131 research outputs found

    Challenging the "chromatin hypothesis" of cardiac laminopathies with LMNA mutant iPS cells

    Get PDF
    Lamins A and C are intermediate filaments that provide structural support to the nuclear envelope and regulate gene expression. In this issue, Bertero et al. (2019. J. Cell Biol. https://doi.org/10.1083/jcb.201902117) report that although lamin A/C haploinsufficient cardiomyocytes show disease-associated phenotypes, those changes cannot be explained by alterations in chromatin compartmentalization

    Data-driven analysis of regional brain metabolism in behavioral frontotemporal dementia and late-onset primary psychiatric diseases with frontal lobe syndrome: A PET/MRI study

    Get PDF
    Late-onset primary psychiatric disease (PPD) and behavioral frontotemporal dementia (bvFTD) present with a similar frontal lobe syndrome. We compare brain glucose metabolism in bvFTD and late-onset PPD and investigate the metabolic correlates of cognitive and behavioral disturbances through FDG-PET/MRI. We studied 37 bvFTD and 20 late-onset PPD with a mean clinical follow-up of three years. At baseline evaluation, metabolism of the dorsolateral, ventrolateral, orbitofrontal regions and caudate could classify the patients with a diagnostic accuracy of 91% (95% CI: 0.81–0.98%). 45% of PPD showed low-grade hypometabolism in the anterior cingulate and/or parietal regions. Frontal lobe metabolism was normal in 32% of genetic bvFTD and bvFTD with motor neuron signs. Hypometabolism of the frontal and caudate regions could help in distinguishing bvFTD from PPD, except in cases with motor neuron signs and/or genetic bvFTD for which brain metabolism may be less informative

    Impact of Lewy bodies disease on visual skills and memory abilities: from prodromal stages to dementia

    Get PDF
    Dementia with Lewy bodies (DLB) and its prodromal presentation with mild cognitive impairment is characterized by prominent deficits in attention/executive domains and in visual processing abilities with relative sparing of memory. Neuropsychological research is continuously refining the tools to define more in detail the patterns of relatively preserved and impaired cognitive abilities that help differential diagnosis between DLB and Alzheimer disease (AD). This review summarizes the main studies exploring specific cognitive tasks investigating different visual processing abilities and verbal memory that better differentiate DLB from AD. The findings provide evidence that substantial impairments in visual-spatial and visual-constructional abilities and relatively better performance on memory tasks that depend on hippocampal function characterize the prodromal stage of DLB. The ability to detect early indicators of prodromal DLB through clinical and cognitive assessments is the first step to guide instrumental diagnostic work-ups and provide the opportunity for early intervention.Open Access funding provided by Università degli Studi di Padova | University of Padua, Open Science Committee. Acknowledgements: CB is supported by a liberal donation by Fondazione Leo Pavan. AV and MM are supported by funding obtained under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.3 - Call for tender No. 341 of 15/03/2022 of Italian Ministry of University and Research funded by the European Union – NextGenerationEU, Project code PE0000006, Concession Decree No. 1553 of 11/10/2022 adopted by the Italian Ministry of University and Research, CUP D93C22000930002, “A multiscale integrated approach to the study of the nervous system in health and disease” (MNESYS). MM acknowledges the support by funding from the Italian Ministry of Health (#GR-2019-12369242)

    Statins interfere with the attachment of S. cerevisiae mtDNA to the inner mitochondrial membrane

    Get PDF
    The 3-hydroxy-3-methylglutaryl-CoA reductase, a key enzyme of the mevalonate pathway for the synthesis of cholesterol in mammals (ergosterol in fungi), is inhibited by statins, a class of cholesterol lowering drugs. Indeed, statins are in a wide medical use, yet statins treatment could induce side effects as hepatotoxicity and myopathy in patients. We used Saccharomyces cerevisiae as a model to investigate the effects of statins on mitochondria. We demonstrate that statins are active in S.cerevisiae by lowering the ergosterol content in cells and interfering with the attachment of mitochondrial DNA to the inner mitochondrial membrane. Experiments on murine myoblasts confirmed these results in mammals. We propose that the instability of mitochondrial DNA is an early indirect target of statins

    Lamin A/C sustains PcG protein architecture, maintaining transcriptional repression at target genes

    Get PDF
    Beyond its role in providing structure to the nuclear envelope, lamin A/C is involved in transcriptional regulation. However, its cross talk with epigenetic factors-and how this cross talk influences physiological processes-is still unexplored. Key epigenetic regulators of development and differentiation are the Polycomb group (PcG) of proteins, organized in the nucleus as microscopically visible foci. Here, we show that lamin A/C is evolutionarily required for correct PcG protein nuclear compartmentalization. Confocal microscopy supported by new algorithms for image analysis reveals that lamin A/C knock-down leads to PcG protein foci disassembly and PcG protein dispersion. This causes detachment from chromatin and defects in PcG protein-mediated higher-order structures, thereby leading to impaired PcG protein repressive functions. Using myogenic differentiation as a model, we found that reduced levels of lamin A/C at the onset of differentiation led to an anticipation of the myogenic program because of an alteration of PcG protein-mediated transcriptional repression. Collectively, our results indicate that lamin A/C can modulate transcription through the regulation of PcG protein epigenetic factors

    Haploinsufficiency of EHMT1 improves pattern separation and increases hippocampal cell proliferation

    Get PDF
    Contains fulltext : 169681.pdf (publisher's version ) (Open Access)Heterozygous mutations or deletions of the human Euchromatin Histone Methyltransferase 1 (EHMT1) gene are the main causes of Kleefstra syndrome, a neurodevelopmental disorder that is characterized by impaired memory, autistic features and mostly severe intellectual disability. Previously, Ehmt1+/- heterozygous knockout mice were found to exhibit cranial abnormalities and decreased sociability, phenotypes similar to those observed in Kleefstra syndrome patients. In addition, Ehmt1+/- knockout mice were impaired at fear extinction and novel- and spatial object recognition. In this study, Ehmt1+/- and wild-type mice were tested on several cognitive tests in a touchscreen-equipped operant chamber to further investigate the nature of learning and memory changes. Performance of Ehmt1+/- mice in the Visual Discrimination &Reversal learning, object-location Paired-Associates learning- and Extinction learning tasks was found to be unimpaired. Remarkably, Ehmt1+/- mice showed enhanced performance on the Location Discrimination test of pattern separation. In line with improved Location Discrimination ability, an increase in BrdU-labelled cells in the subgranular zone of the dentate gyrus was observed. In conclusion, reduced levels of EHMT1 protein in Ehmt1+/- mice does not result in general learning deficits in a touchscreen-based battery, but leads to increased adult cell proliferation in the hippocampus and enhanced pattern separation ability

    Muscular dystrophy in the mdx mouse is a severe myopathy compounded by hypotrophy, hypertrophy and hyperplasia

    Get PDF
    Background Preclinical testing of potential therapies for Duchenne muscular dystrophy (DMD) is conducted predominantly of the mdx mouse. But lack of a detailed quantitative description of the pathology of this animal limits our ability to evaluate the effectiveness of putative therapies or their relevance to DMD. Methods Accordingly, we have measured the main cellular components of muscle growth and regeneration over the period of postnatal growth and early pathology in mdx and wild-type (WT) mice; phalloidin binding is used as a measure of fibre size, myonuclear counts and BrdU labelling as records of myogenic activity. Results We confirm a two-phase postnatal growth pattern in WT muscle: first, increase in myonuclear number over weeks 1 to 3, then expansion of myonuclear domain. Mdx muscle growth lags behind that of WT prior to overt signs of pathology. Fibres are smaller, with fewer myonuclei and smaller myonuclear domains. Moreover, satellite cells are more readily detached from mdx than WT muscle fibres. At 3 weeks, mdx muscles enter a phase of florid myonecrosis, accompanied by concurrent regeneration of an intensity that results in complete replacement of pre-existing muscle over the succeeding 3 to 4 weeks. Both WT and mdx muscles attain maximum size by 12 to 14 weeks, mdx muscle fibres being up to 50% larger than those of WT as they become increasingly branched. Mdx muscle fibres also become hypernucleated, containing twice as many myonuclei per sarcoplasmic volume, as those of WT, the excess corresponding to the number of centrally placed myonuclei. Conclusions The best-known consequence of lack of dystrophin that is common to DMD and the mdx mouse is the conspicuous necrosis and regeneration of muscle fibres. We present protocols for measuring this in terms both of loss of muscle nuclei previously labelled with BrdU and of the intensity of myonuclear labelling with BrdU administered during the regeneration period. Both measurements can be used to assess the efficacy of putative antinecrotic agents. We also show that lack of dystrophin is associated with a number of previously unsuspected abnormalities of muscle fibre structure and function that do not appear to be directly associated with myonecrosis

    Behavioral and psychological effects of coronavirus disease-19 quarantine in patients with dementia

    Get PDF
    Background: In March 2020, the World Health Organization declared a global pandemic due to the novel coronavirus SARS-CoV-2 and several governments planned a national quarantine in order to control the virus spread. Acute psychological effects of quarantine in frail elderly subjects with special needs, such as patients with dementia, have been poorly investigated. The aim of this study was to assess modifications of neuropsychiatric symptoms during quarantine in patients with dementia and their caregivers. Methods: This is a sub-study of a multicenter nation-wide survey. A structured telephone interview was delivered to family caregivers of patients with diagnosis of Alzheimer disease (AD), dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), and vascular dementia (VD), followed regularly at 87 Italian memory clinics. Variations in behavioral and psychological symptoms (BPSD) were collected after 1 month since quarantine declaration and associations with disease type, severity, gender, and caregiver\u2019s stress burden were analyzed. Results: A total of 4,913 caregivers participated in the survey. Increased BPSD was reported in 59.6% of patients as worsening of preexisting symptoms (51.9%) or as new onset (26%), and requested drug modifications in 27.6% of these cases. Irritability, apathy, agitation, and anxiety were the most frequently reported worsening symptoms and sleep disorder and irritability the most frequent new symptoms. Profile of BPSD varied according to dementia type, disease severity, and patients\u2019 gender. Anxiety and depression were associated with a diagnosis of AD (OR 1.35, CI: 1.12\u20131.62), mild to moderate disease severity and female gender. DLB was significantly associated with a higher risk of worsening hallucinations (OR 5.29, CI 3.66\u20137.64) and sleep disorder (OR 1.69, CI 1.25\u20132.29), FTD with wandering (OR 1.62, CI 1.12\u20132.35), and change of appetite (OR 1.52, CI 1.03\u20132.25). Stress-related symptoms were experienced by two-thirds of caregivers and were associated with increased patients\u2019 neuropsychiatric burden (p<0.0001). Conclusion: Quarantine induces a rapid increase of BPSD in approximately 60% of patients and stress-related symptoms in two-thirds of caregivers. Health services need to plan a post-pandemic strategy in order to address these emerging needs

    Behavioral and psychological effects of coronavirus disease-19 quarantine in patients with dementia

    Get PDF
    corecore