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Summary 

Skeletal muscle regeneration is mainly enabled by a population of adult stem cells known 

as satellite cells. Satellite cells have been shown to be indispensable for adult skeletal 

muscle repair and regeneration. In the last two decades, other stem/progenitor cell 

populations resident in the skeletal muscle interstitium have been identified as 

“collaborators” of satellite cells during regeneration. They also appear to have a key role in 

replacing skeletal muscle with adipose, fibrous or bone tissue in pathological conditions. 

Here, we review the role and known functions of these different interstitial skeletal muscle 

cell types and discuss their role in skeletal muscle tissue homeostasis, regeneration and 

disease, including their therapeutic potential for cell transplantation protocols.  
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Introduction 

The primary role of skeletal muscle is to generate movement, maintain posture and 

support soft tissues, contributing also to body metabolism and temperature control. Muscle 

contraction and force generation is mediated by the interaction of actin and myosin 

proteins within the complex sarcomere unit. Aligned sarcomeres units make myofibrils, 

bundles of which span the length of each muscle fibre (myofibre). In turn, numerous 

bundles of myofibres make up each muscle [1]. These multinucleated, syncytial cells are 

formed during the process of myogenesis [2]. However, as myofibre nuclei are post-mitotic 

they are unable to contribute to growth and repair [3].  

It is generally accepted that satellite cells, a population of muscle stem cells that 

reside beneath the basal lamina of myofibres, are responsible for the regenerative 

capacity of adult skeletal muscle. Satellite cells are a heterogeneous group of stem cells of 

embryonic somitic origin that normally reside in a quiescent state until activated by 

damage or growth signals [4-6]. The vast majority of mammalian satellite cells can be 

identified by expression of the paired-box transcription factor Pax7, which is satellite cell-

specific in skeletal muscle. Many other proteins mark the majority of satellite cells, 

including Integrin-α7, M-Cadherin, Caveolin-1, CD56/NCAM, CD29/Integrin-β1, Syndecan 

3 and 4 (reviewed in [4,7,8]). However, these markers are also expressed by other 

populations of cells within the muscle tissue, so they should be used in combination to 

ensure specificity (Table 1). Once activated, satellite cells undergo defined 

proliferation/differentiation or self-renewal processes to contribute either to tissue repair or 

replenishment of their stem cell pool [9-11].  

Other stem/progenitor cell populations present in the adult skeletal muscle (Figure 

1) have been identified as capable to contribute to or to modulate muscle regeneration. 

The role of these populations in normal muscle homeostasis and function is still under 
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investigation, although some populations, including pericytes/mesoangioblasts, Pw1+ 

cells, and CD133+ cells hold special interest as therapeutically useful cell types to 

substitute satellite cells in clinical applications, such as stem cell transplantation. Other 

populations, referred here as mesenchymal progenitors have been investigated as 

pharmacological targets for tissue remodelling.  

Here, we provide an overview and discuss the role and known functions of these 

non-satellite cells residing in adult skeletal muscle, focusing on studies published in the 

last decade. Additional information on other cell populations (e.g. muscle resident “side 

population”) can be found in Table 1. We direct the reader to other review articles for a 

more comprehensive analysis of developmental origins of muscle stem cells, molecular 

networks, functions and use in cell-based therapies [4,8,12-18]. We define satellite cells as 

a Pax7+ cells located underneath the basal lamina, and interstitial cells as those resident 

between myofibres and outside their basal lamina. This will help to distinguish satellite 

cells from occasional Pax7+ cells in the muscle interstitium, which could either be separate 

interstitial stem cell populations or satellite cells trapped outside the basal lamina following 

myofibre remodelling (Paolo Bianco, personal communication). 

 

Pericytes and mesoangioblasts  

Pericytes are a heterogeneous group of contractile cells which encircle the endothelium of 

micro-vessels, first described by Rouget in 1873 [19]. Present in all vascularised tissues, 

pericytes regulate blood vessel growth, homeostasis and permeability, in addition to other 

tissue-specific roles (reviewed in [14]). In skeletal muscle, blood vessels run adjacent to 

myofibres resulting in the close association and likely cross-talk between pericytes and 

satellite cells [20-22]. Indeed, pericytes have been shown to regulate post-natal 

myogenesis and satellite cell quiescence [23]. At rest, pericytes are embedded within the 
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vascular basement membrane, which separates them from other periendothelial 

mesenchymal cells [14,22].  

A major limitation in the study of muscle pericytes is the lack of a specific marker to 

distinguish them from other satellite and non-satellite cell populations (reviewed in [12,14]). 

Therefore, they are mainly defined by their anatomical location and by the combined 

expression of multiple genes. Additionally, expression of accepted pericyte markers differs 

between species, cellular subpopulations and developmental stage [14,21,24,25]. 

Furthermore, not all muscle pericytes have the potential to contribute to skeletal 

myogenesis. The subpopulation of pericytes with skeletal myogenic capacity can be 

distinguished in vivo by expression of tissue non-specific alkaline phosphatase (TNAP) in 

murine and human muscle [21,26]. Skeletal muscle pericytes/perivascular cells with 

myogenic potential can also be identified by the expression of CD146 ([27] and Paolo 

Bianco and Mara Riminucci, personal communication) or Nestin [24], although Nestin is 

also expressed in satellite cells [28]. The extent to which these three populations overlap is 

currently unknown. Interestingly, a recent report has confirmed that human pericytes 

isolated from skeletal and smooth muscle tissues are functionally different, and that only 

the pericytes isolated from skeletal muscle are able to contribute to skeletal muscle 

regeneration [29]. 

Mesoangioblast is a term for vessel-associated mesodermal stem/progenitor cells 

expanded in vitro, initially utilised for cells isolated from the murine embryonic dorsal aorta 

[30]. Mesoangioblast markers depend on the stage of development at which they are 

isolated; embryonic mesoangioblasts deriving from the dorsal aorta express mostly 

endothelial markers such as VE-cadherin and CD34 [31,32]. Cells similar to embryonic 

mesoangioblasts can be derived from adult skeletal muscle pericytes, expressing varying 

degrees of pericyte markers such as neuro-glial 2 proteoglycan (NG2), platelet-derived 
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growth factors receptor beta (PDGFR-β), alpha smooth-muscle actin (αSMA), desmin and, 

most importantly, TNAP, whilst being negative for endothelial and myogenic makers 

[14,21,24-26]. Mesoangioblasts also express Pw1 (see below), which was shown to be 

essential for proper stem cell function [33]. To simplify relationships with specific resident 

skeletal muscle cells, mesoangioblasts are considered as the activated progeny of 

pericytes in the same way that myoblasts are the activated progeny of satellite cells 

(Figure 1).  

Although myogenic pericytes may have a lower myogenic capacity than myoblasts, 

their advantageous traits of expansion, migration and extravasation upon intra-arterial 

delivery in dystrophic models [21,25,34-37] make them suitable candidates for cell 

therapies of muscle disorders. Additionally, activated mesoangioblasts can self-renew or 

migrate under the basal lamina and contribute to the satellite cell pool during skeletal 

muscle growth, chronic and acute muscle regeneration [25,26,35,38]. Importantly, Pax7+ 

cells are also found when expanded mesoangioblasts are transplanted. Notably, a first-in-

human phase I/II clinical trial based upon intra-arterial delivery of pericyte-derived 

mesoangioblasts in five boys with Duchenne muscular dystrophy was recently completed 

[39]. The study showed a good safety profile (one adverse event with no clinical sequelae) 

and functional parameters were transiently stabilised in two out of three ambulant patients. 

Although donor-derived dystrophin was detected in one patient, several aspects of the 

current protocol will need optimization in order to reach clinical efficacy. Examples of future 

improvements may include: 1) enrolment of younger children; 2) increase of cell dose (e.g. 

by means of iPS cell-derived progenitors) [40]; 3) modulation of inflammation [41,42]; 4) 

enhanced engraftment or differentiation by acting on properties of donor cells [43,44] or 

recipient patients [37]. 

Finally, several recent publications have implicated a role for pericytes in fibro-
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adipose infiltration of tissues (reviewed in [45]. In muscle, some pericytes may be 

precursors of myofibroblasts, interstitial cells which regulate fibrosis. Indeed, Birbair and 

colleagues have shown that type 1 non-myogenic pericytes contribute to fatty-fibrotic 

accumulation in aged and regenerating muscle [24,46]. Therefore, pericyte-based 

therapies should focus on promoting myogenic differentiation whilst repressing 

adipo/fibrotic differentiation. 

 

Fibro-adipogenic / mesenchymal progenitors 

Other resident muscle interstitial progenitor populations may have increased propensity to 

differentiate towards non-myogenic cell types. One such population has been identified 

upon expression of PDGFR-α, CD34 and stem cells antigen-1 (Sca1). Initial reports, 

based on in vitro experiments, showed that these cells could be an important source of 

pro-differentiation signals for myoblasts during the process of muscle regeneration and 

that were able to differentiate into myofibroblasts and/or adipose cells [47,48]. 

Consequently, they were named fibro/adipogenic progenitors (FAPs) or mesenchymal 

progenitors (MPs). Recent reports have demonstrated that these cells are also capable of 

osteogenic and chondrogenic differentiation in vivo [49], therefore we will refer to these 

cells using the more general term “mesenchymal progenitors” (Figure 1). However, they 

should not be confused with “mesenchymal stem cells”, whose markers and properties are 

still a matter of active discussion [50]. We apologise to the reader for the oversimplification 

of the model (and the possible occasional inappropriate nomenclature) and redirect them 

to excellent reviews that clarify terminology and lineage relationships of mesenchymal 

stem/progenitor cells in other mesodermal tissues [50,51].  

It has been shown that during acute muscle injury, these mesenchymal progenitors 

activate, rapidly expand and then disappear [47,48,52]. Once activated, they have been 
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shown to interact with satellite cells and with the regenerating muscle environment, 

promoting satellite cell differentiation and myofibre formation [47,48]. However, it was 

recently shown that upon ageing, mesenchymal progenitors have a deleterious effect on 

satellite cell function, repressing satellite cell myogenesis [53]. Moreover, epigenetic 

reprograming of mesenchymal progenitors by treatment with HDAC inhibitors has been 

shown to drive them toward a myogenic lineage and improve regeneration of dystrophic 

mice [54], opening a therapeutic avenue for these progenitors. Interestingly, mesenchymal 

progenitors have been isolated from human muscles [55] and demonstrated to contribute 

to adipocyte formation [56]. 

The expansion of resident mesenchymal progenitors has been shown to be 

mediated by the cytokine Interleukin 4 (IL-4), produced by eosinophils during the early 

phases of regeneration [57]. Also, a recent report from Rossi lab has demonstrated that 

pro-inflammatory cytokines (i.e. tumour necrosis factor, TNF) produced by the first wave of 

infiltrating macrophages induces apoptosis of mesenchymal progenitors. During chronic 

injury, where pro-inflammatory and anti-inflammatory macrophage populations coexist 

[58], changes in the cytokine milieu (i.e. higher levels of transforming growth factor β1, 

TGFβ1), prevent the apoptosis of mesenchymal progenitors and induces their 

differentiation into persistent matrix-producing cells [52]. The cytokine combination to 

induce adipogenic differentiation remains to be determined, although certain types of injury 

(with different inflammatory response and therefore different cytokine environment) can 

highly increase differentiation to the adipogenic lineage [48]. Lemos and colleagues 

findings are in line with a previous report demonstrating that a subpopulation of 

mesenchymal progenitors expressing the metalloproteinase ADAM12, is one of the major 

sources of fibrotic tissue accumulation after muscle damage [59]. This subpopulation of 

mesenchymal progenitors rapidly differentiates into myofibroblasts upon TGFβ1 

stimulation and it may represent a more committed fibrogenic-progenitor. Interestingly, 
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ADAM12+ mesenchymal progenitors share features with pericytes, being associated with 

blood vessel walls and expressing NG2, a marker of pericytes [59].  

Muscle-resident fibroblasts are the cell population classically thought to be 

responsible for extracellular matrix remodelling and accumulation of fibrosis in pathological 

conditions such as muscular dystrophies. However, they also support healthy myogenesis, 

as ablation of transcription factor 4 (Tcf4)-positive muscle fibroblasts has been shown to 

impair muscle regeneration through premature differentiation of satellite cells and 

reduction of the satellite cell pool [60]. Interestingly, Tcf4 is expressed by both fibroblasts 

and mesenchymal progenitors, making it difficult to decipher the individual roles of each 

cell type using current experimental strategies. Specifically, whether some of the functions 

currently accounted to fibroblasts may be in fact performed by different populations of 

mesenchymal progenitors (and vice versa). Additionally, in chronic injury models, resident 

myoblasts, endothelial and hematopoietic cells have been shown to trans-differentiate into 

fibroblastic cells, advancing dystrophic pathology [60,61], with a mechanism of 

transdifferentiation that occurs through an intermediate mesenchymal stem cell step [61]. 

Therefore, the definition of which cells are fibroblast or mesenchymal progenitors and their 

origin may be even more difficult than expected. 

Besides their role during muscle regeneration and chronic pathologies, resident 

mesenchymal progenitors may have a role in skeletal muscle homeostasis. They secrete a 

number of Wnt ligands and myokines such as IL-6 [47,48,52]. Moreover, it has been 

demonstrated that interstitial mesenchymal cells are the main producers of collagen VI in 

resting muscle [62]. Collagen VI fibres are abundant in the endomysium of skeletal muscle 

and are a regular component of the satellite cell niche [63]. Mutations in collagen VI 

encoding genes cause several diseases associated with muscle weakness in humans 

[64,65], and collagen VI deficient mice show myofibre degeneration, reduced strength and 
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deficient satellite cell self-renewal [63,66-68]. Interestingly, mesenchymal progenitors of 

synovial origin secreted collagen VI when engrafted into muscle [69], indicating that this 

may be one of the functions of muscle-resident mesenchymal progenitors. 

 

PW1+ interstitial cells  

In 2010, Mitchell et al. isolated a Pax7- non-satellite cell muscle-resident population 

located in the skeletal muscle interstitial space and capable of myogenic differentiation 

[18,70]. Apart from their location, these cells are characterised by the expression of the 

PW1/paternally expressed gene 3 (Peg3), and were named as PICs (PW1+ interstitial 

cells). In addition, PICs were mostly Sca1+ and CD34+. Lineage tracing experiments 

demonstrated that PICs do not share the same embryonic origin of satellite cells, and have 

increased potency, since they are capable to generate smooth and skeletal muscle cells 

and adipocytes [70].  

Interestingly, satellite cells and mesoangioblasts also express PW1 [32,33,70]. Another 

report using a PW1 reporter mouse demonstrated that the combination of PW1, Sca1 and 

PDGFRα markers may be used to separate all the different stem cell populations in 

skeletal muscle [71]. Using this isolation strategy, the PW1+/Sca1+/PDGFRα+ cells are 

the most abundant subpopulation and comprise the totality of the fibro-adipogenic 

mesenchymal progenitors with pro-adipogenic potential. Interestingly, this population is 

similar to the recently described resident brown adipocyte progenitors in the skeletal 

muscle which were isolated also with the Sca1 marker [72]. PW1-/Sca1+ cells were also 

functionally similar to the FAPs/MPs, though just with pro-fibrotic potential. In the referred 

study, this is the only cell subpopulation having a fibroblastic fate. It is therefore tempting 

to propose that fibro-adipogenic mesenchymal progenitors may be a heterogeneous 

population of muscle-resident Sca1+ cells that upon pro-fibrotic environmental cues (e.g. 
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TGFβ) will turn into fibroblastic cells, or upon still poorly characterised signals, will acquire 

PW1 expression and become adipogenic. The PW1+/Sca1+/PDGFRα- population 

comprises a small group of cells with myogenic potential but negative for Pax7, defined by 

the authors as “non- satellite cell progenitors with myogenic potential”, although they hold 

some pro-adipogenic potential in vitro. These cells may account for the Sca1+ primary 

myoblast subpopulations described in some reports in the early 2000s [73-77]. Finally, the 

PW1+/Sca1-/PDGFRα- subpopulation included Pax7+ satellite cells and Pax7- cells which 

were positive for adult myogenic pericyte markers (e.g. NG2+/PDGFRβ+/Myf5-). 

Interestingly, PW1 is expressed in pericyte-derived mouse and human mesoangioblasts, 

where it regulates their myogenic ability and migration capacity [33].  

 

CD133+ cells 

CD133 (Prominin 1) was identified as a surface marker of both neural and haematopoietic 

stem and progenitor cells [78], and its expression has been used to characterise a 

population of human blood and muscle-derived myogenic stem cells. A small fraction of 

adult peripheral blood cells expressing CD133 was initially shown to display myogenic 

potential [79]. Muscle-resident human CD133+ cells are found both in the muscle 

interstitium and underneath the basal lamina of myofibers, co-expressing Pax7 [80]. When 

expanded in vitro, CD133+ preparations contained a heterogeneous population of cells 

expressing myoblast, pericyte and mesenchymal genes [80,81]. Additionally, expression of 

CD133 is unstable in culture and influenced by culture media; a thorough expression 

analysis has not been performed on freshly isolated cells due to their rarity [80-82]. When 

injected intramuscularly, human CD133+ cells effectively engraft in the muscle and 

contribute to myogenesis with a proportion entering the satellite cell compartment [80-82]. 

Transplanted human CD133+/Pax7+ cells are functional, and capable of regenerating 
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mouse muscle following injury [80]. Taken together, the variability of genes and anatomical 

location implies that CD133-positivity may distinguish a heterogeneous set of stem cells 

with high myogenic capacity. This makes them an interesting candidate for cellular 

therapies and indeed they were tested in a pilot, phase I autologous clinical study for 

Duchenne muscular dystrophy based upon intramuscular transplantation without genetic 

correction [83]. However, whether the proportion of cells that extravasates and engrafts 

into muscles downstream of the injection site derives from the population expressing 

pericyte markers or whether the CD133+/Pax7+ population is able to be safely injected 

systemically is currently unknown. Although there have been no reports on the contribution 

of mouse CD133+ cells to skeletal muscle regeneration (probably due to technical 

reasons), the use of reporter mouse models for CD133 expression in other stem cell 

niches [84], may allow future lineage-tracing studies in murine skeletal muscle. 

 

Concluding remarks and future prospects 

Adult muscle growth and regeneration is fuelled by satellite cells. However, a growing 

milieu of interstitial stem or progenitor cells have been described both in resting and 

regenerating skeletal muscle, which are able to crosstalk with satellite cells, myoblasts, 

myofibres and cells of vascular and hematopoietic origin. These interstitial cells can 

differentiate into vascular, fibrogenic, adipogenic, osteogenic, and chondrogenic lineages 

in pathological conditions (e.g. [24,55,56,85]), although their function and lineage 

relationships in healthy tissue (where non-myogenic differentiation pathways have a 

supportive role, or are absent or are repressed) is still far from being understood.  

Moreover, there is an urgent need to improve the characterisation and distinction of 

the different populations of muscle interstitial progenitors, in order to determine whether 

particular cell types identified in different studies might actually be analogous and to find 
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out which of them should be enhanced (or repressed) to foster efficient myogenesis. In the 

near future, advanced flow cytometry techniques such as spectral flow cytometry [86,87] 

or flow cytometry coupled with mass spectrometry (mass cytometry or CyTOF) [88,89] 

which able to discriminate between many factors at the same time, could allow 

researchers to answer these questions.  

A question likely to arise from this in-depth analysis is when does the differential 

expression of markers correspond to a subpopulation, or to a separate progenitor 

population? Additionally, how definitive are these populations? During normal growth and 

regeneration, some interstitial muscle progenitors are known to have lineage plasticity. A 

well-characterised example of this is pericytes becoming Pax7+ stem cells residing under 

the basal lamina [26]. Whether these cells are identical to satellite cells and whether they 

can transdifferentiate back to the pericyte lineage is unknown. Moreover, lineage plasticity 

between many of the muscle resident cell populations has been demonstrated to increase 

greatly in pathogenic conditions [61,90], implying that cellular relationships and 

composition of the cellular populations in uninjured, acutely or chronically injured skeletal 

muscle could vary dramatically. Furthermore, it is crucial that in vivo analysis of cell 

populations is performed on freshly-isolated cells, as changes in the physical environment 

and culture medium during ex vivo expansion can greatly impact surface-marker 

expression, as can different isolation protocols.  

The majority of studies describing interstitial muscle stem cells in healthy and 

pathological tissue have been performed in rodents. Differences in marker expression 

between species are well documented in satellite cells (reviewed in [7]) and the field is 

now gradually improving the knowledge on the human satellite cell niche, their markers 

and properties [91]. Similar characterization efforts are being done for human 

mesenchymal progenitors [56]. Therefore, it is crucial to identify and characterise the 
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comparable interstitial muscle stem cell populations in human muscle to the well-known 

rodent ones, in order to maximise therapeutic relevance. 

Finally, a thorough characterisation of the different subpopulations of muscle 

satellite cells and interstitial progenitors may enable the development of next-generation 

protocols to derive them from human pluripotent stem cells [92] for drug screening, tissue 

engineering and cell therapies of skeletal muscle disorders. 
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Figure Legends 

 

Figure 1. Illustration of the main cellular populations in adult skeletal muscle.  

A skeletal muscle fibre and a blood vessel are shown. Satellite cells, interstitial populations 

and vessel-associated cell populations and their main protein markers (blue) are indicated. 

Differentiation of satellite cells, pericytes and mesenchymal progenitors/PICs is showed. 

 

 

Table   1. Summary of skeletal muscle-resident stem or progenitor cellular populations. 
Markers used for isolation and characterization, and known functions and therapeutic 
implications are indicated.



Fibroblast
Osteoblast

Chondrocyte

Adipocyte

Vascular 
compartment

Muscle
Fibre

Pericyte

Mesoangioblast

Endothelial cell

Satellite cell

Pax7

e.g. MyoD

Myosins

e.g. NG2/AP/CD146

Perilipin

Sca1/PDGFRα/PW1 Sca1/PW1

Tcf4

Sox9

Osterix

Myoblast

Self-renewal

Myonucleus

Basal lamina

Mesenchymal progenitor/PIC Resident myeloid cell

Figure 1

CD133+ cell

Myogenic (progenitor) cell

(smooth and skeletal)



32 
 

Table 1. 

Cell populations in non-regenerating murine muscle	       

Cell name Positive for Negative for Differentiation/Function Therapeutic 
implications References 

Stem or progenitor cells 

Satellite cells (SC) 
Pax7, SM/C2.6, α7-integrin, M-

cadherin, B1-integrin, CD34, Myf5, 
PW1, Nestin, (Pax3) 

CD45, CD31, PDGFRα, 
(Sca1) Myogenesis in vivo and ex vivo 

Genetically corrected 
intra-muscular (IM) 

transplantation  

[93,11,94,28,95,47,70,71,96]. 
Reviewed in [97,4]. 

Adult pericytes TNAP, PDGFRβ, NG2, Nestin (type 
2),  Desmin, CD146, SMA 

Nestin (type 1), Pax7, 
CD56, PDFRα (type 2) 

Angiogenesis, myogenesis, 
pericyte and SC self-renewal, 
fibrosis/fatty infiltration (type 1) 

Genetically corrected 
IM and intra-arterial 

transplantation  
[24,26,21]. Reviewed in [12]. 

PICs PW1/Peg3, Sca1, CD34, 
(PDGFRα) Pax7, (PDGFRα)  

PDGFRα+ adipogenesis and 
PDGFRα- myogenesis. 
Contribute to SC pool 

--- [74,71] 

FAPs/ 
Mesenchymal 

progenitors 

Sca1, PDGFRα,  PDGFRβ, 
Vimentin, Adam 12, PW1, tcf4 

CD31, CD45, α7-integrin, 
SM/C-2.6, αSMA, NG2, 

Pax7 

 Sca1-: Adipogenesis, 
osteogenesis and 

Chondrogenesis ; Sca1+ :  
Adipo/fibrogenesis  

Targets for anti-fibrotic 
interventions with 
drugs inhibiting 

PDGFRα 

[47,52,71,48,49]. Reviewed 
in [17]. 

Other stem or progenitor populations  

CD133+ cells CD133, (CD34) (CD34) Myogenesis in vivo and ex vivo 
Genetically corrected 
IM and intra-arterial 

transplantation 
[80,81,79] 

Muscle side 
population (SP) 

Sca1, ABCG2, (CD45), 
(CD31),(CD34), (Pax7) 

Hoechst-negative, 
(CD45), (CD31), c-Kit, 

(CD34)  

Unclear: CD45+: 
haematopoiesis; CD31+ 

:angiogenesis;  negative cells 
myogenesis 

--- [73,98-100]. Reviewed in [4]. 

Myoendothelial 
cells CD34, Sca1, cMet 

CD45, CD14, CD31, 
CD49, CD144, c-Kit, FLK, 
Pax3, Pax7, MyoD, Myf5, 

M-cadherin 

Unclear: Adipogenesis, 
angiogenesis and myogenesis --- [101] 

Other resident cells 

Resident myeloid 
cells  CD45, CD11b, F4/80 CD11c, Ly-6C, CX3CR1 Recruitment of neutrophils, 

monocytes ---  [102-105]. Reviewed in 
[106,107]. 

Endothelial cells CD31, Sca1, FLK-1, CD144/VE-
Cadherin, CD34 

CD45, CD11b, α7-
integrin, Pax7  Vessel formation  ---  [108-110,20] 

Fibroblasts Tcf4, PDGFRα  CD45, CD31, CD11b, 
α7-integrin, Pax7  Extracellular matrix production  ---  [111,112] 

Note: As these populations are heterogeneous, not all the cells express all the indicated markers and some markers may have high/medium/low subpopulations, like Pax7 in satellite 
cells [9]. Markers between brackets affect only a subpopulation or depend on origin/developmental stage, markers between brackets and underlined are controversial.  


