10 research outputs found

    Can mima-like mounds be Vertisol relics (Far North Region of Cameroon, Chad Basin)?

    No full text
    Non-anthropogenic earth mounds, defined as mima-like mounds in this study, have recently been observed in non-carbonate watersheds along the Sudano-Sahelian belt in the Chad Basin. In the Diamare piedmont (northern Cameroon) they are particularly well developed within stream networks. In less eroded areas, they occur as whaleback, flattened morphologies, or even as buried features. All these shapes are composed of clay-rich sediment associated with high proportions of secondary carbonate nodules and Fesingle bondMn micro-nodules. Their soil structure is prismatic to massive and vertical cracks are observed locally. Grain-size distributions emphasize the clay-rich nature of the sediment, with average clay contents of 32% ± 12.8% (n = 186), which is significantly higher than the clay content in the adjacent sediments in the landscape (mean = 10% ± 4%, n = 21). Moreover, high proportions of smectite characterize the soil, with average contents of 34 ± 7% (n = 25). At the micro-scale, the groundmass has a cross-striated b-fabric, with embedded smooth subangular quartz and feldspar grains of the silt-size fraction. All the characteristics point to altered vertic properties in the clay-rich sediment composing the mima-like mounds. Mima-like mounds are thus interpreted as degraded Vertisols. Compared to present-day Vertisols occurring in the piedmont, mima-like mounds are located upstream. It is thus proposed that the Vertisol areas were more extensive during a former and wetter period than the present-day. Subsequent changing climatic conditions increased erosion, revealing the gilgai micro-relief by preferential erosion in micro-lows rather than in micro-highs. Mima-like mounds of the Chad Basin might thus result from pedogenesis combined with later erosion. These local processes can be inherited from regional climatic variations during the Late Pleistocene-Holocene and likely be related to the African Humid Period

    Agroforestry tree products (AFTPs): targeting poverty reduction and enhanced livelihoods

    Get PDF
    Agroforestry tree domestication emerged as a farmer-driven, market-led process in the early 1990s and became an international initiative. A participatory approach now supplements the more traditional aspects of tree improvement, and is seen as an important strategy towards the Millennium Development Goals of eradicating poverty and hunger, promoting social equity and environmental sustainability. Considerable progress has been made towards the domestication of indigenous fruits and nuts in many villages in Cameroon and Nigeria. Vegetatively-propagated cultivars based on a sound knowledge of 'ideotypes' derived from an understanding of the tree-to-tree variation in many commercially important traits are being developed by farmers. These are being integrated into polycultural farming systems, especially the cocoa agroforests. Markets for Agroforestry Tree Products (AFTPs) are crucial for the adoption of agroforestry on a scale to have meaningful economic, social and environmental impacts. Important lessons have been learned in southern Africa from detailed studies of the commercialisation of AFTPs. These provide support for the wider acceptance of the role of domesticating indigenous trees in the promotion of enhanced livelihoods for poor farmers in the tropics. Policy guidelines have been developed in support of this sustainable rural development as an alternative strategy to those proposed in many other major development and conservation fora. <br/

    Indole-3-butyric acid accelerates adventitious root formation and impedes shoot growth of Pinus elliottii var. elliottii × P. caribaea var. hondurensis cuttings

    No full text
    Many plantation tree species are cloned to achieve the growth, disease resistance and wood quality characteristics required for a successful economic venture. However, clonal propagation is limited by declines in adventitious root formation with increasing stock plant age. We examined the effects of immediate or delayed IBA application on adventitious root formation and subsequent root and shoot development of cuttings harvested from 8-year-old clonal hedge plants of Pinus elliottii var. elliottii × P. caribaea var. hondurensis. IBA applied at the time of setting accelerated root formation, elevating the percentage of cuttings with roots at 13 weeks post-setting from 45 to 78% and from 83 to 93% for a low- and a high-rooting clone, respectively. Final rooting percentages for the same treatments and clones (78 and 85%, and 88 and 100%, respectively, at 20 weeks post-setting) were not significantly affected by IBA application. IBA increased the root:shoot ratio of rooted cuttings by decreasing shoot weight compared with untreated cuttings, without affecting root weight, root length, root surface area or root volume. IBA was only effective when applied at the time of setting. A simple IBA treatment for cuttings from 8-year-old clonal hedges, by accelerating root production, has potential for reducing nursery costs and increasing the root system quality of containerised pine cuttings. © 2010 Springer Science+Business Media B.V
    corecore