69 research outputs found

    La Formación de Bellmunt (Unidad del Cadí, Pirineo oriental): aportaciones bioestratigráficas de los sistemas lacustres y palustres asociados

    Get PDF
    The Bellmunt Fm is an alluvial synorogenic unit which was deposited under the influence of the southward displacement of succesive pyrenean nappes. This unit includes, in the boundary between its lower and middle part, many lacustrine and palustrine beds with an abundant fossil fauna and flora. This fossil record allows to recognize thepaleoenviromental andpaleoclimatic scenary. Charophytes and fossil mammals indicate a Middle and Lower Bartonian age for this Formation

    Phytoplankton Community Structure Is Driven by Stratification in the Oligotrophic Mediterranean Sea

    Get PDF
    The phytoplankton community composition, structure, and biomass were investigated under stratified and oligotrophic conditions during summer for three consecutive years in the Mediterranean Sea. Our results reveal that the phytoplankton community structure was strongly influenced by vertical stratification. The thermocline separated two different phytoplankton communities in the two layers of the euphotic zone, characterized by different nutrient and light availability. Picoplankton dominated in terms of abundance and biomass at all the stations sampled and throughout the photic zone. However, the structure of the picoplanktonic community changed with depth, with Synechococcus and heterotrophic prokaryotes dominating in surface waters down to the base of the thermocline, and Prochlorococcus and picoeukaryotes contributing relatively more to the community in the deep chlorophyll maximum (DCM). Light and nutrient availability also influenced the communities at the DCM layer. Prochlorococcus prevailed in deeper DCM waters characterized by lower light intensities and higher picophytoplankton abundance was related to lower nutrient concentrations at the DCM. Picoeukaryotes were the major phytoplankton contributors to carbon biomass at surface (up to 80%) and at DCM (more than 40%). Besides, contrarily to the other phytoplankton groups, picoeukaryotes cell size progressively decreased with depth. Our research shows that stratification is a major factor determining the phytoplankton community structure; and underlines the role that picoeukaryotes might play in the carbon flux through the marine food web, with implications for the community metabolism and carbon fate in the ecosystem.En prens

    Kretzoiarctos gen. nov., the Oldest Member of the Giant Panda Clade

    Get PDF
    The phylogenetic position of the giant panda, Ailuropoda melanoleuca (Carnivora: Ursidae: Ailuropodinae), has been one of the most hotly debated topics by mammalian biologists and paleontologists during the last century. Based on molecular data, it is currently recognized as a true ursid, sister-taxon of the remaining extant bears, from which it would have diverged by the Early Miocene. However, from a paleobiogeographic and chronological perspective, the origin of the giant panda lineage has remained elusive due to the scarcity of the available Miocene fossil record. Until recently, the genus Ailurarctos from the Late Miocene of China (ca. 8–7 mya) was recognized as the oldest undoubted member of the Ailuropodinae, suggesting that the panda lineage might have originated from an Ursavus ancestor. The role of the purported ailuropodine Agriarctos, from the Miocene of Europe, in the origins of this clade has been generally dismissed due to the paucity of the available material. Here, we describe a new ailuropodine genus, Kretzoiarctos gen. nov., based on remains from two Middle Miocene (ca. 12–11 Ma) Spanish localities. A cladistic analysis of fossil and extant members of the Ursoidea confirms the inclusion of the new genus into the Ailuropodinae. Moreover, Kretzoiarctos precedes in time the previously-known, Late Miocene members of the giant panda clade from Eurasia (Agriarctos and Ailurarctos). The former can be therefore considered the oldest recorded member of the giant panda lineage, which has significant implications for understanding the origins of this clade from a paleobiogeographic viewpoint

    EGFR Inhibition in Glioma Cells Modulates Rho Signaling to Inhibit Cell Motility and Invasion and Cooperates with Temozolomide to Reduce Cell Growth

    Get PDF
    Enforced EGFR activation upon gene amplification and/or mutation is a common hallmark of malignant glioma. Small molecule EGFR tyrosine kinase inhibitors, such as erlotinib (Tarceva), have shown some activity in a subset of glioma patients in recent trials, although the reported data on the cellular basis of glioma cell responsiveness to these compounds have been contradictory. Here we have used a panel of human glioma cell lines, including cells with amplified or mutant EGFR, to further characterize the cellular effects of EGFR inhibition with erlotinib. Dose-response and cellular growth assays indicate that erlotinib reduces cell proliferation in all tested cell lines without inducing cytotoxic effects. Flow cytometric analyses confirm that EGFR inhibition does not induce apoptosis in glioma cells, leading to cell cycle arrest in G1. Interestingly, erlotinib also prevents spontaneous multicellular tumour spheroid growth in U87MG cells and cooperates with sub-optimal doses of temozolomide (TMZ) to reduce multicellular tumour spheroid growth. This cooperation appears to be schedule-dependent, since pre-treatment with erlotinib protects against TMZ-induced cytotoxicity whereas concomitant treatment results in a cooperative effect. Cell cycle arrest in erlotinib-treated cells is associated with an inhibition of ERK and Akt signaling, resulting in cyclin D1 downregulation, an increase in p27kip1 levels and pRB hypophosphorylation. Interestingly, EGFR inhibition also perturbs Rho GTPase signaling and cellular morphology, leading to Rho/ROCK-dependent formation of actin stress fibres and the inhibition of glioma cell motility and invasion

    Mio-Pliocene Faunal Exchanges and African Biogeography: The Record of Fossil Bovids

    Get PDF
    The development of the Ethiopian biogeographic realm since the late Miocene is here explored with the presentation and review of fossil evidence from eastern Africa. Prostrepsiceros cf. vinayaki and an unknown species of possible caprin affinity are described from the hominid-bearing Asa Koma and Kuseralee Members (∼5.7 and ∼5.2 Ma) of the Middle Awash, Ethiopia. The Middle Awash Prostrepsiceros cf. vinayaki constitutes the first record of this taxon from Africa, previously known from the Siwaliks and Arabia. The possible caprin joins a number of isolated records of caprin or caprin-like taxa recorded, but poorly understood, from the late Neogene of Africa. The identification of these two taxa from the Middle Awash prompts an overdue review of fossil bovids from the sub-Saharan African record that demonstrate Eurasian affinities, including the reduncin Kobus porrecticornis, and species of Tragoportax. The fossil bovid record provides evidence for greater biological continuity between Africa and Eurasia in the late Miocene and earliest Pliocene than is found later in time. In contrast, the early Pliocene (after 5 Ma) saw the loss of any significant proportions of Eurasian-related taxa, and the continental dominance of African-endemic taxa and lineages, a pattern that continues today

    The evolution of the upright posture and gait—a review and a new synthesis

    Get PDF
    During the last century, approximately 30 hypotheses have been constructed to explain the evolution of the human upright posture and locomotion. The most important and recent ones are discussed here. Meanwhile, it has been established that all main hypotheses published until the last decade of the past century are outdated, at least with respect to some of their main ideas: Firstly, they were focused on only one cause for the evolution of bipedality, whereas the evolutionary process was much more complex. Secondly, they were all placed into a savannah scenario. During the 1990s, the fossil record allowed the reconstruction of emerging bipedalism more precisely in a forested habitat (e.g., as reported by Clarke and Tobias (Science 269:521–524, 1995) and WoldeGabriel et al. (Nature 412:175–178, 2001)). Moreover, the fossil remains revealed increasing evidence that this part of human evolution took place in a more humid environment than previously assumed. The Amphibian Generalist Theory, presented first in the year 2000, suggests that bipedalism began in a wooded habitat. The forests were not far from a shore, where our early ancestor, along with its arboreal habits, walked and waded in shallow water finding rich food with little investment. In contrast to all other theories, wading behaviour not only triggers an upright posture, but also forces the individual to maintain this position and to walk bipedally. So far, this is the only scenario suitable to overcome the considerable anatomical and functional threshold from quadrupedalism to bipedalism. This is consistent with paleoanthropological findings and with functional anatomy as well as with energetic calculations, and not least, with evolutionary psychology. The new synthesis presented here is able to harmonise many of the hitherto competing theories

    Modulation of paraoxonases during infectious diseases and its potential impact on atherosclerosis

    Get PDF

    Facies y paleogeografia de la 'Arenisca de Aren' (Nota preliminar)

    Get PDF
    Los resultados preliminares de una investigación sedimentológica y estratigráfica han permitido precisar acerca del originario ambiente de sedimentación de la "Arenisca de Aren" y de esbozar un cuadro deposicional de los mismos, mucho más complejo de lo que se había creído precedentemente.After the result of a preliminary sedimentological and stratigraphical investigation it has been possible to remark the depositional conditions of "Arenisca de Aren" and to present their depositional model, more complex than it was belived to be before
    corecore