13 research outputs found

    Reoptimized UNRES Potential for Protein Model Quality Assessment

    Get PDF
    Ranking protein structure models is an elusive problem in bioinformatics. These models are evaluated on both the degree of similarity to the native structure and the folding pathway. Here, we simulated the use of the coarse-grained UNited RESidue (UNRES) force field as a tool to choose the best protein structure models for a given protein sequence among a pool of candidate models, using server data from the CASP11 experiment. Because the original UNRES was optimized for Molecular Dynamics simulations, we reoptimized UNRES using a deep feed-forward neural network, and we show that introducing additional descriptive features can produce better results. Overall, we found that the reoptimized UNRES performs better in selecting the best structures and tracking protein unwinding from its native state. We also found a relatively poor correlation between UNRES values and the model’s Template Modeling Score (TMS). This is remedied by reoptimization. We discuss some cases where our reoptimization procedure is useful

    Role of the sulfur to α-carbon thioether bridges in thurincin H

    No full text
    <p>Thurincin H is a small protein produced by <i>Bacillus thuringiensis</i> SF361 with gram-positive antimicrobial properties. The toxins produced by <i>B. thuringiensis</i> are widely used in the agriculture as, e.g. natural preservatives in dairy products. The structure of thurincin H possesses four covalent sulfur to -carbon bonds that involve the cysteine side-chains; these bonds are probably responsible for the shape and stability of the protein and, thereby, for its antimicrobial properties. To examine the influence of the formation of the sulfur-carbon bonds on the folding pathways and stability of the protein, a series of canonical and multiplexed replica-exchange simulations with the coarse-grained UNRES force field was carried out without and with distance restraints imposed on selected S-C atom pairs. It was found that the order of the formation and breaking of the S-C thioether bonds significantly impacts on the foldability and stability of the thurincin H. It was also observed that thioether bridges play a major role in stabilizing the global fold of the protein, although it significantly diminishes the entropy of the system. The maximum foldability of thurincin H was observed in the presence of the optimal set of three out of four thioether bridges. Thus, the results suggest that the presence of ThnB enzyme and other agents that catalyze the formation of thioether bridges can be essential for correct folding of thurincin H and that the formation of the fourth bridge does not seem to facilitate folding; instead, it seems to rigidify the loop and prevent proteolysis.</p

    Prediction of Protein Structure by Template-Based Modeling Combined with the UNRES Force Field

    No full text
    A new approach to the prediction of protein structures that uses distance and backbone virtual-bond dihedral angle restraints derived from template-based models and simulations with the united residue (UNRES) force field is proposed. The approach combines the accuracy and reliability of template-based methods for the segments of the target sequence with high similarity to those having known structures with the ability of UNRES to pack the domains correctly. Multiplexed replica-exchange molecular dynamics with restraints derived from template-based models of a given target, in which each restraint is weighted according to the accuracy of the prediction of the corresponding section of the molecule, is used to search the conformational space, and the weighted histogram analysis method and cluster analysis are applied to determine the families of the most probable conformations, from which candidate predictions are selected. To test the capability of the method to recover template-based models from restraints, five single-domain proteins with structures that have been well-predicted by template-based methods were used; it was found that the resulting structures were of the same quality as the best of the original models. To assess whether the new approach can improve template-based predictions with incorrectly predicted domain packing, four such targets were selected from the CASP10 targets; for three of them the new approach resulted in significantly better predictions compared with the original template-based models. The new approach can be used to predict the structures of proteins for which good templates can be found for sections of the sequence or an overall good template can be found for the entire sequence but the prediction quality is remarkably weaker in putative domain-linker regions

    Unveiling new interdependencies between significant DNA methylation sites, gene expression profiles and glioma patients survival

    No full text
    In order to find clinically useful prognostic markers for glioma patients' survival, we employed Monte Carlo Feature Selection and Interdependencies Discovery (MCFS-ID) algorithm on DNA methylation (HumanMethylation450 platform) and RNA-seq datasets from The Cancer Genome Atlas (TCGA) for 88 patients observed until death. The input features were ranked according to their importance in predicting patients' longer (400+ days) or shorter (&lt;= 400 days) survival without prior classification of the patients. Interestingly, out of the 65 most important features found, 63 are methylation sites, and only two mRNAs. Moreover, 61 out of the 63 methylation sites are among those detected by the 450 k array technology, while being absent in the HumanMethylation27. The most important methylation feature (cg15072976) overlaps with the RE1 Silencing Transcription Factor (REST) binding site, and was confirmed to intersect with the REST binding motif in human U87 glioma cells. Six additional methylation sites from the top 63 overlap with REST sites. We found that the methylation status of the cg15072976 site affects transcription factor binding in U87 cells in gel shift assay. The cg15072976 methylation status discriminates &lt;= 400 and 400+ patients in an independent dataset from TCGA and shows positive association with survival time as evidenced by Kaplan-Meier plots

    Use of Restraints from Consensus Fragments of Multiple Server Models To Enhance Protein-Structure Prediction Capability of the UNRES Force Field

    No full text
    Recently, we developed a new approach to protein-structure prediction, which combines template-based modeling with the physics-based coarse-grained UNited RESidue (UNRES) force field. In this approach, restrained multiplexed replica exchange molecular dynamics simulations with UNRES, with the C<sup>α</sup>-distance and virtual-bond-dihedral-angle restraints derived from knowledge-based models are carried out. In this work, we report a test of this approach in the 11th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP11), in which we used the template-based models from early-stage predictions by the LEE group CASP11 server (group 038, called “nns”), and further improvement of the method. The quality of the models obtained in CASP11 was better than that resulting from unrestrained UNRES simulations; however, the obtained models were generally worse than the final nns models. Calculations with the final nns models, performed after CASP11, resulted in substantial improvement, especially for multi-domain proteins. Based on these results, we modified the procedure by deriving restraints from models from multiple servers, in this study the four top-performing servers in CASP11 (nns, BAKER-ROSETTA­SERVER, Zhang-server, and QUARK), and implementing either all restraints or only the restraints on the fragments that appear similar in the majority of models (the <i>consensus fragments</i>), outlier models discarded. Tests with 29 CASP11 human-prediction targets with length less than 400 amino-acid residues demonstrated that the consensus-fragment approach gave better results, i.e., lower α-carbon root-mean-square deviation from the experimental structures, higher template modeling score, and global distance test total score values than the best of the parent server models. Apart from global improvement (repacking and improving the orientation of domains and other substructures), improvement was also reached for template-based modeling targets, indicating that the approach has refinement capacity. Therefore, the consensus-fragment analysis is able to remove lower-quality models and poor-quality parts of the models without knowing the experimental structure
    corecore