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It is well known that superconductivity can be
induced into a nonsuperconducting material from a
superconductor due to proximity effects. In supercon-
ductor (S)–normal metal (N) bilayers, the thus induced
minigap and the shape of the density of states (DOS) at
the free N metal interface 

 

N

 

(

 

ε

 

) depends on the values of
the suppression parameters of the SN interface and the
relation between the N layer thickness and the decay
length of the N metal [1–4]. The existence of the mini-
gap has been confirmed experimentally in a variety of
proximity SN systems (see, e.g., [5–8] and references
therein). In the superconductor–ferromagnet (F) bilay-
ers, there are additional bulk F-layer parameters that
influence 

 

N

 

(

 

ε

 

). They are the exchange field 

 

H

 

 and the
electron spin scattering processes. The exchange field
tends to align all the electron spins along the field axis.
It splits the minigap and the density of states for spin up
and spin down electrons (see [9–11] for reviews). The
experimental study of the proximity effect in SF sys-
tems [12–16] and the Josephson effect in SFS junctions
[17, 18] reveals that, besides the exchange field, the
additional pair-breaking magnetic mechanism, namely,
spin dependent electron scattering, should be taken into
account for the data interpretation.

There are three types of spin dependent electron
scattering in the ferromagnet–spin-orbit interaction and
spin-flip processes that may happen along the exchange
field direction and in the plane perpendicular to it. Pre-
viously, the influence of the parallel spin-flip and spin-

 

¶ 
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orbit scattering mechanisms on 

 

N

 

(

 

ε

 

) had been consid-
ered in some limiting cases (rigid boundary conditions
at SF interfaces, limits of large or small F layer thick-
nesses) [19, 20].

In this paper, for the first time, we developed a self-
consistent method for the calculation of the density of
states in SF bilayers. It is based on the quasi-classical
Usadel equations and takes into account the suppres-
sion of the superconductivity in the S layer due to the
proximity effect with the F metal, as well as all three
mechanisms of the spin dependent electron scattering.
We have demonstrated that the developed formalism
can be applied for understanding the 

 

N

 

(

 

ε

 

) data obtained
in superconductors with antiferromagnet ordering. We
consider an SF bilayer consisting of two dirty metals.
They are a superconductor of thickness 

 

d

 

s

 

 and a thin
ferromagnet 

 

d

 

f

 

 adjoined at 

 

x

 

 = 0. All the physical quan-
tities depend on the coordinate 

 

x

 

 perpendicular to the
SF boundary. The exchange field is parallel to the SF
interface plane. The DOS can be calculated from the
Usadel equations. To proceed further, it is convenient to
use the 

 

θ

 

 parameterization 

 

G

 

(

 

ω

 

, 

 

x

 

) = cos

 

θ

 

(

 

ω

 

, 

 

x

 

),

 

F

 

(

 

ω

 

, 

 

x

 

) = sin

 

θ

 

(

 

ω

 

, 

 

x

 

), where 

 

G

 

 and 

 

F

 

 are normal and
anomalous Green’s functions. The magnetic and spin-
orbit scattering mix up the up and down spin states,
which couples the Usadel equations for the Green’s
functions with the opposite spin directions. In the F
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layer (

 

x

 

 < 0), it gives the system of two equations

(1)

and in the S layer (

 

x

 

 > 0) the Usadel equations stay
uncoupled

(2)

where 

 

θ

 

1

 

 and 

 

θ

 

2

 

 correspond to the Green’s functions
with the opposite spin directions; 

 

ω

 

 = 

 

π

 

T

 

(2

 

n

 

 + 1) are the
Matsubara frequencies; 

 

D

 

s

 

(

 

D

 

f

 

) is the diffusion coeffi-
cient in the S (F) layer; 

 

H

 

 is the exchange field energy
in the F layer; and 

 

∆

 

(

 

x

 

) is the superconducting energy
gap, which is zero in the F layer. Here, we use the self-
consistent method to resolve the Usadel equations,
which takes into account the decrease of the energy gap

 

∆

 

 in the S layer from its bulk value along the 

 

x

 

-axis
towards the boundary due to the proximity effect. The
scattering times are labeled here as 

 

τ

 

z

 

, 

 

τ

 

x

 

,

 

 

 

and 

 

τ

 

so

 

, where

 

τ

 

z

 

(

 

x

 

)

 

 corresponds to the magnetic scattering parallel
(perpendicular) to the quantization axis and 

 

τ

 

so

 

 corre-
sponds to the spin-orbit scattering.

In the S layer, the Usadel equations are completed
with the self-consistency equation

(3)

where 

 

t

 

 = 

 

T

 

/

 

T

 

c

 

, and 

 

T

 

c

 

 is the bulk superconducting tem-
perature. Here and further, we work with the normal-

D f

2
------

∂2θ f 1 2( )

∂x2
------------------– ω iH

1
τz

---- θ f 1 2( )cos+±⎝ ⎠
⎛ ⎞ θ f 1 2( )sin+

+
1
τx

---- θ f 1 θ f 2+( )sin
1

τso
------ θ f 1 θ f 2–( )sin± 0,=

Ds

2
------

∂2θs1 2( )

∂x2
-----------------– ω θs1 2( )sin+ ∆ x( ) θs1 2( ),cos=

∆ x( ) tln t
2∆ x( )

ω
--------------- θs1sin– θs2sin–

ω 0=

ω ∞=

∑+ 0,=

ized energy parameters ∆ ≡ ∆/πTc, ω ≡ ω/πTc, H ≡
H/πTc; and, for the length parameters in the F layer, x ≡
x/ξn, ξn = ; and, in the S layer, x ≡ x/ξs, ξs =

. The scattering parameter notation is αz =
(τzπTc)–1, αx = (τxπTc)–1, αso = (τsoπTc)–1. The boundary
conditions at the FS interface have the form

(4)

and at free edges

(5)

where γ = σnξs/σsξn, σn(s) is the conductivity of the F(S)
layer, γB = Rbσn/ξn, and Rb is the specific resistance of
the SF interface.

For the arbitrary layer thicknesses, the interface
parameters (γ, γB), and the magnetic scattering parame-
ters, equations (1)–(5) have been solved numerically
using the self-consistent two step iterative procedure
(for ref. see [1–3]). In the first step, we calculate the
order parameter coordinate dependence ∆(x) using the
Matsubara technique using the self-consistent condi-
tion in the S layer.

Due to the proximity effect, ∆(x) decreases towards
the SF interface. Then, by proceeding to the analytical
extension in (1), (2) over the energy parameter ω 
−iε and using the ∆(x) dependence obtained in the pre-
vious step, we find the Green’s functions by repeating
the iterations until the convergency is reached. The den-
sity of states N(ε) = N↑(ε) + N↓(ε) can be found as

(6)

where N↑(↓) is the DOS for one spin direction and N is
the total DOS.

The numerically obtained energy dependencies of
the DOS in the F layer at the free F boundary are pre-
sented in Figs. 1–7. At H = 0 (Fig. 1), we reproduce the
well-known mini gap existing in the SN bilayer [1–3].
The presence of the unixial magnetic scattering tends to
smooth the BCS peaks in the DOS. Figure 2 demon-
strates the DOS evolution for the spin up electrons for
different parameters αz, where the full black curve cor-
responds to the usual split peaks within the energy gap
due to the exchange field in the absence of any mag-
netic scattering. By adding the magnetic scattering
aligned with the exchange field direction, one can see
the smearing of the sharp peaks with the gradual clos-
ing of the induced energy gap in the F layer. It is inter-
esting to note that the symmetry of the spin resolved
DOS in respect to the Fermi energy (ε = 0) does not
exist in the presence of the magnetic scattering.

D f /2πTc

Ds/2πTc

γ B
∂θ f 1 2( )

∂x
----------------

x 0–=

θs1 2( ) θ f 1 2( )–( ),sin=

γ B

γ
-----∂θs1 2( )

∂x
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x +0=

θs1 2( ) θ f 1 2( )–( ),sin=

∂θ f 1 2( )

∂x
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x d f–=

0, ∂θs1 2( )

∂x
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x ds=

0,= =

N↑ ↓( ) ε( ) 0.5N 0( )Re θ1 2( ),cos=

Fig. 1. The case of the parallel magnetic scattering in the
S/N bilayer (H/πTc = 0). The spin up energy DOS variation
in the N layer for severed values of the magnetic scattering
parameter αz and for the fixed parameters γB = 5, γ = 0.05,
df/ξn = 0.2, ds/ξs = 10, αx = 0, and αs0 = 0.
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Figure 3 demonstrates the influence of the perpen-
dicular magnetic scattering on the DOS energy varia-
tion within the energy gap. The total DOS for both spin
directions for the different values of the perpendicular
magnetic scattering parameter x is plotted in Fig. 4. The
peaks in the DOS are slowly moving towards the zero
energy, which can be explained as the presence of some
additional splitting field besides the ordinary exchange
field in the ferromagnet. As in the case of parallel mag-
netic scattering, the peaks are smoothed out and the
energy gap disappears. For the small magnetic scatter-

ing times τz and τx, the DOS tends to its bulk value in
the fenomagnet.

Figures 5 and 6 depict the spin up and total DOS for
different parameters of the spin-orbit scattering, corre-
spondingly. It can be seen that, in contrast to the mag-
netic scattering described above, the spin-orbit scatter-
ing tends to decrease the effect of the peak splitting
within the energy gap caused by the ferromagnetic
exchange field. The black curves in Figs. 5 and 6 corre-
spond to the zero exchange field (the SN structure
case). The smaller the spin-orbit scattering time, the

Fig. 2. The case of parallel magnetic scattering. The spin up
energy DOS variation in the F layer for several values of the
magnetic scattering parameter αz and for the fixed parame-
ters H/πTc = 0.2, γB = 5, γ = 0.05, df/ξn = 0.2, ds/ξs = 10,
αx = 0, and αso = 0.

Fig. 3. The case of the perpendicular magnetic scattering.
The spin up energy DOS variation in the F layer for several
values of the magnetic scattering parameter αx and for the
fixed parameters H/πTc = 0.2, γB = 5, γ = 0.05, df/ξn = 0.2,
ds/ξs = 10, αz = 0, and αso = 0.

Fig. 4. The case of the perpendicular magnetic scattering.
The total DOS energy variation in the F layer for several
values of the magnetic scattering parameter αx and for the
fixed parameters H/πTc = 0.2, γB = 5, γ = 0.05, df/ξn = 0.2,
ds/ξs = 10, αz = 0, and αso = 0.

Fig. 5. The case of spin-orbit scattering. The spin up energy
DOS variation in the F layer for several values of the mag-
netic scattering parameter αso and for the fixed parameters
H/πTc = 0.2, γB = 5, γ = 0.05, df/ξn = 0.2, ds/ξs = 10, αz = 0,
and αx = 0. The black curve corresponds to the SN case.

αso = 0.01
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closer the curve to the superconductor/normal metal
case, and the two minigap behavior degenerates to the
one minigap curve as in the SN structure.

It is interesting to mention the peculiarity of the
DOS dependence in the presence of the spin-orbit scat-
tering. As it was shown in [21, 22], in the presence of

the spin-orbit scattering for the parameter  = H, the
solution of the Usadel equation changes its characteris-

τso
1–

tic behavior from the oscillating one to a damping
decay, which should also cause changes in the DOS
energy variation. Figure 7 demonstrates the appearance

of a plateau instead of a peak in the DOS for  = H
for some parameter γ when it is large enough to dimin-
ish the penetration of the superconductivity into the F
layer. For the particular set of parameters (H, γB, ds, df)
used for calculation of the graph in Fig. 7, this transfor-
mation occurs approximately at γ ≈ 0.5.

Recently, the coexistence of the magnetic and super-
conducting order in nickel borocarbides was studied in
several laboratories experimentally. Such compounds
as ErNi2B2C and TmNi2B2C, both being superconduct-
ing materials, demonstrate radically different magnetic
properties. Local tunneling microscopy at low temper-
atures revealed a considerable difference in the local
superconducting density of states behavior. In contrast
with the TmNi2B2C [23] compound, where the DOS
has its usual BCS type, the ErNi2B2C [24] measure-
ments show the nonzero conductance and thereby the
nonzero DOS within the energy gap.

To find the possible explanation for such a differ-
ence, we propose the following model. We believe that,
in the ErNi2B2C compound, the magnetic order near the
surface is absent even when the antiferromagnetic
phase appears in the bulk. This may be related to some
atomic compositional disorder near the surface and
modified exchange interaction between the magnetic
moments near the surface. Consequently, to describe
the surface properties of superconducting ErNi2B2C,
the model of a thin film with a relatively strong mag-
netic scattering on the top of the bulk superconductor
without magnetic scattering seems to be quite reason-
able.

Using the developed algorithm for the SF bilayer,
we may assume the exchange field H = 0 as in the para-
magnetic case and γ = 1, γB = 0 for the actual absence
of the boundary. Figure 8a demonstrates the calculated
DOS behavior at x = –df in the presence of the magnetic
scattering that destroys the usual BCS behavior. For
ErNi2B2C having easy plane magnetic anisotropy, we
take 1/τz = 0 and 1/τx = 1/τy = 1/τ. Figure 8b corre-
sponds to the case without magnetic scattering. It can
be seen that both black theoretical curves are in good
agreement with the experimental data of [24] (Figs. 1a
and 2b). The difference between the ErNi2B2C and
TmNi2B2C curves may be related to the important dif-
ference in their Neel temperatures (6 K and 1.5 K,
respectively). The lower TN may lead to the much
smaller magnetic scattering in TmNi2B2C.

In conclusion, we demonstrated that the increase of
spin-orbit or spin-flip electron scattering rates results in
completely different transformations of N(ε) at the free

F layer interface. The increase of  results in the con-
tinuous suppression of the peaks in the density of states
accompanied by the closing of the energy gap. The

τso
1–

τz
1–

Fig. 6. The case of spin-orbit scattering. The total DOS
energy variation in the F layer for several values of the mag-
netic scattering parameter αso and for the fixed parameters
H/πTc = 0.2, γB = 5, γ = 0.05, df/ξn = 0.2, ds/ξs = 10, αz = 0,
and αx = 0. The black curve corresponds to the SN case.

Fig. 7. The case of spin-orbit scattering. The total DOS

energy variation in the F layer for  = H and for the fixed

parameters H/πTc = 0.2, γB = 5, df/ξn = 0.2, ds/ξs = 10, αz =
0, and αx = 0. The black curve corresponds to the SN case
with γ = 0.5. The dashed and dotted curves correspond to
two different values of the γ parameter.

τso
1–

αso = 0.01
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increase of  additionally leads to the shift of the
peaks towards the zero energy, which looks like the
action of some additional exchange field in the ferro-

magnet. Contrary to that, the increase in  does not
result in the closing of the energy gap and tends to
decrease the Zeeman peaks' splitting.

All the calculations have been performed in a self-
consistent way in the frame of the Usadel equations.
The developed formalism has been successfully
applied for the interpretation of the data obtained in the
superconductors with the antiferromagnet ordering.
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Fig. 8. The theoretical fit of the experimental data of [24]
(Fig. 1). The plot parameters are the following: H = 0, γ = 1,
γB = 0, ds � ξs, and αz = αs0 = 0; (a) T = 0.15 K, Tc = 11 K,
df = 0.35ξn, and the magnetic scattering parameter αx =
0.95; (b) T = 0.8 K, Tc = 10.5 K, df = 0.6ξn, and there is no
magnetic scattering.


