989 research outputs found

    English Language Learners\u27 Cognitive Load and Conceptual Understanding of Probability Distributions after Using an Animated Simulation Program

    Get PDF
    The majority of university students in the United Arab Emirates are English language learners. As a country that has only recently established its educational system based on an American model, it has adopted English as its language for teaching and learning. Challenges related to the use of a second language have been noted and simple interventions such as the use of Arabic translations and glossaries have not shown reasonable effectiveness, suggesting that limited English language proficiency in itself is not the sole cause of learning difficulties. The challenge to understand and find a solution to this problem led to considering Cognitive Load Theory, which suggests that certain approaches to teaching may hinder learning because of unnecessary burdens on working memory. This theory has been previously used to explain how the additional language burden negatively affect second language learners. Within this context, a quasi-experiment was conducted where students were taught the concept of probability distributions using an animated simulation of a coin tossing experiment. Animated simulation was hypothesized to create lower cognitive load and thus result in better learning and higher test scores. Performance and cognitive load were measured throughout the study. Although it was found that using animated simulation was not associated with better fact and procedural retention, students performed better in a test of conceptual understanding. As predicted by Cognitive Load Theory, the researchers found a negative relationship between test scores and cognitive load, albeit weak. Nonetheless, the cognitive load of students using the animated simulation was lower for most of the duration of the experiment. Results are further discussed from a cognitive load perspective and future research directions are proposed

    Instructional mode: A better predictor of performance than student preferred learning styles

    Get PDF
    © 2019, Eskisehir Osmangazi University. This study sought to investigate the link between preferred learning styles, performance, and cognitive load. After determining learning styles (visual or auditory), undergraduate students were assigned to three instructional formats, namely: Listen Only, Read Only, and Read + Listen. A pretest was administered to assess students\u27 prior knowledge on lightning. During acquisition, students received instructions specific to the instructional format they were assigned to. For example, students in the Read Only group received written materials only while those in the Listen Only group received auditory materials only. The acquisition phase was followed by a posttest phase. Based on cognitive load theory, it was hypothesized that different instructional formats would result in differences in student performances. Two-way between-groups ANOVA results confirm the hypotheses, in that student\u27s cognitive load was a better predictor of student performance than student learning styles. Educational implications and limitations are also discussed

    How can one learn mathematical word problems in a second language? A cognitive load perspective

    Get PDF
    Language may ordinarily account for difficulties in solving word problems and this is particularly true if mathematical word problems are taught in a language other than one\u27s native language. Research into cognitive load may offer a clear theoretical framework when investigating word problems because memory, specifically working memory, plays a major role in solving problems successfully. The main purpose of this study was to investigate the influence of language when solving mathematical word problems while taking into consideration participant\u27s limited working memory. The participants\u27 main role was to solve word problems in a format that depended on the group they were assigned to. The study utilized a qualitative method approach and involved three phases, a pre-testing, acquisition, and testing phase. Predominant findings from this study show that there was a statistically significant difference between the various groups participants were assigned to

    Southern African summer-rainfall variability, and its teleconnections, on interannual to interdecadal timescales in CMIP5 models

    Get PDF
    23 pagesInternational audienceThis study provides the first assessment of CMIP5 model performances in simulating southern Africa (SA) rainfall variability in austral summer (Nov–Feb), and its teleconnections with large-scale climate variability at different timescales. Observed SA rainfall varies at three major timescales: interannual (2–8 years), quasi-decadal (8–13 years; QDV) and interdecadal (15–28 years; IDV). These rainfall fluctuations are, respectively, associated with El Niño Southern Oscillation (ENSO), the Interdecadal Pacific Oscillation (IPO) and the Pacific Decadal Oscillation (PDO), interacting with climate anomalies in the South Atlantic and South Indian Ocean. CMIP5 models produce their own variability, but perform better in simulating interannual rainfall variability, while QDV and IDV are largely underestimated. These limitations can be partly explained by spatial shifts in core regions of SA rainfall variability in the models. Most models reproduce the impact of La Niña on rainfall at the interannual scale in SA, in spite of limitations in the representation of ENSO. Realistic links between negative IPO are found in some models at the QDV scale, but very poor performances are found at the IDV scale. Strong limitations, i.e. loss or reversal of these teleconnections, are also noted in some simulations. Such model errors, however, do not systematically impact the skill of simulated rainfall variability. This is because biased SST variability in the South Atlantic and South Indian Oceans strongly impact model skills by modulating the impact of Pacific modes of variability. Using probabilistic multi-scale clustering, model uncertainties in SST variability are primarily driven by differences from one model to another, or comparable models (sharing similar physics), at the global scale. At the regional scale, i.e. SA rainfall variability and associated teleconnections, while differences in model physics remain a large source of uncertainty, the contribution of internal climate variability is increasing. This is particularly true at the QDV and IDV scales, where the individual simulations from the same model tend to differentiate, and the sampling error increase

    An Autonomous Agent Framework for Constellation Missions: A Use Case for Predicting Atmospheric CO\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    Distributed systems missions (DSM), also known as swarm or constellation missions, is an upcoming class of mission design that is changing the current landscape.Swarms enable multipoint observations and higher fidelity science data collection. Autonomy is a critical feature that DSM will require in order to run successfully, especially beyond earth-centric missions and in dynamic environments due to increased delays between ground and space

    Does language really matter when solving mathematical word problems in a second language? A cognitive load perspective

    Get PDF
    © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group. In a bilingual educational setting, even when mathematical word problems are presented in one’s first language, students may still perform poorly if cognitive constraints such as working memory limitations are not taken into consideration. The purpose of this study was to investigate the conditions under which learners are better able to solve word problems when presented in different modes (Reading Only, Listening Only and Reading and Listening). One hundred and thirty-two students from a federal institution in the United Arab Emirates participated in the study. Results indicated that Listening Only was negatively related to performance regardless of language. The study also found that solving mathematical word problems in English and Arabic was positively related to performance only when a dual mode, both Reading and Listening, was used. When solving mathematical word problems, both language and mode of instruction matter. Educational implications are discussed

    Clinician-Driven AI: Code-Free Self-Training on Public Data for Diabetic Retinopathy Referral

    Get PDF
    Importance: Democratizing artificial intelligence (AI) enables model development by clinicians with a lack of coding expertise, powerful computing resources, and large, well-labeled data sets. // Objective: To determine whether resource-constrained clinicians can use self-training via automated machine learning (ML) and public data sets to design high-performing diabetic retinopathy classification models. // Design, Setting, and Participants: This diagnostic quality improvement study was conducted from January 1, 2021, to December 31, 2021. A self-training method without coding was used on 2 public data sets with retinal images from patients in France (Messidor-2 [n = 1748]) and the UK and US (EyePACS [n = 58 689]) and externally validated on 1 data set with retinal images from patients of a private Egyptian medical retina clinic (Egypt [n = 210]). An AI model was trained to classify referable diabetic retinopathy as an exemplar use case. Messidor-2 images were assigned adjudicated labels available on Kaggle; 4 images were deemed ungradable and excluded, leaving 1744 images. A total of 300 images randomly selected from the EyePACS data set were independently relabeled by 3 blinded retina specialists using the International Classification of Diabetic Retinopathy protocol for diabetic retinopathy grade and diabetic macular edema presence; 19 images were deemed ungradable, leaving 281 images. Data analysis was performed from February 1 to February 28, 2021. // Exposures: Using public data sets, a teacher model was trained with labeled images using supervised learning. Next, the resulting predictions, termed pseudolabels, were used on an unlabeled public data set. Finally, a student model was trained with the existing labeled images and the additional pseudolabeled images. Main Outcomes and Measures: The analyzed metrics for the models included the area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, and F1 score. The Fisher exact test was performed, and 2-tailed P values were calculated for failure case analysis. // Results: For the internal validation data sets, AUROC values for performance ranged from 0.886 to 0.939 for the teacher model and from 0.916 to 0.951 for the student model. For external validation of automated ML model performance, AUROC values and accuracy were 0.964 and 93.3% for the teacher model, 0.950 and 96.7% for the student model, and 0.890 and 94.3% for the manually coded bespoke model, respectively. // Conclusions and Relevance: These findings suggest that self-training using automated ML is an effective method to increase both model performance and generalizability while decreasing the need for costly expert labeling. This approach advances the democratization of AI by enabling clinicians without coding expertise or access to large, well-labeled private data sets to develop their own AI models

    8. Remote Sensing Of Vegetation Fires And Its Contribution To A Fire Management Information System

    Get PDF
    In the last decade, research has proven that remote sensing can provide very useful support to fire managers. This chapter provides an overview of the types of information remote sensing can provide to the fire community. First, it considers fire management information needs in the context of a fire management information system. An introduction to remote sensing then precedes a description of fire information obtainable from remote sensing data (such as vegetation status, active fire detection and burned areas assessment). Finally, operational examples in five African countries illustrate the practical use of remotely sensed fire information. As indicated in previous chapters, fire management usually comprises activities designed to control the frequency, area, intensity or impact of fire. These activities are undertaken in different institutional, economic, social, environmental and geographical contexts, as well as at different scales, from local to national. The range of fire management activities also varies considerably according to the management issues at stake, as well as the available means and capacity to act. Whatever the level, effective fire management requires reliable information upon which to base appropriate decisions and actions. Information will be required at many different stages of this fire management system. To illustrate this, we consider a typical and generic description of a fire management loop , as provided in Figure 8.1. Fire management objectives result from fire related knowledge . For example, they may relate to sound ecological reasons for prescribed burning in a particular land management context, or to frequent, uncontrolled fires threatening valuable natural or human resources. Whatever the issues, appropriate objectives require scientific knowledge (such as fire impact on ecosystems components, such as soil and vegetation), as well as up-to date monitoring information (such as vegetation status, fire locations, land use, socioeconomic context, etc.). Policies, generally at a national and governmental level, provide the official or legal long term framework (e.g. five to ten years) to undertake actions. A proper documentation of different fire issues, and their evolution, will allow their integration into appropriate policies, whether specific to fire management, or complementary to other policies in areas such as forestry, rangeland, biodiversity, land tenure, etc. Strategies are found at all levels of fire management. They provide a shorter-term framework (e.g. one to five years) to prioritise fire management activities. They involve the development of a clear set of objectives and a clear set of activities to achieve these objectives. They may also include research and training inputs required, in order to build capacity and to answer specific questions needed to improve fire management. The chosen strategy will result from a trade-off between priority fire management objectives and the available capacity to act (e.g. institutional framework, budget, staff, etc.), and will lead towards a better allocation of resources for fire management operations to achieve specific objectives. One example in achieving an objective of conserving biotic diversity may be the implementation of a patch-mosaic burning system (Brockett et al., 200 1 ) instead of a prescribed block burning system, based on an assumption that the former should better promote biodiversity in the long-term than the latter (Parr & Brockett, 1999). This strategy requires the implementation of early season fires to reduce the size of later season fires. The knowledge of population movements, new settlements or a coming El Nino season, should help focus the resources usage, as these factors might influence the proportion as well as the locations of area burned. Another strategy may be to prioritise the grading of fire lines earlier than usual based on information on high biomass accumulation. However, whatever the strategies, they need to be based on reliable information

    8. Remote Sensing Of Vegetation Fires And Its Contribution To A Fire Management Information System

    Get PDF
    In the last decade, research has proven that remote sensing can provide very useful support to fire managers. This chapter provides an overview of the types of information remote sensing can provide to the fire community. First, it considers fire management information needs in the context of a fire management information system. An introduction to remote sensing then precedes a description of fire information obtainable from remote sensing data (such as vegetation status, active fire detection and burned areas assessment). Finally, operational examples in five African countries illustrate the practical use of remotely sensed fire information. As indicated in previous chapters, fire management usually comprises activities designed to control the frequency, area, intensity or impact of fire. These activities are undertaken in different institutional, economic, social, environmental and geographical contexts, as well as at different scales, from local to national. The range of fire management activities also varies considerably according to the management issues at stake, as well as the available means and capacity to act. Whatever the level, effective fire management requires reliable information upon which to base appropriate decisions and actions. Information will be required at many different stages of this fire management system. To illustrate this, we consider a typical and generic description of a fire management loop , as provided in Figure 8.1. Fire management objectives result from fire related knowledge . For example, they may relate to sound ecological reasons for prescribed burning in a particular land management context, or to frequent, uncontrolled fires threatening valuable natural or human resources. Whatever the issues, appropriate objectives require scientific knowledge (such as fire impact on ecosystems components, such as soil and vegetation), as well as up-to date monitoring information (such as vegetation status, fire locations, land use, socioeconomic context, etc.). Policies, generally at a national and governmental level, provide the official or legal long term framework (e.g. five to ten years) to undertake actions. A proper documentation of different fire issues, and their evolution, will allow their integration into appropriate policies, whether specific to fire management, or complementary to other policies in areas such as forestry, rangeland, biodiversity, land tenure, etc. Strategies are found at all levels of fire management. They provide a shorter-term framework (e.g. one to five years) to prioritise fire management activities. They involve the development of a clear set of objectives and a clear set of activities to achieve these objectives. They may also include research and training inputs required, in order to build capacity and to answer specific questions needed to improve fire management. The chosen strategy will result from a trade-off between priority fire management objectives and the available capacity to act (e.g. institutional framework, budget, staff, etc.), and will lead towards a better allocation of resources for fire management operations to achieve specific objectives. One example in achieving an objective of conserving biotic diversity may be the implementation of a patch-mosaic burning system (Brockett et al., 200 1 ) instead of a prescribed block burning system, based on an assumption that the former should better promote biodiversity in the long-term than the latter (Parr & Brockett, 1999). This strategy requires the implementation of early season fires to reduce the size of later season fires. The knowledge of population movements, new settlements or a coming El Nino season, should help focus the resources usage, as these factors might influence the proportion as well as the locations of area burned. Another strategy may be to prioritise the grading of fire lines earlier than usual based on information on high biomass accumulation. However, whatever the strategies, they need to be based on reliable information
    corecore