96 research outputs found

    What Counts in Brain Aging? Design-Based Stereological Analysis of Cell Number

    Get PDF
    The advent and implementation of new design-based stereological techniques allows the quantification of cell number without the assumptions required when obtaining areal densities. These new techniques are rapidly becoming the standard for quantifying cell number, particularly in aging studies. Recently, studies using stereological techniques have failed to confirm earlier findings regarding age-associated neural loss. This newly emerging view of retained cell number during aging is having a major impact on biogerontology, prompting revaluation of long-standing hypotheses of age-related cell loss as causal for age-related impairments in brain functioning. Rather than focus on neuronal loss as the end-result of a negative cascade of neuronal injury, research has begun to consider that age-related behavioral declines may reflect neuronal dysfunction (e.g., synaptic or receptor loss, signal transduction deficits) instead of neuronal death. Here we discuss design-based stereology in the context of age-related change in brain cell number and its impact on consideration of structural change in brain aging. Emergence of this method of morphometries, however, can have relevance to many areas of gerontological researc

    Knowing What Counts: Unbiased Stereology in the Non-human Primate Brain

    Get PDF
    The non-human primate is an important translational species for understanding the normal function and disease processes of the human brain. Unbiased stereology, the method accepted as state-of-the-art for quantification of biological objects in tissue sections2, generates reliable structural data for biological features in the mammalian brain3. The key components of the approach are unbiased (systematic-random) sampling of anatomically defined structures (reference spaces), combined with quantification of cell numbers and size, fiber and capillary lengths, surface areas, regional volumes and spatial distributions of biological objects within the reference space4. Among the advantages of these stereological approaches over previous methods is the avoidance of all known sources of systematic (non-random) error arising from faulty assumptions and non-verifiable models. This study documents a biological application of computerized stereology to estimate the total neuronal population in the frontal cortex of the vervet monkey brain (Chlorocebus aethiops sabeus), with assistance from two commercially available stereology programs, BioQuant Life Sciences and Stereologer (Figure 1). In addition to contrast and comparison of results from both the BioQuant and Stereologer systems, this study provides a detailed protocol for the Stereologer system

    US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report

    Get PDF
    This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference

    How genomics can help biodiversity conservation

    Get PDF
    The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics

    The era of reference genomes in conservation genomics

    Get PDF
    Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics, and are expected to revolutionize conservation genomics

    The era of reference genomes in conservation genomics

    Get PDF
    Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics, and are expected to revolutionize conservation genomics

    The era of reference genomes in conservation genomics

    Get PDF
    info:eu-repo/semantics/publishedVersio
    corecore