185 research outputs found

    Non-affine geometrization can lead to nonphysical instabilities

    Full text link
    Geometrization of dynamics consists of representing trajectories by geodesics on a configuration space with a suitably defined metric. Previously, efforts were made to show that the analysis of dynamical stability can also be carried out within geometrical frameworks, by measuring the broadening rate of a bundle of geodesics. Two known formalisms are via Jacobi and Eisenhart metrics. We find that this geometrical analysis measures the actual stability when the length of any geodesic is proportional to the corresponding time interval. We prove that the Jacobi metric is not always an appropriate parametrization by showing that it predicts chaotic behavior for a system of harmonic oscillators. Furthermore, we show, by explicit calculation, that the correspondence between dynamical- and geometrical-spread is ill-defined for the Jacobi metric. We find that the Eisenhart dynamics corresponds to the actual tangent dynamics and is therefore an appropriate geometrization scheme.Comment: Featured on the Cover of the Journal. 9 pages, 6 figures: http://iopscience.iop.org/1751-8121/48/7/07510

    Density of States of Quantum Spin Systems from Isotropic Entanglement

    Full text link
    We propose a method which we call "Isotropic Entanglement" (IE), that predicts the eigenvalue distribution of quantum many body (spin) systems (QMBS) with generic interactions. We interpolate between two known approximations by matching fourth moments. Though, such problems can be QMA-complete, our examples show that IE provides an accurate picture of the spectra well beyond what one expects from the first four moments alone. We further show that the interpolation is universal, i.e., independent of the choice of local terms.Comment: 4+ pages, content is as in the published versio

    Unfrustrated Qudit Chains and their Ground States

    Full text link
    We investigate chains of 'd' dimensional quantum spins (qudits) on a line with generic nearest neighbor interactions without translational invariance. We find the conditions under which these systems are not frustrated, i.e. when the ground states are also the common ground states of all the local terms in the Hamiltonians. The states of a quantum spin chain are naturally represented in the Matrix Product States (MPS) framework. Using imaginary time evolution in the MPS ansatz, we numerically investigate the range of parameters in which we expect the ground states to be highly entangled and find them hard to approximate using our MPS method.Comment: 5 pages, 5 figures. Typos correcte

    Elevated InsP3R expression underlies enhanced calcium fluxes and spontaneous extra-systolic calcium release events in hypertrophic cardiac myocytes

    Get PDF
    Cardiac hypertrophy is associated with profound remodeling of Ca(2+) signaling pathways. During the early, compensated stages of hypertrophy, Ca(2+) fluxes may be enhanced to facilitate greater contraction, whereas as the hypertrophic heart decompensates, Ca(2+) homeostatic mechanisms are dysregulated leading to decreased contractility, arrhythmia and death. Although ryanodine receptor Ca(2+) release channels (RyR) on the sarcoplasmic reticulum (SR) intracellular Ca(2+) store are primarily responsible for the Ca(2+) flux that induces myocyte contraction, a role for Ca(2+) release via the inositol 1,4,5-trisphosphate receptor (InsP(3)R) in cardiac physiology has also emerged. Specifically, InsP(3)-induced Ca(2+) signals generated following myocyte stimulation with an InsP(3)-generating agonist (e.g., endothelin, ET-1), lead to modulation of Ca(2+) signals associated with excitation-contraction coupling (ECC) and the induction of spontaneous Ca(2+) release events that cause cellular arrhythmia. Using myocytes from spontaneously hypertensive rats (SHR), we recently reported that expression of the type 2 InsP(3)R (InsP(3)R2) is significantly increased during hypertrophy. Notably, this increased expression was restricted to the junctional SR in close proximity to RyRs. There, enhanced Ca(2+) release via InsP(3)Rs serves to sensitize neighboring RyRs causing an augmentation of Ca(2+) fluxes during ECC as well as an increase in non-triggered Ca(2+) release events. Although the sensitization of RyRs may be a beneficial consequence of elevated InsP(3)R expression during hypertrophy, the spontaneous Ca(2+) release events are potentially of pathological significance giving rise to cardiac arrhythmia. InsP(3)R2 expression was also increased in hypertrophic hearts from patients with ischemic dilated cardiomyopathy and aortically-banded mice demonstrating that increased InsP(3)R expression may be a general phenomenon that underlies Ca(2+) changes during hypertrophy

    Error analysis of free probability approximations to the density of states of disordered systems

    Full text link
    Theoretical studies of localization, anomalous diffusion and ergodicity breaking require solving the electronic structure of disordered systems. We use free probability to approximate the ensemble- averaged density of states without exact diagonalization. We present an error analysis that quantifies the accuracy using a generalized moment expansion, allowing us to distinguish between different approximations. We identify an approximation that is accurate to the eighth moment across all noise strengths, and contrast this with the perturbation theory and isotropic entanglement theory.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Let

    A human coronavirus responsible for the common cold massively kills dendritic cells but not monocytes

    Get PDF
    Copyright @ 2012, American Society for Microbiology.Human coronaviruses are associated with upper respiratory tract infections that occasionally spread to the lungs and other organs. Although airway epithelial cells represent an important target for infection, the respiratory epithelium is also composed of an elaborate network of dendritic cells (DCs) that are essential sentinels of the immune system, sensing pathogens and presenting foreign antigens to T lymphocytes. In this report, we show that in vitro infection by human coronavirus 229E (HCoV-229E) induces massive cytopathic effects in DCs, including the formation of large syncytia and cell death within only few hours. In contrast, monocytes are much more resistant to infection and cytopathic effects despite similar expression levels of CD13, the membrane receptor for HCoV-229E. While the differentiation of monocytes into DCs in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 requires 5 days, only 24 h are sufficient for these cytokines to sensitize monocytes to cell death and cytopathic effects when infected by HCoV-229E. Cell death induced by HCoV-229E is independent of TRAIL, FasL, tumor necrosis factor alpha, and caspase activity, indicating that viral replication is directly responsible for the observed cytopathic effects. The consequence of DC death at the early stage of HCoV-229E infection may have an impact on the early control of viral dissemination and on the establishment of long-lasting immune memory, since people can be reinfected multiple times by HCoV-229E

    Direct observation shows superposition and large scale flexibility within cytoplasmic dynein motors moving along microtubules

    Get PDF
    Cytoplasmic dynein is a dimeric AAA+ motor protein that performs critical roles in eukaryotic cells by moving along microtubules using ATP. Here using cryo-electron microscopy we directly observe the structure of Dictyostelium discoideum dynein dimers on microtubules at near-physiological ATP concentrations. They display remarkable flexibility at a hinge close to the microtubule binding domain (the stalkhead) producing a wide range of head positions. About half the molecules have the two heads separated from one another, with both leading and trailing motors attached to the microtubule. The other half have the two heads and stalks closely superposed in a front-to-back arrangement of the AAA+ rings, suggesting specific contact between the heads. All stalks point towards the microtubule minus end. Mean stalk angles depend on the separation between their stalkheads, which allows estimation of inter-head tension. These findings provide a structural framework for understanding dynein’s directionality and unusual stepping behaviour
    corecore