We study proximity effects at ferromagnet superconductor interfaces by
self-consistent numerical solution of the Bogoliubov-de Gennes equations for
the continuum, without any approximations. Our procedures allow us to study
systems with long superconducting coherence lengths. We obtain results for the
pair potential, the pair amplitude, and the local density of states. We use
these results to extract the relevant proximity lengths. We find that the
superconducting correlations in the ferromagnet exhibit a damped oscillatory
behavior that is reflected in both the pair amplitude and the local density of
states. The characteristic length scale of these oscillations is approximately
inversely proportional to the exchange field, and is independent of the
superconducting coherence length in the range studied. We find the
superconducting coherence length to be nearly independent of the ferromagnetic
polarization.Comment: 13 Pages total. Compressed .eps figs might display poorly, but will
print fin