94 research outputs found
Recommended from our members
Heterotrophic bacterial production in the eastern South Pacific: longitudinal trends and coupling with primary production
Spatial variation of heterotrophic bacterial production and phytoplankton primary production were investigated across the eastern South Pacific Ocean (−141° W, −8° S to −72° W, −35° S) in November–December 2004. Bacterial production (³H leucine incorporation) integrated over the euphotic zone encompassed a wide range of values, from 43 mg C m⁻² d⁻¹ in the hyper-oligotrophic South Pacific Gyre to 392 mg C m⁻² d⁻¹ in the upwelling off Chile. In the gyre (120° W, 22° S) records of low phytoplankton biomass (7 mg Total Chla m⁻²) were obtained and fluxes of in situ 14C-based particulate primary production were as low as 153 mg C m⁻² d⁻¹, thus equal to the value considered as a limit for primary production under strong oligotrophic conditions. Average rates of ³H leucine incorporation rates, and leucine incorporation rates per cell (5–21 pmol l⁻¹ h⁻¹ and 15–56×10⁻²¹ mol cell⁻¹ h⁻¹, respectively) determined in the South Pacific gyre, were in the same range as those reported for other oligotrophic subtropical and temperate waters. Fluxes of dark community respiration, determined at selected stations across the transect varied in a narrow range (42–97 mmol O2 m⁻² d⁻¹), except for one station in the upwelling off Chile (245 mmol O2 m⁻² d⁻¹). Bacterial growth efficiencies varied between 5 and 38%. Bacterial carbon demand largely exceeded 14C particulate primary production across the South Pacific Ocean, but was lower or equal to gross community production
Phospholipid synthesis rates in the eastern subtropical South Pacific Ocean
Membrane lipid molecules are a major component of planktonic organisms and this is particularly true of the microbial picoplankton that dominate the open ocean; with their high surface-area to volume ratios, the synthesis of membrane lipids places a major demand on their overall cell metabolism. Specifically, the synthesis of cell membrane phospholipids creates a demand for the nutrient phosphorus, and we sought to refine our understanding of the role of phospholipids in the upper ocean phosphorus cycle. We measured the rates of phospholipid synthesis in a transect of the eastern subtropical South Pacific from Easter Island to Concepcion, Chile as part of the BIOSOPE program. Our approach combined standard phosphorus radiotracer incubations and lipid extraction methods. We found that phospholipid synthesis rates varied from less than 1 to greater than 200 pmol P L−1 h−1, and that phospholipid synthesis contributed between less than 5% to greater than 22% of the total PO43− incorporation rate. Changes in the percentage that phospholipid synthesis contributed to total PO43− uptake were strongly correlated with the ratio of primary production to bacterial production, which supported our hypothesis that heterotrophic bacteria were the primary agents of phospholipid synthesis. The spatial variation in phospholipid synthesis rates underscored the importance of heterotrophic bacteria in the phosphorus cycle of the eastern subtropical South Pacific, particularly the hyperoligotrophic South Pacific subtropical gyre
Biogeochemical controls of surface ocean phosphate
Surface ocean phosphate is commonly below the standard analytical detection limits, leading to an incomplete
picture of the global variation and biogeochemical role of phosphate. A global compilation of phosphate measured
using high-sensitivity methods revealed several previously unrecognized low-phosphate areas and clear
regional differences. Both observational climatologies and Earth system models (ESMs) systematically overestimated
surface phosphate. Furthermore, ESMs misrepresented the relationships between phosphate, phytoplankton
biomass, and primary productivity. Atmospheric iron input and nitrogen fixation are known important controls
on surface phosphate, but model simulations showed that differences in the iron-to-macronutrient ratio in the
vertical nutrient supply and surface lateral transport are additional drivers of phosphate concentrations. Our
study demonstrates the importance of accurately quantifying nutrients for understanding the regulation of ocean
ecosystems and biogeochemistry now and under future climate conditions
Cap-Gly Proteins at Microtubule Plus Ends: Is EB1 Detyrosination Involved?
Localization of CAP-Gly proteins such as CLIP170 at microtubule+ends results from their dual interaction with α-tubulin and EB1 through their C-terminal amino acids −EEY. Detyrosination (cleavage of the terminal tyrosine) of α-tubulin by tubulin-carboxypeptidase abolishes CLIP170 binding. Can detyrosination affect EB1 and thus regulate the presence of CLIP170 at microtubule+ends as well? We developed specific antibodies to discriminate tyrosinated vs detyrosinated forms of EB1 and detected only tyrosinated EB1 in fibroblasts, astrocytes, and total brain tissue. Over-expressed EB1 was not detyrosinated in cells and chimeric EB1 with the eight C-terminal amino acids of α-tubulin was only barely detyrosinated. Our results indicate that detyrosination regulates CLIPs interaction with α-tubulin, but not with EB1. They highlight the specificity of carboxypeptidase toward tubulin
2008 Inter-laboratory Comparison Study of a Reference Material for Nutrients in Seawater
Autoclaved natural seawater collected in the North Pacific Ocean was used as a reference material for nutrients in seawater (RMNS) during an inter-laboratory comparison (I/C) study conducted in 2008. This study was a follow-up to previous studies conducted in 2003 and 2006. A set of six samples was distributed to each of 58 laboratories in 15 countries around the globe, and results were returned by 54 of those laboratories (15 countries). The homogeneities of samples used in the 2008 I/C study, based on analyses for three determinants, were improved compared to those of samples used in the 2003 and 2006 I/C studies.
Results of these I/C studies indicate that most of the participating laboratories have an analytical technique for nutrients that is sufficient to provide data of high comparability. The differences between reported concentrations from the same laboratories in the 2006 and 2008 I/C studies for the same batch of RMNS indicate that most of the laboratories have been maintaining internal comparability for two years.
Thus, with the current high level of performance in the participating laboratories, the use of a common reference material and the adaptation of an internationally accepted
nutrient scale system would increase comparability among laboratories worldwide, and
the use of a certified reference material would establish traceability.
In the 2008 I/C study we observed a problem of non-linearity of the instruments of the participating laboratories similar to that observed among the laboratories in the 2006
I/C study. This problem of non-linearity should be investigated and discussed to improve comparability for the full range of nutrient concentrations. For silicate comparability in particular, we see relatively larger consensus standard deviations than those for nitrate and phosphate
Cycle biogéochimique du phosphate : rôle dans le contrôle de la production planctonique et conséquences sur l'exportation de carbone de la couche éclairée vers l'océan profond.
International audienc
Cycle biogéochimique du phosphate : rôle dans le contrôle de la production planctonique et conséquences sur l'exportation de carbone de la couche éclairée vers l'océan profond.
International audienc
- …