89 research outputs found

    Anomalous density of states in a metallic film in proximity with a superconductor

    Full text link
    We investigated the local electronic density of states in superconductor-normal metal (Nb-Au) bilayers using a very low temperature (60 mK) STM. High resolution tunneling spectra measured on the normal metal (Au) surface show a clear proximity effect with an energy gap of reduced amplitude compared to the bulk superconductor (Nb) gap. Within this mini-gap, the density of states does not reach zero and shows clear sub-gap features. We show that the experimental spectra cannot be described with the well-established Usadel equations from the quasi-classical theory.Comment: 4 pages, 5 figure

    Inverse proximity effect in superconductors near ferromagnetic material

    Full text link
    We study the electronic density of states in a mesoscopic superconductor near a transparent interface with a ferromagnetic metal. In our tunnel spectroscopy experiment, a substantial density of states is observed at sub-gap energies close to a ferromagnet. We compare our data with detailed calculations based on the Usadel equation, where the effect of the ferromagnet is treated as an effective boundary condition. We achieve an excellent agreement with theory when non-ideal quality of the interface is taken into account.Comment: revised, 7 pages, 3 figure

    Density of states in SF bilayers with arbitrary strength of magnetic scattering

    Get PDF
    We developed the self-consistent method for the calculation of the density of states N(ϵ)N(\epsilon) in the SF bilayers. It based on the quasi-classical Usadel equations and takes into account the suppression of superconductivity in the S layer due to the proximity effect with the F metal, as well as existing mechanisms of the spin dependent electron scattering. We demonstrate that the increase of the spin orbit or spin flip electron scattering rates results in completely different transformations of N(ϵ)N(\epsilon) at the free F layer interface. The developed formalism has been applied for the interpretation of the available experimental data.Comment: 5 pages, 8 figure

    Absolute spin-valve effect with superconducting proximity structures

    Full text link
    We investigate spin dependent transport in hybrid superconductor(S)--normal-metal(N)--ferromagnet(F) structures under conditions of proximity effect. We demonstrate the feasibility of the absolute spin-valve effect for a certain interval of voltages in a system consisting of two coupled tri-layer structures. Our results are also valid for non-collinear magnetic configurations of the ferromagnets.Comment: 1 TEX file, 2 Postscript files. Accepted for publication in Physical Review Letter

    Superconducting proximity effect in clean ferromagnetic layers

    Full text link
    We investigate superconducting proximity effect in clean ferromagnetic layers with rough boundaries. The subgap density of states is formed by Andreev bound states at energies which depend on trajectory length and the ferromagnetic exchange field. At energies above the gap, the spectrum is governed by resonant scattering states. The resulting density of states, measurable by tunneling spectroscopy, exhibits a rich structure, which allows to connect the theoretical parameters from experiments.Comment: 11 pages, 5 figures (included

    Proximity effects at ferromagnet-superconductor interfaces

    Full text link
    We study proximity effects at ferromagnet superconductor interfaces by self-consistent numerical solution of the Bogoliubov-de Gennes equations for the continuum, without any approximations. Our procedures allow us to study systems with long superconducting coherence lengths. We obtain results for the pair potential, the pair amplitude, and the local density of states. We use these results to extract the relevant proximity lengths. We find that the superconducting correlations in the ferromagnet exhibit a damped oscillatory behavior that is reflected in both the pair amplitude and the local density of states. The characteristic length scale of these oscillations is approximately inversely proportional to the exchange field, and is independent of the superconducting coherence length in the range studied. We find the superconducting coherence length to be nearly independent of the ferromagnetic polarization.Comment: 13 Pages total. Compressed .eps figs might display poorly, but will print fin

    Josephson effect in double-barrier superconductor-ferromagnet junctions

    Full text link
    We study the Josephson effect in ballistic double-barrier SIFIS planar junctions, consisting of bulk superconductors (S), a clean metallic ferromagnet (F), and insulating interfaces (I). We solve the scattering problem based on the Bogoliubov--de Gennes equations and derive a general expression for the dc Josephson current, valid for arbitrary interfacial transparency and Fermi wave vectors mismatch (FWVM). We consider the coherent regime in which quasiparticle transmission resonances contribute significantly to the Andreev process. The Josephson current is calculated for various parameters of the junction, and the influence of both interfacial transparency and FWVM is analyzed. For thin layers of strong ferromagnet and finite interfacial transparency, we find that coherent (geometrical) oscillations of the maximum Josephson current are superimposed on the oscillations related to the crossover between 0 and π\pi states. For the same case we find that the temperature-induced 0π0-\pi transition occurs if the junction is very close to the crossovers at zero temperature.Comment: 13 pages, 6 figure

    Three-dimensional Numerical Modeling and Computational Fluid Dynamics Simulations to Analyze and Improve Oxygen Availability in the AMC Bioartificial Liver

    Get PDF
    A numerical model to investigate fluid flow and oxygen (O(2)) transport and consumption in the AMC-Bioartificial Liver (AMC-BAL) was developed and applied to two representative micro models of the AMC-BAL with two different gas capillary patterns, each combined with two proposed hepatocyte distributions. Parameter studies were performed on each configuration to gain insight in fluid flow, shear stress distribution and oxygen availability in the AMC-BAL. We assessed the function of the internal oxygenator, the effect of changes in hepatocyte oxygen consumption parameters in time and the effect of the change from an experimental to a clinical setting. In addition, different methodologies were studied to improve cellular oxygen availability, i.e. external oxygenation of culture medium, culture medium flow rate, culture gas oxygen content (pO(2)) and the number of oxygenation capillaries. Standard operating conditions did not adequately provide all hepatocytes in the AMC-BAL with sufficient oxygen to maintain O(2) consumption at minimally 90% of maximal uptake rate. Cellular oxygen availability was optimized by increasing the number of gas capillaries and pO(2) of the oxygenation gas by a factor two. Pressure drop over the AMC-BAL and maximal shear stresses were low and not considered to be harmful. This information can be used to increase cellular efficiency and may ultimately lead to a more productive AMC-BAL

    Case-Control Cohort Study of Patients' Perceptions of Disability in Mastocytosis

    Get PDF
    BACKGROUND: Indolent forms of mastocytosis account for more than 90% of all cases, but the types and type and severity of symptoms and their impact on the quality of life have not been well studied. We therefore performed a case-control cohort study to examine self-reported disability and impact of symptoms on the quality of life in patients with mastocytosis. METHODOLOGY/PRINCIPAL FINDINGS: In 2004, 363 mastocytosis patients and 90 controls in France were asked to rate to their overall disability (OPA score) and the severity of 38 individual symptoms. The latter was used to calculate a composite score (AFIRMM score). Of the 363 respondents, 262 were part of an ongoing pathophysiological study so that the following data were available: World Health Organization classification, standard measures of physical and psychological disability, existence of the D816V KIT mutation, and serum tryptase level. The mean OPA and AFIRMM scores and the standard measures of disability indicated that most mastocytosis patients suffer from disabilities due to the disease. Surprisingly, the patient's measurable and perceived disabilities did not differ according to disease classification or presence or absence of the D816V KIT mutation or an elevated (> or = 20 ng/mL) serum tryptase level. Also, 32 of the 38 AFIRMM symptoms were more common in patients than controls, but there were not substantial differences according to disease classification, presence of the D816V mutation, or the serum tryptase level. CONCLUSIONS: On the basis of these results and for the purposes of treatment, we propose that mastocytosis be first classified as aggressive or indolent and that indolent mastocytosis then be categorized according to the severity of patients' perceived symptoms and their impact on the quality of life. In addition, it appears that mastocytosis patients suffer from more symptoms and greater disability than previously thought, that mastocytosis may therefore be under-diagnosed, and that the symptoms of the indolent forms of mastocytosis might be due more to systemic release of mediators than mast cell burden
    corecore