1021/jp076960qPĂ©rez-Ruiz, R., Bueno, C. J., JimĂ©nez, M. C., & Miranda, M. A. (2010). In situ Transient Absorption Spectroscopy to Assess Competition between Serum Albumin and Alpha-1-Acid Glycoprotein for Drug Transport. The Journal of Physical Chemistry Letters, 1(5), 829-833. doi:10.1021/jz1000227Nuin, E., JimĂ©nez, M. C., Sastre, G., Andreu, I., & Miranda, M. A. (2013). Drug–Drug Interactions within Protein Cavities Probed by Triplet–Triplet Energy Transfer. The Journal of Physical Chemistry Letters, 4(10), 1603-1607. doi:10.1021/jz400640sAlonso, R., Yamaji, M., JimĂ©nez, M. C., & Miranda, M. A. (2010). Enhanced Photostability of the Anthracene Chromophore in Aqueous Medium upon Protein Encapsulation. The Journal of Physical Chemistry B, 114(34), 11363-11369. doi:10.1021/jp104900rAlonso, R., JimĂ©nez, M. C., & Miranda, M. A. (2011). Stereodifferentiation in the Compartmentalized Photooxidation of a Protein-Bound Anthracene. Organic Letters, 13(15), 3860-3863. doi:10.1021/ol201209hKitamura, K., Fujitani, K., Takahashi, K., Tanaka, Y., Hirako, S., Kotani, C., 
 Takegami, S. (2000). Synthesis of [N-13CH3] drugs (chlorpromazine, triflupromazine and promazine). Journal of Labelled Compounds and Radiopharmaceuticals, 43(9), 865-872. doi:10.1002/1099-1344(200008)43:93.0.co;2-eGhuman, J., Zunszain, P. A., Petitpas, I., Bhattacharya, A. A., Otagiri, M., & Curry, S. (2005). Structural Basis of the Drug-binding Specificity of Human Serum Albumin. Journal of Molecular Biology, 353(1), 38-52. doi:10.1016/j.jmb.2005.07.075PĂ©rez-Ruiz, R., Molins-Molina, O., Lence, E., GonzĂĄlez-Bello, C., Miranda, M. A., & JimĂ©nez, M. C. (2018). Photogeneration of Quinone Methides as Latent Electrophiles for Lysine Targeting. The Journal of Organic Chemistry, 83(21), 13019-13029. doi:10.1021/acs.joc.8b01559Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. Journal of Chemical Theory and Computation, 9(7), 3084-3095. doi:10.1021/ct400341

    Two‐photon detection of organotin Schiff base complexes in cancer cells

    Get PDF
    The early detection of cancer cells and their visualization before and after surgery are essential for successful pre‐ and post‐operative disease management. Although fluorescence imaging is a sensitive and versatile tool that is finding increasing use in clinical applications, there is a lack of tumour‐targeting fluorophores. We report here a family of fluorescent Schiff base organotin dyes (1: Et2N−L‐SnPh2, 2: Et2N−L‐SnBu2, 3: MeO−L‐SnPh2, 4: MeO−L‐SnBu2, 5: HO−L‐SnPh2, and 6: HO−L‐SnBu2, where L=2‐hydroxybenzylidene‐4‐hydroxybenzhydrazine). In addition to one‐photon‐excited fluorescence, efficient two‐photon excitation was demonstrated in compounds 1–4. Two of the compounds (5 and 6), both with hydroxyl substituents, were capable of selective accumulation in HeLa cells, allowing differentiation from normal cells (periodontal ligament cells). Compounds 1 and 3 showed excellent cancer cell staining (HeLa) using two‐photon bioimaging, which is promising for biomedicine applications
    • 

    corecore