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Key Points 
 

Question: Can clinicians without coding expertise or access to well-labeled private 

datasets use self-training and AutoML to create high-performing machine learning 

models? 

 

Findings: The models designed without coding, private datasets, or extensive labeling 

demonstrated high performance comparable to bespoke and FDA approved models for 

similar tasks. 

 

Meaning: These findings demonstrate the tools enabling democratization of clinician-

driven AI. 
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Abstract 
 

Importance: Democratizing AI to enable model development by clinicians with a lack of 

coding expertise, powerful computing resources, and large well-labeled datasets.  

 

Objective: Determine whether resource-constrained clinicians can utilize self-training 

via AutoML and public datasets to design high-performing machine learning models.  

 

Design: In this diagnostic study, a self-training method without coding is employed on 

public datasets. An AI model was trained to classify referable diabetic retinopathy as an 

exemplar use-case. This study was conducted in 2021.  

 

Setting: Datasets were comprised of retinal images from patients in France, the United 

Kingdom, the United States, and Egypt.  

 

Participants: This study used the freely-accessible datasets EyePACS (n=58,689) and 

Messidor-2 (n=1748). The Messidor-2 images were assigned adjudicated labels 

available on Kaggle. Four images from Messidor-2 were deemed ungradable and 

excluded, leaving 1744 images. 300 images randomly selected from the EyePACS 

dataset were independently re-labeled by three blinded retina specialists using the 

international classification of diabetic retinopathy protocol for diabetic retinopathy grade 

and diabetic macular edema presence. 19 images were deemed ungradable which left 

281 images.  
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Exposures: Using public datasets, we trained a “teacher model” with labeled images 

using supervised learning. Next, we utilized the resulting predictions, termed “pseudo-

labels”, on an unlabeled public dataset. Finally, a “student model” was trained with the 

existing labeled images and the additional pseudo-labeled images.  

 

Main Outcomes and Measures: The analyzed metrics for our models included area 

under the receiver operating curve (AUROC), accuracy (ACC), sensitivity, specificity, 

and F1 score.  

 

Results: Teacher model performance on our internal validation datasets ranged from 

AUROC (0.886-0.939) while student model AUROC ranged from (0.916-0.951).  

 

Teacher AutoML model external validation performance was AUROC, ACC: (0.964), 

(93.3%) while the student model was (0.950), (96.7%) respectively and our manually 

coded bespoke model was (0.985), (96.5%). 

 

Conclusion and Relevance: This study suggests that self-training using AutoML is an 

effective method to increase both model performance and generalizability while 

decreasing the need for costly expert labeling. Our approach advances the 

democratization of AI by enabling clinicians without coding expertise or access to large 

well-labeled private datasets to develop their own AI models  
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Introduction 

Machine learning (ML), specifically deep learning (DL) algorithms, are promising tools 

for medical image interpretation, and have been increasingly investigated in imaging-

heavy specialties such as radiology, dermatology, and ophthalmology 1. However, not 

many models make it into production 2,3. Clinician-driven ML has a higher likelihood of 

implementation, since clinicians on the front lines are best suited to select relevant use-

cases and design ML for patient-relevant endpoints. Despite recent advances, 

supervised learning (SL), the most utilized form of DL, relies on large amounts of 

labeled data 4 5. The scarcity of expert clinician time is a significant challenge when 

performing medical image labeling 6–8. Given that ML model performance is highly 

reliant on high-quality and reproducible ground truth labels, this entails time-consuming 

and costly labeling efforts for healthcare ML9 10 11. Accordingly, clinician-driven DL 

projects are chiefly limited by the need for (1) coding expertise, (2) powerful computing 

resources, and (3) time and cost of generating high-quality adjudicated labels 12. 

 

A major barrier to clinician-driven ML is a lack of technical and coding expertise. Our 

group has demonstrated a potential solution, automated machine learning (AutoML). 

This framework enables ML model building without coding by largely automating the 

steps of the ML pipeline including dataset management, neural architecture search, and 

hyperparameter tuning 13. A number of publicly-available AutoML platforms enable 

domain experts, including health care professionals, without coding expertise to train 

their own high-performing DL models 14–16. Our aforementioned work demonstrates high 

https://paperpile.com/c/ds1rPm/u8dzF
https://paperpile.com/c/ds1rPm/KSlE+44mH
https://paperpile.com/c/ds1rPm/ODnO5
https://paperpile.com/c/ds1rPm/OOBpm
https://paperpile.com/c/ds1rPm/QKF1a+tnjph+L1Erk
https://paperpile.com/c/ds1rPm/O0etw
https://paperpile.com/c/ds1rPm/eiN0j
https://paperpile.com/c/ds1rPm/rGXHG
https://paperpile.com/c/ds1rPm/FjsVO
https://paperpile.com/c/ds1rPm/ReNSc
https://paperpile.com/c/ds1rPm/7gaet+le6VE+gSdKG
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performance and the ability to reproduce published seminal models demonstrating 

novel signals such as sex prediction from retinal fundus photographs 17,18. 

 

Semi-supervised learning (SSL) is a potential solution for label scarcity, as it makes use 

of unlabeled data, which is vastly more abundant 19. A type of SSL termed self-training, 

entails initially training a “teacher model” with a labeled dataset using SL, then utilizing 

the resulting teacher model to generate predictions, termed “pseudo-labels”, on another 

unlabeled dataset. Next, a “student model” is trained utilizing an expanded dataset 

consisting of the initially labeled dataset combined with the additional dataset and its 

pseudo-labels (Figure 1). This process may be repeated (i.e. designating the student 

model as a teacher model to generate new pseudo-labels, and subsequently training a 

new student model iteration) in order to both learn generalized task representations and 

increase algorithm performance 19–21. 

 

We illustrate this framework through the exemplar disease of diabetic retinopathy (DR), 

which is a leading cause of visual impairment, affecting up to a third of patients with 

diabetes mellitus 22,23. According to projections, diabetes will affect 439 million adults by 

2030, and 2.4 million eyes per day would require retinal examination worldwide 24,25. To 

deal with this public health problem, several diabetic screening programs have been 

established over time, such as the English National Screening Programme and the 

Singapore Integrated Diabetic Retinopathy Program (SiDRP) 26–28. Furthermore, several 

AI models have been FDA approved for DR classification and referral 29,30.  

 

https://paperpile.com/c/ds1rPm/ZI9S+QrWC
https://paperpile.com/c/ds1rPm/HkK9O
https://paperpile.com/c/ds1rPm/HkK9O+5gCcB+OIHYN
https://paperpile.com/c/ds1rPm/AESR+lzYi
https://paperpile.com/c/ds1rPm/acbuU+MUtpt
https://paperpile.com/c/ds1rPm/eW7B2+BS86B+7y6Vi
https://paperpile.com/c/ds1rPm/oKy4+BMOfG
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Herein we demonstrate a major step toward ML democratization by leveraging AutoML, 

SSL, and public datasets to design models without coding while utilizing limited data 

and labels. Using this synergistic approach, we address three primary barriers to 

democratizing clinician-driven ML: coding expertise, computing resources, and large 

well-labeled datasets. Accordingly, we train a representative model to classify referable 

DR, demonstrating performance similar to commercial FDA approved algorithms. 
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Methods 

Public Datasets 

Public, freely-accessible datasets were utilized both to enable replication of our work, 

and to demonstrate that the task may be achieved without access to institution-specific 

datasets and label sets (Figure 2) 31.  

 

Two retinal fundus photo datasets were selected: EyePACS (n=58,689 .jpeg images) 

and Messidor-2 (n=1748 .png images) 32,33. “Gold standard” labels from Kaggle, as 

assigned and adjudicated through an iterative process involving multiple rounds by 

three retina specialists, were applied to the Messidor-2 images 9 to train the teacher 

model. Four images were adjudicated as ungradable and were excluded, leaving 1744 

images. Messidor fundus photos were obtained using Topcon TRC NW6 non-mydriatic 

fundus camera with a 45 degree field of view. Patient inclusion criteria and 

demographics for these datasets are published in accordance with the source datasets. 

DR grades were assigned per international classification of diabetic retinopathy (ICDR) 

protocol for both datasets, and diabetic macular edema (DME) was defined by hard 

exudates within 1 disc diameter of the fovea. In order to replicate the most common 

referral triage task encountered in screening programs and performed by FDA/CE 

approved DL models, labels were binarized to referrable DR (RDR), comprising DR 

grades of moderate, severe, proliferative, and/or the presence of diabetic macular 

edema (DME), and non referable DR (NRDR), which represents the absence of RDR 

7,8,27,30,34–36.  

https://paperpile.com/c/ds1rPm/gIxXN
https://paperpile.com/c/ds1rPm/uJKUW+nXTXE
https://paperpile.com/c/ds1rPm/O0etw
https://paperpile.com/c/ds1rPm/L1Erk+BS86B+BMOfG+tnjph+Tdy57+FqSNo+Ltf2H
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To ensure high label quality for the EyePACS internal validation subset, 300 images 

were randomly selected from the EyePACS dataset, which were independently re-

labeled by three blinded retinal specialists (MB, JH, HK) using the ICDR protocol for DR 

grade and DME presence. The images were recategorized to RDR and NRDR as 

described, and the majority grade was assigned for cases of disagreement. 19 images 

were deemed ungradable, defined as either field of view not encompassing the entire 

nerve and temporal vascular arcades, or without sufficient image quality to exclude 

microaneurysm-sized lesions. These were excluded, leaving 281 images; dataset 

details are in Table 1.  

External Validation Dataset 

The external validation dataset comprises 210 color fundus photographs of 106 diabetic 

patients who attended a private medical retina clinic in Tanta, Egypt. Informed consent 

was obtained from all patients for this research study. A DRI OCT Triton machine 

version 10.11 (Topcon Corporation, Tokyo, Japan) was used to acquire 55 degree 

fundus photographs.  All data was obtained retrospectively via convenience sampling, 

and subsequently anonymized. The dataset was labeled using an identical approach to 

the EyePACS validation subset by three retina specialists.    

Model Training   

The DL models were trained utilizing AutoML Vision on Google Cloud Platform (GCP). 

As described in our prior work, this platform provides a graphical user interface (GUI) for 
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data upload, labeling, and model training without coding 12,13,31. AutoML entails dataset 

management, neural architecture search and automated hyperparameter tuning. 

Images were uploaded to GCP Buckets, and labels were uploaded to GCP via .csv files 

containing labels, training set splits, and GCP bucket locations. External validations 

were performed via command line interface batch prediction requests. Patient level 

splits were maintained for the EyePACS dataset, however no patient-level data was 

provided for the Messidor dataset, for which we were consequently unable to ensure 

that patient-level splits were maintained. Each hour of cloud compute represents 8 

parallel NVIDIA® Tesla® V100 GPU connected machines. All AutoML model training 

was specified to use maximum allowable cloud compute hours (800), with the early 

stopping option enabled. This serves to automatically stop training when no further 

model improvement is noted. There were no local computer system requirements for 

the usage of cloud based platforms.  

Teacher Model  

The Messidor-2 Dataset with gold standard adjudicated labels applied was randomly 

split to train, tune, and validation sets (80%, 10%, and 10% respectively). AutoML was 

used as described to train a DL model, which is henceforth referred to as the teacher 

model. 

Student Model 

Following teacher model training, the model was deployed on GCP, and batch 

prediction was performed via the Google Cloud software developer kit command line 

https://paperpile.com/c/ds1rPm/FjsVO+ReNSc+gIxXN
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interface to run inference on the EyePACS training dataset (n=58,389). This generated 

model predictions of RDR and NRDR for EyePACS training dataset images. The 

resulting predictions were assigned as pseudo-labels to the EyePACS training dataset 

(n=58,389), which was combined with the teacher model training dataset (n=1,395). 

Subsequently, a student model was trained via AutoML utilizing the combined train set 

(n=59,784) with the teacher tune set (n=175) (Figure 2). 

Bespoke Model 

To compare our code-free AutoML model approach with a traditional DL model 

designed via coding, we developed a bespoke RDR student model utilizing identical 

images, data splits, and label sets to the AutoML approach. Models were built in 

Tensorflow 1.15 with Python 3.7 and sklearn library 37,38. 

 

We followed the subsequent standard pipeline for developing a bespoke coded RDR 

model; First, we compared the performance of two commonly used model architectures, 

InceptionV3 and ResNet50 in a general hyperparameter configuration, and selected 

InceptionV3 as the backbone of the bespoke model due to its superior performance. We 

then searched for optimized performance by grid-searching the hyperparameters, 

including the learning rate, momentum of the optimiser, and batch size. We 

implemented data augmentation on the training and tuning sets including random 

rotation and flipping, and color jitter, to avoid model overfitting, and to increase 

generalization. An InceptionV3 model pre-trained on Imagenet weights, with a learning 

rate of 0.1, SGD momentum of 0.0 and batch size of 32 was trained for 20 epochs. All 

https://paperpile.com/c/ds1rPm/Dgdar+stJeU
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model layers were set as trainable. We thus obtained a bespoke model as the baseline 

for comparison.   

Statistical Analysis 

Performance metrics are reported at Youden’s threshold. Batch prediction results 

displayed softmax outputs for predictions, which were used to generate receiver 

operating characteristic curves and calculate the area under the receiver operating 

characteristic curve (AUROC) using sklearn inbuilt functions. Fisher’s exact test was 

performed and p values were calculated for failure case analysis.  
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Results 

Internal validation 

The student model demonstrated improved AUROC and overall performance metrics as 

compared with the teacher model (Figure 3). Student model AUROC, accuracy (ACC), 

and F1 score on the Messidor validation dataset were 0.951, 93.7%, 86.7% as 

compared with teacher model of 0.939, 92.0%, 84.1% respectively. Sensitivity and 

specificity were 84.8%, 96.9% for the student model and 80.4%, 96.1% for the teacher 

model respectively. Full performance metrics are available in Table 2.  

 

EyePACS validation dataset AUROC was improved for the student as compared to the 

teacher model. Student model AUROC, ACC, F1 were 0.916, 74.4%, 52.0% as 

compared with teacher model 0.886, 84.3%, 51.1% respectively. As compared with 

Messidor internal validation, there were increased false positives in both student and 

teacher models (Supplementary Table 1) and thus lower PPV and F1 scores. The 

decreased number of false negatives in the student model (two) as compared with 18 in 

the teacher model, represents 16 patients who may have otherwise suffered vision-

threatening consequences from undertreatment. 

External validation 

Student model performance on the Egypt external validation dataset demonstrated 

similarly high performance as compared with the teacher model. AUROC, ACC and F1 

were 0.950, 96.7%, 98.3% for the student model and 0.964, 93.3%, 96.4% for the 
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teacher model respectively. Sensitivity and specificity were 100%, 41.7% for the student 

model and 94.4%, 75.0% for the teacher model respectively. A markedly lower 

specificity in this relatively unbalanced dataset containing over 90 percent RDR, 

suggests that tuning the threshold for this care setting may be necessary for balanced 

model performance with respect to desired false negative and false positive rates. 

Failure Case Analysis 

We performed a post-hoc failure analysis, in order to better characterize cases where 

models generated incorrect (false positive or false negative) predictions. As we had 

access to 3 independent grades for each image in the EyePACS and Egypt validation 

datasets, we characterized the validation set to images with or without grader 

agreement in respect to RDR vs NRDR (Table Z). In the Egypt validation dataset, 

incorrect model predictions were significantly less likely to have grader agreement 

(20.0%) as compared to correct (true positive or true negative) predictions (92.7%) 

(p=0.0002). Similarly, in the EyePACS validation dataset, incorrect predictions 

demonstrated significantly less grader agreement (60.8%) as compared with correct 

predictions (87.4%) (p<.0001). Together, this suggests that disagreed upon images may 

have inherent ground truthing difficulty, and have a corresponding increased 

classification difficulty for both humans and models. 

Bespoke DL Model 

The AUROC of the bespoke model on the EyePACS validation dataset was slightly 

worse as compared with the AutoML student model. Bespoke AUROC, ACC, F1 was 

0.853, 74.4%, 83.2% as compared with 0.916, 74.4%, 52.0% respectively for the 
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AutoML model. However, performance of the bespoke model on the Messidor-2 

validation dataset was improved as compared with the AutoML student model. Bespoke 

AUROC, ACC, F1 was 0.985, 96.5%, 94.8% as compared with 0.951, 93.7%, 87.6% 

respectively for the AutoML model.  With regards to the Egypt external validation 

dataset, the AUROC of the bespoke model was worse as compared with the AutoML 

student model. Bespoke AUROC, ACC, F1 was 0.890, 94.3%, 50.0% as compared with 

0.950, 96.7%, 98.3% respectively for the AutoML model. 
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Discussion 

In this work, we demonstrate a self-training AutoML approach with public datasets for 

DR classification of retinal fundus photographs. This framework simultaneously 

addresses multiple barriers to the democratization of clinician-driven ML. Our findings 

suggest that leveraging small datasets with high-quality labels on large public unlabeled 

datasets improves model performance. The resultant AutoML student model 

demonstrated improved AUROC on internal validation and a similarly high AUROC on 

the external validation dataset. Validation performance improved on the EyePACS 

dataset with images from a variety of imaging hardware, suggesting enhanced 

generalizability, via incorporating the larger pseudo-labeled dataset 39. As compared 

with our bespoke model, the AutoML models demonstrate improved AUROC in both 

EyePACS and external validation datasets, suggesting AutoML obviates the necessity 

for manual coding.  

 

In a post-hoc analysis performed of the EyePACS and Egypt validation datasets, we 

determined that images with grader disagreement were significantly more likely to 

receive incorrect model predictions. This suggests that edge cases with inherent ground 

truth uncertainty are more likely to lead to incorrect predictions by the model. Grader 

variability is a well-known issue with DR grading, a complex process that requires 

human identification of subtle retinal microvascular abnormalities 9. While we attempted 

to gain insights on model outputs through our post-hoc analysis of incorrect predictions, 

model explainability is inherently more opaque with AutoML. Though this has the 

potential to improve ML explainability, the knowle;[-[=;. dge of model architectures and 

https://paperpile.com/c/ds1rPm/RzsLA
https://paperpile.com/c/ds1rPm/O0etw
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hyperparameters in bespoke models do not inherently provide explainability on a per-

image basis. We are working on AutoML explainability including saliency techniques 

such as integrated gradients and XRAI region based attribution maps 40,41.  

 

Although our student models demonstrated high AUROCs, this average validation set 

performance may obscure the possibility of inaccurate predictions on important 

subgroups42. Despite good performance achieved in the detection of RDR, the model 

may underperform in patients with proliferative DR and tractional retinal detachment. 

Prior studies have shown commercial DR algorithms had low sensitivity to detect these 

cases in a real-world scenario 43, despite high sensitivity on a publicly available dataset 

44. This is termed hidden stratification, and may be especially meaningful if worse 

performance occurs in severe disease 45,44. An analysis of hidden stratification in the 

context of self-training is beyond the scope of our study given the limited granularity of 

public datasets. However, we believe this topic represents a promising direction for 

further investigation.  

 

Our study has several limitations; As patient-level data was not provided for the 

Messidor-2 dataset, there we were unable to ensure patient-level splits were 

maintained. To mitigate the potential for falsely increased performance metrics, we 

performed an additional validation with a portion of the EyePACS dataset regraded and 

arbitrated by three retina specialists. The Egypt dataset consists of photos from a 

different camera, field of view, and higher RDR prevalence as compared to our internal 

validation datasets. On this dataset, the student model had 11 less false negatives as 

https://paperpile.com/c/ds1rPm/mF7g+M1zo
https://paperpile.com/c/ds1rPm/OGXdW
https://paperpile.com/c/ds1rPm/W0KU6
https://paperpile.com/c/ds1rPm/ut5oV
https://paperpile.com/c/ds1rPm/2X2Ra
https://paperpile.com/c/ds1rPm/ut5oV
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compared with the teacher model, which in combination with a 100% NPV is amenable 

to a screening use-case. The data shift was presumably larger for the student model 

since it was mostly trained on EyePACS images which had the least RDR prevalence. 

This dataset primarily acts as a “worst case” stress test of data distribution shift and 

model generalization, and not to compare student and teacher performance.  

Additionally, the bespoke model may have overfit, as its performance was worse on this 

dataset.  

 

Self-training has the potential for misclassification of unlabeled data by the teacher 

model46. A possible solution is filtering training data based on teacher model softmax 

outputs, such that predictions below a threshold would not be used in student model 

training 10,20,47. However, exclusively using the most confident predictions may decrease 

generalizability, which would be detrimental in real-world use, as high variability occurs 

from image (e.g. quality, device) and patient-related (e.g. ethnicity, concurrent disease) 

factors 48.  

 

Although AutoML platforms provide free tiers, cloud-based ML model training incurs 

costs depending on the number of images used. Therefore, utilizing the self-training 

approach on large unlabeled datasets may become expensive. While many AutoML 

platforms, including GCP are HIPAA and ISO compliant, institutional research board 

approvals are necessary before utilizing these platforms on identifiable datasets.  

  

https://paperpile.com/c/ds1rPm/bY4wz
https://paperpile.com/c/ds1rPm/SE5Jk+5gCcB+eiN0j
https://paperpile.com/c/ds1rPm/N873w
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Conclusion 

Herein, we leveraged a self-training code-free AutoML approach to address barriers for 

democratization of clinician-driven ML including the need for coding expertise, the 

scarcity of data, and the cost of high-quality labeling. Using public DR datasets, we 

elucidated that self-training is an effective method to increase both model performance 

and generalizability, while decreasing the need for expensive expert labeling. To 

effectively address patient-relevant clinical endpoints, medical ML models are best 

designed by use-case experts such as clinicians. As evidenced by the improved 

performance of our code-free AutoML models as compared with our manually designed 

bespoke model, AutoML allows clinicians and researchers without coding expertise to 

achieve similar results as computer scientists. As the tools for machine learning 

continue to be democratized, our SSL approach has the potential to address the 

remaining disparity of expensive clinical labeling, enabling clinicians without coding 

expertise or access to large well-labeled private datasets to develop their own models. 
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Table 1: Dataset characteristics  
 

Teacher model Student model Teacher and student models 

 
Datasets 

Development set: 
Teacher 

Development set: 
Student 

Validation set 

Training 
set 

Tuning 
set  

Training 
set 

Tuning 
set 

Internal validation 1 Internal 
validation 2 

External validation 

Image Source Messidor-2  Messidor-2 + 
EyePACS  

Messidor-2 EyePACS Egypt dataset 

Label Source Google (Kaggle 
Public)  

Google (Kaggle 
Public) 

+  
Teacher model 

 
Google (Kaggle 

Public) 

 
Expert 

 
Expert 

Labeling 
Approach 

Adjudication Adjudication + Self-
training 

 
Adjudication 

 
Majority vote 

 
Majority vote 

Number of 
images 

1,395 175 59,784 175 174 281 210 

Camera and 
FOV 

Topcon TRC NW6  
45 degree 

Various cameras 
45 degree 

Topcon TRC NW6  
45 degree 

Different 
cameras 

45 degree 

Topcon DRI OCT 
Triton  

55 degree 

Clinical 
environment 

Public Ophthalmology 
department 

Public Ophthalmology 
department  

+ 
Primary care 

Public 
Ophthalmology 

department 

Primary care Private 
Ophthalmology 

Practice 
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Table 2: Algorithm Performance Metrics 
 

AUROC Accuracy F1 
score 

Sensitivity Specificity PPV NPV 

Teacher model 

Messidor Internal validation 
1 

0.939  92.0% 84.1% 80.4% 96.1% 88.1% 93.2% 

EyePACS 
Internal validation 2 

0.886 84.3% 51.1% 56.1% 89.2% 46.9% 92.2% 

Egypt 
External validation 

0.964 93.3% 96.4%  94.4%  75.0% 98.4% 45.0% 

Student model 

Messidor 
Internal validation 1 

0.951 93.7% 87.6% 84.8% 96.9% 90.7% 94.7% 

EyePACS 
Internal validation 2 

0.916 74.4% 52.0% 95.1% 70.8% 35.8% 98.8% 

Egypt 
External validation 

0.950 96.7% 98.3% 100%  41.7% 96.6% 100% 

Bespoke model 

Messidor 
Internal validation 1 

0.985 96.5% 94.8% 96.5% 96.9% 89.1% 96.1% 

EyePACS 
Internal validation 2 

0.853 74.4% 83.2% 74.2% 75.6% 94.7% 33.3% 

Egypt 
External validation 

0.890 94.3%  50.0%  50.0%  97.0%  50.0% 97.0% 
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Figure 1: Self Training 

 
Figure 1 Simplified. Illustration of the self-training approach, which involves three steps: (1) a teacher model is 
trained on labeled data; (2) the teacher model is used to generate pseudo-labels on unlabeled data; (3) a student 
model is trained on labeled and pseudo-labeled images 
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Figure 2: Model Training and Validation Data 

Flow 

 
Figure 2: Data splits and flows for self-training and validation of student and teacher models. Once 
trained, the teacher model is used to apply pseudo-labels to a new dataset (EyePACS). Subsequently, 
the resulting labels and images are combined with the teacher model training dataset to train a student 
model. Both models are internally and externally validated on adjudicated or arbitrated validation 
datasets. 
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Figure 3: Algorithm ROC Curves 

A. Messidor Dataset Internal Validation 

 
 

 

B. EyePACS Dataset Internal Validation 
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C. Egypt Dataset External Validation 

 
Figure 3: A) Receiver-operating curves for teacher, student, and bespoke manually coded 
models on the Messidor internal dataset. B) Respective model performance on the EyePACS 
internal dataset. C) Respective model performance on the Egypt external dataset. Ground truth 
labels were adjudicated (Messidor) or arbitrated (EyePACS and Egypt). 
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Supplementary 

Table 1: Model Confusion Matrices 

 

Model Dataset Confusion Matrix 

  Model Prediction True Positive True Negative 

Teacher Messidor 
(Internal 1) 

Positive 37 5 

Negative 9 123 
 

 

Student Positive 39 4 

Negative 7 124 
  

 

Teacher EyePACS 
(Internal 2) 

Positive 23 26 

Negative 18 214 
 

 

Student Positive 39 70 

Negative 2 170 
  

 

Teacher Egypt 
(External) 

Positive 187 3 

Negative 11 9 
 

 

Student Positive 198 7 

Negative 0 5 
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